
IEEE TRANSACTIONS ON VISUALIZATIONS AND COMPUTER GRAPHICS, VOL. 19, NO. 3, MARCH 2013 367

A Survey of Visualization Pipelines
Kenneth Moreland, Member, IEEE

Abstract—The most common abstraction used by visualization libraries and applications today is what is known as the visualization pipeline.
The visualization pipeline provides a mechanism to encapsulate algorithms and then couple them together in a variety of ways. The visualization
pipeline has been in existence for over twenty years, and over this time many variations and improvements have been proposed. This paper
provides a literature review of the most prevalent features of visualization pipelines and some of the most recent research directions.

Index Terms—visualization pipelines, dataflow networks, event driven, push model, demand driven, pull model, central control, distributed
control, pipeline executive, out-of-core streaming, temporal visualization, pipeline contracts, prioritized streaming, query-driven visualization,
parallel visualization, task parallelism, pipeline parallelism, data parallelism, rendering, hybrid parallel, provenance, scheduling, in situ
visualization, functional field model, MapReduce, domain specific languages

F

1 INTRODUCTION

THE field of scientific visualization was launched with
the 1987 National Science Foundation Visualization in

Scientific Computing workshop report [1], and some of
the first proposed frameworks used a visualization pipeline
for managing the ingestion, transformation, display, and
recording of data [2], [3]. The combination of simplicity
and power makes the visualization pipeline still the most
prevalent metaphor encountered today.

The visualization pipeline provides the key structure
in many visualization development systems built over
the years such as the Application Visualization System
(AVS) [4], DataVis [5], apE [6], Iris Explorer [7], VIS-
AGE [8], OpenDX [9], SCIRun [10], and the Visualization
Toolkit (VTK) [11]. Similar pipeline structures are also ex-
tensively used in the related fields of computer graph-
ics [2], [12], rendering shaders [13], [14], [15], and image
processing [16], [17], [18], [19]. Visualization applications
like ParaView [20], VisTrails [21], and Mayavi [22] allow end
users to build visualization pipelines with graphical user
interface representations. The visualization pipeline is also
used internally in a number of other applications including
VisIt [23], VolView [24], OsiriX [25], 3D Slicer [26], and
BioImageXD [27].

In this paper we review the visualization pipeline. We
begin with a basic description of what the visualization
pipeline is and then move to advancements introduced over
the years and current research.

2 BASIC VISUALIZATION PIPELINES

A visualization pipeline embodies a dataflow network in
which computation is described as a collection of executable
modules that are connected in a directed graph representing
how data moves between modules. There are three types
of modules: sources, filters, and sinks. A source module
produces data that it makes available through an output.
File readers and synthetic data generators are typical source

K. Moreland is with Sandia National Laboratories, PO Box 5800, MS 1326,
Albuquerque, NM 87185-1326. E-mail: kmorel@sandia.gov

Digital Object Identifier no. 10.1109/TVCG.2012.133.
c©2013 IEEE

modules. A sink module accepts data through an input and
performs an operation with no further result (as far as the
pipeline is concerned). Typical sinks are file writers and
rendering modules that provide images to a user interface. A
filter module has at least one input from which it transforms
data and provides results through at least one output.

The intention is to encapsulate algorithms in interchange-
able source, filter, and sink modules with generic connection
ports (inputs and outputs). An output from one module can
be connected to the input from another module such that
the results of one algorithm become the inputs to another
algorithm. These connected modules form a pipeline. Fig. 1
demonstrates a simple but common pipeline featuring a file
reader (source), an isosurface generator [28] (filter), and an
image renderer (sink).

Isosurface

Render

Read

Fig. 1: A simple visualization pipeline.

Pipeline modules are highly interchangeable. Any two
modules can be connected so long as the data in the output
is compatible with the expected data of the downstream
input. Pipelines can be arbitrarily deep. Pipelines can also
branch. A fan out occurs when the output of one module
is connected to the inputs of multiple other modules. A fan
in occurs when a module accepts multiple inputs that can
come from separate module outputs. Fig. 2 demonstrates a
pipeline with branching.

These diagrams are typical representations of pipeline
structure: blocks representing modules connected by arrows
representing the direction in which data flows. In Fig. 1 and
Fig. 2, data clearly originates in the read module and ter-
minates in the render module. However, keep in mind that
this is a logical flow of data. As documented later, data and
control can flow in a variety of ways through the network.



368 IEEE TRANSACTIONS ON VISUALIZATIONS AND COMPUTER GRAPHICS, VOL. 19, NO. 3, MARCH 2013

Isosurface

Re�ect

Read

Render

Streamlines

Glyphs
Tubes

Fig. 2: A visualization pipeline with branching. Intermediate results are shown next to each filter and the final visualization
is shown at the bottom. Shuttle data courtesy of the NASA Advanced Supercomputing Division.

However, such deviation can be considered implementation
details. From a user’s standpoint, this conceptual flow of
data from sources to sinks is sufficient. This paper will
always display this same conceptual model of the dataflow
network. Where appropriate, new elements will be attached
to describe further pipeline features and implementations.

To better scope the contents of this survey, we consider
the following formal definition. A visualization pipeline is
a dataflow network comprising the following three primary
components.

• Modules are functional units. Each module has zero or
more input ports that ingest data and an independent
number of zero or more output ports that produce
data. The function of the module is fixed whereas data
entering an input port typically change. Data emitted
from the output ports are the result of the module’s
function operating on the input data.

• Connections are directional attachments from the out-
put port of one module to the input port of another
module. Any data emitted from the output port of
the connection enter the input port of the connection.
Together modules and connections form the nodes and
arcs, respectively, of a directional graph. The dataflow
network can be configured by defining connections and
connections are arbitrary subject to constraints.

• Execution management is inherent in the pipeline. Typi-
cally there is a mechanism to invoke execution, but once
invoked data automatically flows through the network.

For a system or body of research to be considered in

this survey, it must be the embodiment of a visualization
pipeline. It must allow the construction of objects that
represent modules, and it must provide a means to connect
these modules. This definition excludes interfaces that are
imperative or functional as well as interfaces based on data
structures defining graphical representation such as scene
graphs or marks on hierarchies.

This paper is less formal about what it means to be a
visualization pipeline (as opposed to, say, an image pipeline).
Suffice it to say that the surveyed literature here are self-
declared to have a major component for scientific visualiza-
tion.

For more information on using visualization pipelines and
the modules they typically contain, consult the documenta-
tion for one of the numerous libraries or applications using
a visualization pipeline [11], [20], [29], [30], [31], [32], [33].

3 EXECUTION MANAGEMENT

The topology of a pipeline dictates the flow of data and
places constraints on the order in which modules can be
executed, but it does not determine how or when modules
get executed. Visualization pipeline systems can vary signif-
icantly in how they manage execution.

3.1 Execution Drivers
The visualization pipeline represents a static network of
operations through which data flows. Typical usage en-
tails first establishing the visualization pipeline and then



MORELAND: A SURVEY OF VISUALIZATION PIPELINES 369

executing the pipeline on one or more data collections.
Consequently, the behavior of when modules get executed is
a primary feature of visualization pipeline systems. Visual-
ization pipelines generally fall under two execution systems:
event driven and demand driven.

An event-driven pipeline launches execution as data be-
comes available in sources. When new data becomes avail-
able in a source, that source module must be alerted. When
sources produce data, they push it to the downstream
modules and trigger an event to execute them. Those down-
stream modules in turn may produce their own data to push
to the next module. Because the method of the event-driven
pipeline is to push data to the downstream modules, this
method is also known as the push model. The event-driven
method of execution is useful when applying a visualization
pipeline to data that is expected to change over time.

A demand-driven pipeline launches execution in response
to requests for data. Execution is initiated at the bottom of
the pipeline in a sink. The sink’s upstream modules satisfy
this request by first requesting data from their upstream
modules, and so on up to the sources. Once execution
reaches a source, it produces data and returns execution
back to its downstream modules. The execution eventually
unrolls back to the originating sink. Because the method
of the demand-driven pipeline is to pull data from the
upstream modules, this method is also known as the pull
model. The demand-driven method of execution is useful
when using a visualization pipeline to provide data to
an end user system. For example, the visualization could
respond to render requests to update a GUI.

3.2 Caching Intermediate Values

Caching, which saves module execution outputs, is an im-
portant feature for both execution methods. In the case of
the event-driven pipeline, a module may execute only when
data from all inputs is pushed to it. Thus, the execution must
know when to cache the data and where to retrieve it when
the rest of the data is later pushed.

In the case of the demand-driven pipeline, a module
with fan out could receive pull requests from multiple
downstream modules during the same original sink request.
Rather than execute multiple times, the module can first
check to see if the previously computed result is still valid
and return that if possible.

Although caching all the intermediate values in a pipeline
can remove redundant computation, it also clearly requires
more storage. Thus, managing the caching often involves a
trade-off between speed and memory. The cost of caching
can be mitigated by favoring shallow copies of data from a
module’s inputs to its outputs.

3.3 Centralized vs. Distributed Control

The control mechanism for a visualization pipeline can be
either centralized or distributed. A centralized control has a
single unit managing the execution of all modules in the
pipeline. The centralized control has links to all modules,
understands their connections, and initiates all execution in
the pipeline.

A distributed control has a separate unit for each module in
the pipeline. The distributed control unit nominally knows
only about a single module and its inputs and outputs.
The distributed control unit can initiate execution on only
its own module and must send messages to propagate
execution elsewhere.

Centralized control is advantageous in that it can per-
form a more thorough analysis of the pipeline’s network
to more finely control the execution. Such knowledge can
be useful in making decisions about caching (described
in Section 3.2) and load balancing for parallel execution
(described in Section 5). However, the implementation of
a centralized control is more complex because of the larger
management task. Centralized control can also suffer from
scalability problems when applied to large pipelines or
across parallel computers. Distributed control, in contrast,
has more limited knowledge of the pipeline, but tends to be
simpler to implement and manage.

3.4 Interchangeable Executive
Many visualization pipeline implementations have a fixed
execution management system. However, such a system
can provide more flexibility by separating its execution
management into an executive object. The executive object
is an independent object that manages pipeline execution.
Through polymorphism, different types of execution models
can be supported. For example, VTK is designed as a
demand-driven pipeline, but with its interchangeable exec-
utives it can be converted to an event-driven pipeline, as
demonstrated by Vo et al. [34].

Replacing the executive in a pipeline with centralized
control is straightforward. The control is, by definition, its
own separate unit. In contrast, a distributed control system
must have an independent executive object attached to each
module in the pipeline. The module objects get relegated to
only a function to execute whereas the executive manages
pipeline connections, data movement, and execution [35].

3.5 Out-of-Core Streaming
An out-of-core algorithm (or more formally an external-
memory algorithm) is a general algorithmic technique that
can be applied when a data set is too large to fit within
a computer’s internal memory. When processing data out
of core, only a fraction of the data is read from storage at
any one time [36]. The results for that region of data are
generated and stored, then the next segment of data is read.

A rudimentary but effective way of performing out-of-
core processing in a visualization pipeline is to read data
in pieces and let each piece flow through the pipe indepen-
dently. Because pieces are fed into the pipeline sequentially,
this method of execution is often called streaming. Streaming
can only work on certain algorithms. The algorithms must
be separable (that is, can break the work into pieces and work
on one piece at a time), and the algorithms must be result
invariant (that is, the order in which pieces are processed
does not matter). In a demand-driven pipeline, it is also
necessary that the algorithm is mappable in that it is able to
identify what piece of input is required to process each piece
of output [37].



370 IEEE TRANSACTIONS ON VISUALIZATIONS AND COMPUTER GRAPHICS, VOL. 19, NO. 3, MARCH 2013

Sink

Filter 2

Filter 1

Source

Whole
Region 3

Whole
Region 2

Whole
Region 1

(a) Update Information

Sink

Filter 2

Filter 1

Source

Update
Region 1

Update
Region 2

Update
Region 3

(b) Update Region

Sink

Filter 2

Filter 1

Source

Data Set 3

Data Set 2

Data Set 1

(c) Update Data

Fig. 3: The three pipeline passes for using regional data.

Because the input data set is broken into pieces, the
boundary between pieces is important for many algorithms.
Boundaries are often handled by adding an extra layer of
cells, called ghost cells [38] (or also often called halo cells).
These ghost cells complete the neighborhood information
for each piece and can be removed from the final result.

Some algorithms can be run out-of-core with a simple
execution model that iterates over pieces. However, most
pipelines can implement streaming more effectively with
metadata, discussed in Section 4.

3.6 Block Iteration
Some data sets are actually a conglomerate of smaller data
sets. These smaller data sets are called either blocks or
domains of the whole. One example of a multi-block data set
is an assembly of parts. Another example is adaptive mesh
refinement (AMR) [39] in which a hierarchy of progressively
finer grids selectively refines regions of interest.

Many visualization algorithms can be applied indepen-
dently to each block in a multi-block data set. Rather than
have every module specifically attend to the multi-block
nature of the data, the execution management can implicitly
run an algorithm independently on every block in the data
set [35].

4 METADATA

So far, we have considered the visualization pipeline as
simply a flow network for data, and the earliest implemen-
tations were just that. Modern visualization pipelines have
introduced the concept of metadata, a brief description of
the actual data, into the pipeline. The introduction of meta-
data allows the pipeline to process data in more powerful
ways. Metadata can flow through the pipeline independent
of, and often in different directions than, the actual data. The
introduction of metadata can in turn change the execution
management of the pipeline.

4.1 Regions
Perhaps the most important piece of information a visual-
ization pipeline can use is the region the data is defined over
and the regions the data can be split up into. Knowing and
specifying regions supports execution management for out

of core and parallel computation (described in Sections 3.5
and 5, respectively).

Visualization pipelines operate on three basic types of
regions.

• Extents are valid index ranges for regular multidimen-
sional arrays of data. Extents allow a fine granularity
in defining regions as sub-arrays within a larger array.

• Pieces are arbitrary collections of cells. Pieces allow
unstructured grids to be easily decomposed into dis-
cretionary regions.

• Blocks (or domains) represent a logical domain decom-
position. Blocks are similar to pieces in that they can
represent arbitrary collections, but blocks are defined
by the data set and their structures are considered to
have some meaning.

The region metadata may also include the spatial range of
each region. Such information is useful when performing
operations with known spatial bounds.

Region metadata can flow throughout the pipeline inde-
pendently of data. A general implementation to propagate
region information and select regions requires the three
pipeline passes demonstrated in Fig. 3 [38].

In the first update information pass, sources describe the
entire region they can generate, and that region gets passed
down the pipeline. As the region passes through filters, they
have the opportunity to change the region. This could be be-
cause the filter is combining multiple regions from multiple
inputs. It could also be because the filter is generating a new
topology, which has its own independent regions. It could
also be because the filter transforms the data in space or
removes data from a particular region in space.

In the second update region pass, the application decides
what region of data it would like a sink to process. This
update region is then passed backward up the pipeline
during which each filter transforms the region respective of
the output to a region respective of the input. The update
region pass terminates at the sources, which receive the
region of data they must produce.

In the final update data pass, the actual data flows through
the pipeline as described in Section 3.

4.2 Time
Until recently, visualization pipelines operated on data at a
single snapshot in time. Operating on data that evolved over



MORELAND: A SURVEY OF VISUALIZATION PIPELINES 371

time entailed an external mechanism executing the pipeline
repeatedly over a sequence of time steps. Such behavior
arose from data sets being organized as a sequence of time
steps and the abundance of visualization algorithms that are
time invariant.

Time control can be added to the visualization pipeline
by adding time information to the metadata [40]. The basic
approach is to add a time dimension to the region metadata
described in Section 4.1. A source declares what time steps
are available, and each filter has the ability to augment that
time during the update information pass. Likewise, in the
update region pass each filter may request additional or
different time steps. The region request may contain one
or more time steps.

These temporal regions enable filters that operate on data
that changes over time. For example, a temporal interpolator
filter can estimate continuous time by requesting multiple
time steps from upstream and interpolating the results for
downstream modules.

Some algorithms, such as particle tracing, may need all
data over all time. Although such a region may be requested
by this mechanism, it is seldom feasible to load this much
data at one time. Instead, an algorithm may operate on a
small number of time steps at one time, iterate over all time,
and accumulate the results. To support this, Biddiscombe
et al. [40] propose a continue executing mode where a filter,
while computing data, can request a re-execution of the up-
stream pipeline with different time steps and then continue
to compute with the new data.

4.3 Contracts

Contracts [41] provide a generalized way for a filter to
report its impact, the required data and operating modes,
before the filter processes data. An impact may include the
regions, variables, and time step a filter expects to work on.
The impact might also include operating restrictions such
as whether the filter supports streaming or requires ghost
cells.

Filters declare their impact by modifying a contract object.
The contract is a data structure containing information about
all the potential meta-information the pipeline executive can
use to manage execution. The contract object is passed up
the pipeline in the same way an update region would be
passed up as depicted in Fig. 3b. As the contract moves up
the pipeline, filters add their impacts to it, forming a union
of the requirements, abilities, and limitations of the pipeline.

4.4 Prioritized Streaming

The discussion of streaming in Section 3.5 provides no
scheme for the order in which pieces are processed. In
fact, since streaming specifically requires a data invariant
algorithm, the order of operation is inconsequential with
respect to correctness once the processing is completed.

However, if one is interested in the intermediate results,
the order is consequential. An interactive application may
show the results of a streaming visualization pipeline as
they become available. Such an application can be improved
greatly by prioritizing the streamed regions to process those

that provide the most information first [42]. Possible priority
metrics include the following.

• Regions in close proximity to the viewer in a three di-
mensional rendering should have higher priority. Close
objects are likely to obscure those behind.

• Regions least likely to be culled should have the highest
priority. Only objects within a certain frustum are vis-
ible in a three dimensional rendering, and some filters
may remove data from particular spatial regions.

• Regions with scalar values in an “interesting” range
should be given priority. Rendering parameters may
assign an opacity to scalar values, and higher opacity
indicates a greater interest.

• Regions with more variability in a field may have
higher priority. Homogeneous regions are unlikely to
be interesting.

Prioritized streaming can become even more effective
when the data contains a hierarchy of resolutions [43]. The
highest priority is given to the most coarse representation of
the mesh. This representation provides a general overview
visualization that can be immediately useful. Finer sub-
regions are progressively streamed in with the aforemen-
tioned priorities.

4.5 Query-Driven Visualization
Query-driven visualization enables one to analyze a large
data set by identifying “interesting” data that matches some
specified criteria [44], [45]. The technique is based off the
ability to quickly load small selections of data with arbitrary
specification. This ability provides a much faster iterative
analysis than the classical analysis of loading large domains
and sifting through the data. Performing query-driven visu-
alization in a pipeline requires three technologies: file index-
ing, a query language, and a pipeline metadata mechanism
to pass a query from sink to source.

Visualization queries rely on fast retrieval of data that
matches the query. Queries can be based on combinations of
numerous fields. Thus, the pipeline source must be able to
identify where the pertinent data is located without reading
the entire file. Although tree-based approaches have been
proposed [46], indexing techniques like FastBit [47], [48] are
most effective because they can handle an arbitrary amount
of dimensions.

A user needs a language or interface with which to specify
a query. Stockinger et al. [44] propose compound Boolean
expressions such as all regions where (temperature >
1000K) AND (70kPa < pressure < 90kPa). Others add to
the query capabilities with file-globbing like expressions [49]
and predicate-based languages [50].

Finally, the visualization pipeline must pass the query
from the sink to the source. This is done by expanding either
region metadata (Section 4.1) or contracts (Section 4.3) to
pass and adjust the field ranges in the query [51].

5 PARALLEL EXECUTION

Scientific visualization has a long history of using high
performance parallel computing to handle large-scale data.
Visualization pipelines often encompass parallel computing
capabilities.



372 IEEE TRANSACTIONS ON VISUALIZATIONS AND COMPUTER GRAPHICS, VOL. 19, NO. 3, MARCH 2013

Reader 1

Filter 2

Renderer

Filter 1

Filter 5

Filter 4
Filter 3

Reader 2 Reader 1

Filter 2

Renderer

Filter 1

Filter 5

Filter 4
Filter 3

Reader 2 Reader 1

Filter 2

Renderer

Filter 1

Filter 5

Filter 4
Filter 3

Reader 2

T = t0 T = t1 T = t2

Fig. 4: Concurrent execution with task parallelism. Boxes indicate a region of the pipeline executed at a given time.

1

Filter

Reader

Renderer

2

1 Filter

Reader

Renderer

3

2

1

Filter

Reader

Renderer

4

3

2

Filter

Reader

Renderer

T = t0 T = t1 T = t2 T = t3

Fig. 5: Concurrent execution with pipeline parallelism. Boxes indicate a region of the pipeline executed at a given time
with the piece number annotated.

5.1 Basic Parallel Execution Modes

The most straightforward way to implement concurrency in
a visualization pipeline is to modify the execution control to
execute different modules in the pipeline concurrently. There
are three basic modes to concurrent pipeline scheduling:
task, pipeline, and data [52].

5.1.1 Task Parallelism

Task parallelism identifies independent portions of the
pipeline and executes them concurrently. Independent parts
of the pipeline occur where sources produce data indepen-
dently or where fan out feeds multiple modules.

Fig. 4 demonstrates task parallelism applied to an exam-
ple pipeline. At time t0 the two readers begin executing con-
currently. Once the first reader completes, at time t1, both of
its downstream modules may begin executing concurrently.
The other reader and its downstream modules may continue
executing at this time, or they may sit idle if they have
completed. (Fig. 4 implies that the Reader 2, Filter 4, Filter 5
subpipeline continues executing after t1, which may or may
not be the actual case.) After all of its inputs complete, at
time t2, the renderer executes.

Because task parallelism breaks a pipeline into indepen-
dent sub-pipelines to execute concurrently, task parallelism
can be applied to any type of algorithm. However, there are
practical limits on how much concurrency can be achieved
with task parallelism. Visualization pipelines in real working
environments can seldom be broken into more than a hand-
ful of independent sub-pipelines. Load balancing is also an
issue. Concurrently running sub-pipelines are unlikely to
finish simultaneously.

5.1.2 Pipeline Parallelism
Pipeline parallelism uses streaming to read data in pieces and
executes different modules of the pipeline concurrently on
different pieces of data. Pipeline parallelism is related to out-
of-core processing in that a pipeline module is processing
only a portion of the data at any one time, but in the
pipeline-parallelism approach multiple pieces are loaded so
that a module can process the next piece while downstream
modules process the proceeding one.

Fig. 5 demonstrates pipeline parallelism applied to an
example pipeline. At time t0 the reader loads the first piece
of data. At time t1, the loaded piece is passed to the filter
where it is processed while the second piece is loaded by
the reader. Processing continues with each module working
on the available piece while the upstream modules work on
the next pieces.

Pipeline parallelism enables all the modules in the
pipeline to be running concurrently. Thus, pipeline paral-
lelism tends to exhibit more concurrency than task paral-
lelism, but the amount of concurrency is still severely limited
by the number of modules in the pipeline, which is rarely
much more than ten in practice. Load balancing is also an
issue as different modules are seldom expected to finish in
the same length of time. More compute intensive algorithms
will stall the rest of the pipeline. Also, because pipeline
parallelism is a form of streaming, it is limited to algorithms
that are separable, result invariant, and mappable, as de-
scribed in Section 3.5.

5.1.3 Data Parallelism
Data parallelism partitions the input data into some set
number of pieces. It then replicates the pipeline for each



MORELAND: A SURVEY OF VISUALIZATION PIPELINES 373

Process 1

Filter 1

Reader

Filter 2

Renderer

Process 3

Filter 1

Reader

Filter 2

Renderer

Process 4

Filter 1

Reader

Filter 2

Renderer

Process 2

Filter 1

Reader

Filter 2

Renderer

Fig. 6: Concurrent execution with data parallelism. Boxes represent separate processes, each with its own partition of data.
Communication among processes may also occur.

piece and executes them concurrently, as shown in Fig. 6.
Of the three modes of concurrent scheduling, data paral-

lelism is the most widely used. The amount of concurrency
is limited only by the number of pieces the data can be split
into, and for large-scale data that number is very high. Data
parallelism also works well on distributed-memory parallel
computers; data generally only needs to be partitioned once
before processing begins. Data-parallel pipelines also tend to
be well load balanced; identical algorithms running on equal
sized inputs tend to complete in about the same amount of
time.

Data parallelism is easiest to implement with algorithms
that exhibit the separable, result invariant, and mappable
criteria of streaming execution. In this case, the algorithm
can be executed in data parallel mode with little if any
change. However, it is possible to implement non-separable,
non-result-invariant algorithms with data parallel execution.
In this case, the data-parallel pipelines must allow com-
munication among the processes executing a given module
and the parallel executive must ensure that all pipelines get
executed simultaneously lest the communication deadlock.
Common examples of algorithms that have special data-
parallel implementations are streamlines [53] and connected
components [54]. Data-parallel pipelines also require special
rendering for the partitioned data, which is described in the
following section.

Data-parallel pipelines are shown to be very scalable.
They have been successfully ported to current supercomput-
ers [55], [56], [57] and have demonstrated excellent parallel
speedup [58].

5.2 Rendering
Data parallel pipelines, particularly those running on
distributed-memory parallel computers, require special con-
sideration when rendering images, which is often the sink
operation in a visualization pipeline. As in any part of the
data parallel pipeline, the rendering module does not have
complete access to the data. Rather, the data is partitioned
among a number of replicated modules. In the case of
rendering, this module’s processes must work together to
form a single image from these distributed data.

A straightforward approach is to collect the data to a
single process and render them serially [59], [60]. This collec-
tion is sometimes feasible when rendering surfaces because

the surface geometry tends to be significantly smaller than
the volumes from which it is derived. However, geometry
for large-scale data can still exceed a single processor’s
limits, and the approach is generally impractical for volume
rendering techniques that require data for entire volumes.
Thus, collecting data can become intractable.

A better approach is to employ a parallel rendering al-
gorithm. Data-parallel pipelines are most often used with
a class of parallel rendering algorithms called sort last [61].
Sort-last parallel rendering algorithms are characterized by
each process first independently and concurrently rendering
its local data into its own local image and then collectively
reducing them into a single cohesive image.

Although it is possible to use other types of parallel
rendering algorithms with visualization pipelines [62], the
properties of sort-last algorithms make them most ideal
for use in visualization pipelines. Sort-last rendering allows
processes to render local data without concern about the
partitioning (although there are caveats concerning transpar-
ent objects [63]). Such behavior makes the rendering easy to
adapt to whatever partition is created by the data-parallel
pipeline. Also, the parallel overhead for sort-last rendering is
independent of the amount of data being rendered, and sort
last scales well with regard to the number of processes [64].
Thus, sort-last’s parallel scalability matches the parallel scal-
ability of data-parallel pipelines.

5.3 Hybrid Parallel
Until recently, most high performance computers had dis-
tributed nodes with each node containing some small
amount of cores each. These computers could be effec-
tively driven by treating each core as a distinct distributed-
memory process.

However, that trend is changing. Current high perfor-
mance computers now typically have 8–12 cores per node,
and that number is expected to grow dramatically [65], [66],
[67]. When this many cores are contained in a node, it is
often more efficient to use hybrid parallelism that considers
both the distributed memory parallelism among the nodes
and the shared memory parallelism within each node [68].
Recent development shows that pipeline modules with hy-
brid parallelism can out perform their corresponding mod-
ules considering each core as a separate distributed memory
node [69], [70], [71].



374 IEEE TRANSACTIONS ON VISUALIZATIONS AND COMPUTER GRAPHICS, VOL. 19, NO. 3, MARCH 2013

It should be noted that current implementations of hybrid
parallelism are not a feature of the visualization pipeline.
Rather, hybrid parallelism is implemented by creating mod-
ules with algorithms that perform shared memory paral-
lelism. The data-parallel pipeline then provides distributed
memory parallelism on top of that.

6 EMERGING FEATURES

This section describes emerging features of visualization
pipelines that do not fit cleanly in any of the previous
sections.

6.1 Provenance
Throughout this document we have considered the vi-
sualization pipeline as a static construct that transforms
data. However, in real visualization applications, the ex-
ploratory process involves making changes to the visualiza-
tion pipeline (i.e. adding and removing modules or making
parameter changes). It is therefore possible to model explo-
ration as transformations to the visualization pipeline [72].
This provenance of exploratory visualization can be captured
and exploited.

Provenance of pipeline transformations can assist ex-
ploratory visualization in many ways. Provenance allows
users to quickly explore multiple visualization methods
and compare various parameter changes [21]. It also assists
in reproducibility; because provenance records the steps
required to achieve a particular visualization, it can be saved
to automate the same visualization later [73].

Provenance information engenders the rare ability to per-
form analysis of analysis, which allows for powerful sup-
porting abilities. Provenance information can be compared
and combined to provide revisioning information for col-
laborative analysis tasks [74]. Provenance information from
previous analyses can be mined for future exploration. Such
data can be queried for apropos visualization pipelines [75]
or used to automatically assist users in their exploratory
endeavors [76].

6.2 Scheduling on Heterogeneous Systems
Computer architecture is rapidly moving to heterogeneous
architecture. GPU units with general-purpose computing
capabilities are already common, and the use of similar
accelerator units is likely to grow [65], [77].

Heterogeneous architectures introduce significant compli-
cations when managing pipeline execution. The algorithms
in different pipeline modules may need to run on different
types of processors. If an algorithm is capable of running on
different types of processors, it will have different perfor-
mance characteristics on each one, which complicates load
balancing.

Furthermore, heterogeneous architectures typically have
a more complicated memory hierarchy. For example, a
CPU and GPU on the same system usually have mutually
inaccessible memory. Even when memory is shared, there
is typically an affinity to some section of memory, meaning
that data in some parts of memory can be accessed faster
than data in other parts of memory. All this means that the
pipeline execution must also consider data location.

Hyperflow [78] is an emerging technology to address
these issues. Hyperflow manages parallel pipeline execution
on heterogeneous systems. It combines all three modes of
parallel execution (task, pipeline, and data described in
Section 5.1) along with out-of-core streaming (described in
Section 3.5) to dynamically allocate work based on thread
availability and data location.

6.3 In Situ
In situ visualization refers to visualization that is run in
tandem with the simulation that is generating the results
being visualized. There are multiple approaches to in situ
visualization. Some directly share memory space whereas
others share data through high speed message passing.
Nevertheless, all in situ visualization systems share two
properties: the simulation and the visualization are run
concurrently (or equivocally with appropriate time slices)
and the passing of data from simulation to visualization
bypasses the costly step of writing to or reading from a file
on disk.

The concept of in situ visualization is as old as the field
of visualization itself [1]. However, the interest in in situ
visualization has grown significantly in recent years. Studies
show that the cost of dedicated interactive visualization
computers is increasing [79] and that the time spent in
writing data to and reading data from disk storage is
beginning to dominate the time spent in both the simulation
and the visualization [80], [81], [82]. Consequently, in situ
visualization is one of the most important research topics in
large scale visualization today [67], [83].

In situ visualization does not involve visualization
pipelines per se. In principle any visualization architecture
can be coupled with a simulation. However, many cur-
rent projects are using visualization pipelines for in situ
visualization [60], [84], [85], [86], [87], [88] because of the
visualization pipeline’s flexibility and the abundance of
existing implementations.

7 VISUALIZATION PIPELINE ALTERNATIVES

Although visualization pipelines are the most widely used
visualization framework, others exist and are being devel-
oped today. This section contains a small sample of other
visualization systems under current research and develop-
ment.

7.1 Functional Field Model
Most visualization systems represent fields as a data struc-
ture directly storing the value for the field at each appro-
priate place in the mesh. However, it is also possible to
represent a field functionally. That is, provide a function that
accepts a mesh location as its input argument and returns
the field value for that location as its output. Functional
fields are implemented in the Field Model (FM) library, a
follow-on to the Field Encapsulation Library (FEL) [89].

A field function could be as simple as retrieving values
from a data structure like that previously described, or it can
abstract the data representation in many ways to simplify
advanced visualization tasks. For example, the field function



MORELAND: A SURVEY OF VISUALIZATION PIPELINES 375

could abstract the physical location of the data by paging it
from disk as necessary [90].

Field functions also make it simple to define derived fields,
that is fields computed from other fields. Functions for
derived fields can be composed together to create something
very much like the dataflow network of a visualization
pipeline. The function composition, however, shares much
of the behaviors of functional programming such as allow-
ing for a lazy evaluation on a per-field-value basis [91].

The functional field model yields several advantages. It
has a simple lazy evaluation model [91], it simplifies out-of-
core paging [90], and it tends to have low overhead, which
can simplify using it in situ with simulation [92]. However,
unlike the visualization pipeline, the dataflow for composed
fields are fixed in a demand-driven, or pull, execution
model. Also, computation is limited to producing derived
fields; there is no inherent mechanism to, for example,
generate new topology.

7.2 MapReduce
MapReduce [93] is a cloud-based, data-parallel infrastructure
designed to process massive amounts of data quickly. Al-
though it was originally designed for performing distributed
database search capabilities, many researchers and develop-
ers have been successful at applying MapReduce to other
problem domains and for more general-purpose program-
ming [94], [95]. MapReduce garners much popularity due
to its parallel scalability, its ability to run on inexpensive
“share-nothing” parallel computers, and its simplified pro-
gramming model.

As its name implies, the MapReduce framework runs
programs in two phases: a map phase and a reduce phase.
In the map phase, a user-provided function is applied
independently and concurrently to all items in a set of
data. Each instance of the map function returns one or
more (key, value) pairs. In the reduce phase, a user-provided
function accepts all values with the same key and produces
a result from them. Implicit in the framework is a shuffle of
the (key, value) pairs in between the map and reduce phases.

MapReduce’s versatility has enabled it to be applied to
many scientific domains including visualization. It has been
used to both process geometry [96] and render [96], [97].
The MapReduce framework allows visualization algorithms
to be run in parallel in a much finer granularity than
the parallel execution models of a visualization pipeline.
However, the constraints imposed by MapReduce make it
more difficult to design visualization algorithms, and there
is no inherent way to combine algorithms such as can be
done in a visualization pipeline.

7.3 Fine-Grained Data Parallelism
The data parallel execution model of visualization pipelines,
described in Section 5.1.3, is scalable because it affords a
large degree of concurrency. The amount of parallel threads
is limited only by the number of partitions an input mesh
can be split into. In theory, the input data can be split
almost indefinitely, but in practice there are limits to how
many parallel threads can be used for a particular mesh.
Current implementations of parallel visualization pipelines

operate most efficiently with on the order of 100,000 to
1,000,000 cells per processing thread [29]. With fewer cells
than that, each core tends to be bogged down with execution
overhead, supporting structure, and boundary conditions. It
is partly this reason that hybrid parallel pipelines, described
in Section 5.3, perform better on multi-core nodes.

The problem with hybrid parallelism is that it is not a
mechanism directly supported by the pipeline execution
mechanics. Several projects seek to fill this gap by providing
fine-grained algorithms designed to run on either GPU or
multi-core CPU.

One project, PISTON [98], provides implementations of
fine-grained data-parallel visualization algorithms. PISTON
provides portability among multi- and many-core architec-
tures by using basic parallel operations such as reductions,
prefix sums, sorting, and gathering implemented on top of
Thrust [99], a parallel template library, in such a way that
they can be ported across multiple programming models.

Another project, Dax [100], provides higher level abstrac-
tions for building fine-grained data-parallel visualization
algorithms. Dax identifies common visualization operations,
such as mapping a function to the local neighborhood of a
mesh element or building geometry, and provides basic par-
allel operations with fine-grained concurrency. Algorithms
are built in Dax by providing worklets, serial functions that
operate on a small region of data, and applying these
worklets to the basic operations. The intention is to sim-
plify visualization algorithm development while encourag-
ing good data-parallel programming practices.

A third project, EAVL [101], provides an abstract data
model that can be adapted to a variety of topological
layouts. Operations on mesh elements and sub-elements are
predicated by applying in parallel functors, structures acting
like functions, on the elements of the mesh. These functors
are easy-to-design serial components but can be scheduled
on many concurrent threads.

7.4 Domain Specific Languages
Domain specific languages provide a new or augmented
programming language with extended operations helpful
for a specific domain of problems. Most visualization sys-
tems are built as a library on top of a language rather than
modify the language itself although there are some examples
of domain specific languages that can insert visualization
operations during a computer graphics rendering [102],
[103].

Recently, domain specific languages emerged to build
visualization on new highly threaded architectures. For
example, Scout [104] functionally defines fields and oper-
ations that can be executed on a GPU during visualization.
Liszt [105] provides provides special language constructs for
operations on unstructured grids. These operations are prin-
cipally built to support partial differential equation solving
but can also be used for analysis.

8 CONCLUSION

The visualization community faces many challenges adapt-
ing pipeline structures to future visualization needs, partic-
ularly those associated with the push to exascale computing.



376 IEEE TRANSACTIONS ON VISUALIZATIONS AND COMPUTER GRAPHICS, VOL. 19, NO. 3, MARCH 2013

One primary challenge of exascale computing is the shift to
massively threaded, heterogeneous, accelerator-based archi-
tectures [67]. Although a visualization pipeline can support
algorithms that drive such architectures (see the hybrid
parallelism in Section 5.3), the execution models described
in Section 5.1 are currently not generally scalable to the
fine level of concurrency required. Most likely, independent
design metaphors [98], [100], [101] will assist in algorithm
design. Some of these current projects already have plans
to encapsulate their algorithms in existing visualization
pipeline implementations.

Another potential problem facing visualization pipelines
and visualization applications in general is the memory
usage. Predictions indicate that the cost of computation (in
terms of operations per second) will decrease with respect
to the cost of memory. Hence, we expect the amount of
memory available for a particular problem size to decrease
in future computer systems. Visualization algorithms are
typically geared to provide a short computation on a large
amount of data, which makes them favor “memory fat”
computer nodes. Visualization pipelines often impose an
extra memory overhead. Expect future work on making
visualization pipelines leaner.

Finally, as simulations take advantage of increasing com-
pute resources, they sometimes require new topological
features to capture their complexity. Although the design
of data structures is independent of the design of dataflow
networks, dataflow networks like a visualization pipeline
are difficult to dynamically adjust to data structures as
the connections and operations are in part defined by the
data structure. Consequently, visualization pipeline systems
have been slow to adapt new data structures. Schroeder
et al. [106] provide a generic, iterator-based interface to
topology and field data that can be used within a visual-
ization pipeline, but because its abstract interface hides the
data layout and capabilities, result data cannot be written
back into these structures. Thus, the first non-trivial module
typically must tessellate the geometry into a form the native
data structures can represent.

Regardless, the simplicity, versatility, and power of vi-
sualization pipelines make them the most widely used
framework for visualization systems today. These dataflow
networks are likely to remain the dominant structure in
visualization for years to come. It is therefore important to
understand what they are, how they have evolved, and the
current features they implement.

ACKNOWLEDGMENTS

This work was supported in part by the DOE Office of
Science, Advanced Scientific Computing Research, under
award number 10-014707, program manager Lucy Nowell.

Sandia National Laboratories is a multi-program labo-
ratory operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Admin-
istration.

REFERENCES

[1] B. H. McCormick, T. A. DeFanti, and M. D. Brown, Eds., Visualization
in Scientific Computing (special issue of Computer Graphics). ACM, 1987,
vol. 21, no. 6.

[2] P. E. Haeberli, “ConMan: A visual programming language for inter-
active graphics,” in Computer Graphics (Proceedings of SIGGRAPH 88),
vol. 22, no. 4, August 1988, pp. 103–111.

[3] B. Lucas, G. D. Abram, N. S. Collins, D. A. Epstein, D. L. Gresh,
and K. P. McAuliffe, “An architecture for a scientific visualization
system,” in IEEE Visualization, 1992, pp. 107–114.

[4] C. Upson, T. F. Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom,
R. Gurwitz, and A. van Dam, “The application visualization system:
A computational environment for scientific visualization,” IEEE Com-
puter Graphics and Applications, vol. 9, no. 4, pp. 30–42, July 1989.

[5] D. D. Hils, “DataVis: A visual programming language for scientific
visualization,” in ACM Annual Computer Science Conference (CSC ’91),
March 1991, pp. 439–448, DOI 10.1145/327164.327331.

[6] D. S. Dyer, “A dataflow toolkit for visualization,” IEEE Computer
Graphics and Applications, vol. 10, no. 4, pp. 60–69, July 1990.

[7] D. Foulser, “IRIS Explorer: A framework for investigation,” in Pro-
ceedings of SIGGRAPH 1995, vol. 29, no. 2, May 1995, pp. 13–16.

[8] W. Schroeder, W. Lorensen, G. Montanaro, and C. Volpe, “Visage:
An object-oriented scientific visualization system,” in Proceedings
of Visualization ’92, October 1992, pp. 219–226, DOI 10.1109/VI-
SUAL.1992.235205.

[9] G. Abram and L. A. Treinish, “An extended data-flow architecture
for data analysis and visualization,” in Proceedings of Visualization ’95,
October 1995, pp. 263–270.

[10] S. G. Parker and C. R. Johnson, “SCIRun: A scientific programming
environment for computational steering,” in Proceedings ACM/IEEE
Conference on Supercomputing, 1995.

[11] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit:
An Object Oriented Approach to 3D Graphics, 4th ed. Kitware Inc.,
2004, ISBN 1-930934-19-X.

[12] M. Kass, “CONDOR: Constraint-based dataflow,” in Computer Graph-
ics (Proceedings of SIGGRAPH 92), vol. 26, no. 2, July 1992, pp. 321–330.

[13] G. D. Abram and T. Whitted, “Building block shaders,” in Computer
Graphics (Proceedings of SIGGRAPH 90), vol. 24, no. 4, August 1990,
pp. 283–288.

[14] R. L. Cook, “Shade trees,” in Computer Graphics (Proceedings of SIG-
GRAPH 84), vol. 18, no. 3, July 1984, pp. 223–231.

[15] K. Perlin, “An image synthesizer,” in Computer Graphics (Proceedings
of SIGGRAPH 85), no. 3, July 1985, pp. 287–296.

[16] D. Koelma and A. Smeulders, “A visual programming interface
for an image processing environment,” Pattern Recognition Letters,
vol. 15, no. 11, pp. 1099–1109, November 1994, DOI 10.1016/0167-
8655(94)90125-2.

[17] C. S. Williams and J. R. Rasure, “A visual language for image pro-
cessing,” in Proceedings of the 1990 IEEE Workshop on Visual Languages,
October 1990, pp. 86–91, DOI 10.1109/WVL.1990.128387.

[18] A. C. Wilson, “A picture’s worth a thousand lines of code,” Electronic
System Design, pp. 57–60, July 1989.

[19] L. Ibáñez and W. Schroeder, The ITK Software Guide, ITK 2.4 ed.
Kitware Inc., 2003, ISBN 1-930934-15-7.

[20] A. H. Squillacote, The ParaView Guide: A Parallel Visualization
Application. Kitware Inc., 2007, ISBN 1-930934-21-1. [Online].
Available: http://www.paraview.org

[21] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger, C. T.
Silva, and H. T. Vo, “VisTrails: Enabling interactive multiple-view
visualizations,” in Proceedings of IEEE Visualization, October 2005, pp.
135–142.

[22] P. Ramachandran and G. Varoquaux, “Mayavi: 3D visualization of
scientific data,” Computing in Science & Engineering, vol. 13, no. 2,
pp. 40–51, March/April 2011, DOI 10.1109/MCSE.2011.35.

[23] VisIt User’s Manual, Lawrence Livermore National Laboratory, Octo-
ber 2005, technical Report UCRL-SM-220449.

[24] Kitware Inc., “VolView 3.2 user manual,” June 2009.
[25] A. Rosset, L. Spadola, and O. Ratib, “OsiriX: An open-source software

for navigating in multidimensional dicom images,” Journal of Digital
Imaging, vol. 17, no. 3, pp. 205–216, September 2004.

[26] S. Pieper, M. Halle, and R. Kikinis, “3D slicer,” in Proceedings of the
1st IEEE International Symposium on Biomedical Imaging: From Nano to
Macro 2004, April 2004, pp. 632–635.

[27] P. Kankaanpää, K. Pahajoki, V. Marjomäki, D. White, and J. Heino,
“BioImageXD - free microscopy image processing software,” Mi-
croscopy and Microanalysis, vol. 14, no. Supplement 2, pp. 724–725,
August 2008.

http://www.paraview.org


MORELAND: A SURVEY OF VISUALIZATION PIPELINES 377

[28] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3D surface construction algorithm,” Computer Graphics (Proceedings of
SIGGRAPH 87), vol. 21, no. 4, pp. 163–169, July 1987.

[29] K. Moreland, “The paraview tutorial, version 3.10,” Sandia National
Laboratories, Tech. Rep. SAND 2011-4481P, 2011.

[30] SCIRun Development Team, SCIRun User Guide, Center for Integra-
tive Biomedical Computing, University of Utah.

[31] IRIS Explorer User’s Guide, The Numerical Algorithms Group Ltd.,
2000, ISBN 1-85206-190-1, NP3520.

[32] VisTrails Documentation, University of Utah, April 2011.
[33] D. Thompson, J. Braun, and R. Ford, OpenDX: Paths to Visualization.

VIS Inc., 2001.
[34] H. T. Vo, D. K. Osmari, B. Summa, J. L. D. Comba, V. Pascucci,

and C. T. Silva, “Streaming-enabled parallel dataflow architecture for
multicore systems,” Computer Graphics Forum (Proceedings of EuroVis
2010), vol. 29, no. 3, pp. 1073–1082, June 2010.

[35] K. Inc., The VTK User’s Guide, 11th ed. Kitware Inc., 2010, ISBN
978-1-930934-23-8.

[36] J. S. Vitter, “External memory algorithms and data structures: Dealing
with massive data,” AVM Computing Surveys, vol. 33, no. 2, June 2001.

[37] C. C. Law, K. M. Martin, W. J. Schroeder, and J. Temkin, “A multi-
threaded streaming pipeline architecture for large structured data
sets,” in Proceedings of IEEE Visualization 1999, October 1999, pp. 225–
232.

[38] J. Ahrens, K. Brislawn, K. Martin, B. Geveci, C. C. Law, and
M. Papka, “Large-scale data visualization using parallel data stream-
ing,” IEEE Computer Graphics and Applications, vol. 21, no. 4, pp. 34–41,
July/August 2001.

[39] M. J. Berger and P. Colella, “Local adaptive mesh refinement for
shock hydrodynamics,” Journal of Computational Physics, vol. 82, no. 1,
pp. 64–84, May 1989.

[40] J. Biddiscombe, B. Geveci, K. Martin, K. Moreland, and D. Thomp-
son, “Time dependent processing in a parallel pipeline archi-
tecture,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 13, no. 6, pp. 1376–1383, November/December 2007,
DOI 10.1109/TVCG.2007.70600.

[41] H. Childs, E. Brugger, K. Bonnell, J. Meredith, M. Miller, B. Whitlock,
and N. Max, “A contract based system for large data visualization,”
in IEEE Visualization 2005, 2005, pp. 191–198.

[42] J. P. Ahrens, N. Desai, P. S. McCormic, K. Martin, and J. Woodring,
“A modular, extensible visualization system architecture for culled,
prioritized data streaming,” in Visualization and Data Analysis 2007,
2007, pp. 64 950I:1–12.

[43] J. P. Ahrens, J. Woodring, D. E. DeMarle, J. Patchett, and M. Mal-
trud, “Interactive remote large-scale data visualization via prioritized
multi-resolution streaming,” in Proceedings of the 2009 Ultrascale Vi-
sualization Workshop, November 2009, DOI 10.1145/1838544.1838545.

[44] K. Stockinger, J. Shalf, K. Wu, and E. W. Bethel, “Query-driven
visualization of large data sets,” in Proceedings of IEEE Visualization
2005, October 2005, pp. 167–174.

[45] L. J. Gosink, J. C. Anderson, E. W. Bethel, and K. I. Joy, “Query-driven
visualization of time-varying adaptive mesh refinement data,” IEEE
Transactions of Visualization and Computer Graphics, vol. 14, no. 6, pp.
1715–1722, November/December 2008.

[46] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder, “Interactive out-of-core
isosurface extraction,” in Proceedings of IEEE Visualization ’98, October
1998, pp. 167–174.

[47] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-Michel,
C. Geddes, J. Gu, H. Hagen, B. Hamann, W. Koegler, J. Lauret,
J. Meredith, P. Messmer, E. Otoo, V. Perevoztchikov, A. Poskanzer,
Prabhat, O. Rübel, A. Shoshani, A. Sim, K. Stockinger, G. We-
ber, and W.-M. Zhang, “FastBit: interactively searching massive
data,” Journal of Physics: Conference Series, vol. 180, p. 012053, 2009,
DOI 10.1088/1742-6596/180/1/012053.

[48] K. Wu, A. Shoshani, and K. Stockinger, “Analyses of multi-level and
multi-component compressed bitmap indexes,” ACM Transactions on
Database Systems (TODS), vol. 35, p. Article 2, February 2010.

[49] M. Glatter, J. Huang, S. Ahern, J. Daniel, and A. Lu, “Visualizing
temporal patterns in large multivariate data using textual pattern
matching,” IEEE Transactions of Visualization and Computer Graphics,
vol. 14, no. 6, pp. 1467–1474, November/December 2008.

[50] C. R. Johnson and J. Huang, “Distribution-driven visualization of vol-
ume data,” IEEE Transactions of Visualization and Computer Graphics,
vol. 15, no. 5, September/October 2009.

[51] O. Rübel, Prabhat, K. Wu, H. Childs, J. Meredith, C. G. Geddes,
E. Cormier-Michel, S. Ahern, G. H. Weber, P. Messmer, H. Hagen,
B. Hamann, and E. W. Bethel, “High performance multivariate visual
data exploration for extremely large data,” in Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, November 2008.

[52] J. Ahrens, C. Law, W. Schroeder, K. Martin, and M. Papka, “A parallel
approach for efficiently visualizing extremely large, time-varying
datasets,” Los Alamos National Laboratory, Tech. Rep. #LAUR-00-
1620, 2000.

[53] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. Weber, “Scalable
computation of streamlines on very large datasets,” in Proceedings of
ACM/IEEE Conference on Supercomputing, November 2009.

[54] K. Moreland, C. C. Law, L. Ice, and D. Karelitz, “Analysis of frag-
mentation in shock physics simulation,” in Proceedings of the 2008
Workshop on Ultrascale Visualization, November 2008, pp. 40–46.

[55] K. Moreland, D. Rogers, J. Greenfield, B. Geveci, P. Marion, A. Ne-
undorf, and K. Eschenberg, “Large scale visualization on the Cray
XT3 using paraview,” in Cray User Group, 2008.

[56] D. Pugmire, H. Childs, and S. Ahern, “Parallel analysis and visual-
ization on cray compute node linux,” in Cray User Group, 2008.

[57] J. Patchett, J. Ahrens, S. Ahern, and D. Pugmire, “Parallel visualiza-
tion and analysis with ParaView on a Cray Xt4,” in Cray User Group,
2009.

[58] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, Prabhat,
G. H. Weber, and E. W. Bethel, “Extreme scaling of production visu-
alization software on diverse architectures,” IEEE Computer Graphics
and Applications, pp. 22–31, May/June 2010.

[59] M. Miller, C. D. Hansen, S. G. Parker, and C. R. Johnson, “Simulation
steering with SCIRun in a distributed memory environment,” in
Applied Parallel Computing Large Scale Scientific and Industrial Problems,
ser. Lecture Notes in Computer Science, vol. 1541, 1998, pp. 366–376,
DOI 10.1007/BFb0095358.

[60] C. Johnson, S. G. Parker, C. Hansen, G. L. Kindlmann, and Y. Livnat,
“Interactive simulation and visualization,” IEEE Computer, vol. 32,
no. 12, pp. 59–65, December 1999, DOI 10.1109/2.809252.

[61] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A sorting classifica-
tion of parallel rendering,” IEEE Computer Graphics and Applications,
vol. 14, no. 4, pp. 23–32, July 1994.

[62] K. Moreland and D. Thompson, “From cluster to wall with VTK,” in
Proceedings of IEEE Symposium on Parallel and Large-Data Visualization
and Graphics, October 2003, pp. 25–31.

[63] K. Moreland, L. Avila, and L. A. Fisk, “Parallel unstructured volume
rendering in paraview,” in Visualization and Data Analysis 2007, Pro-
ceedings of SPIE-IS&T Electronic Imaging, January 2007, pp. 64 950F–
1–12.

[64] B. Wylie, C. Pavlakos, V. Lewis, and K. Moreland, “Scalable rendering
on PC clusters,” IEEE Computer Graphics and Applications, vol. 21,
no. 4, pp. 62–70, July/August 2001.

[65] J. Dongarra, P. Beechman et al., “The international exascale software
project roadmap,” University of Tennessee, Tech. Rep. ut-cs-10-652,
January 2010. [Online]. Available: http://www.cs.utk.edu/∼library/
TechReports/2010/ut-cs-10-652.pdf

[66] S. Ashby et al., “The opportunities and challenges of exascale com-
puting,” Summary Report of the Advanced Scientific Computing
Advisory Committee (ASCAC) Subcommittee, Fall 2010.

[67] S. Ahern, A. Shoshani, K.-L. Ma et al., “Scientific discovery at the
exascale,” Report from the DOE ASCR 2011 Workshop on Exascale
Data Management, Analysis, and Visualization, February 2011.

[68] F. Cappello and D. Etiemble, “MPI versus MPI+OpenMP on the IBM
SP for the NAS benchmarks,” in Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing, November 2000.

[69] L. Chen and I. Fujishiro, “Optimization strategies using hybrid
MPI+OpenMP parallelization for large-scale data visualization on
earth simulator,” in A Practical Programming Model for the Multi-Core
Era. Springer, 2008, vol. 4935, pp. 112–124, DOI 10.1007/978-3-540-
69303-1 10.

[70] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. Joy, “Stream-
line integration using MPI-hybrid parallelism on large multi-core
architecture,” IEEE Transactions on Visualization and Computer Graphics,
December 2010, DOI 10.1109/TVCG.2010.259.

[71] M. Howison, E. W. Bethel, and H. Childs, “Hybrid parallelism for
volume rendering on large, multi- and many-core systems,” IEEE
Transactions on Visualization and Computer Graphics, January 2011,
DOI 10.1109/TVCG.2011.24.

[72] T. Jankun-Kelly, K.-L. Ma, and M. Gertz, “A model for the visual-
ization exploration process,” in Proceedings of IEEE Visualization 2002,
October 2002, pp. 323–330.

[73] C. T. Silva, J. Freire, and S. P. Callahan, “Provenance for visu-
alizations: Reproducibility and beyond,” Computing in Science &
Engineering, vol. 9, no. 5, pp. 82–89, September/October 2007,
DOI 10.1109/MCSE.2007.106.

[74] T. Ellkvist, D. Koop, E. W. Anderson, J. Freire, and C. Silva, “Using
provenance to support real-time collaborative design of workflows,”
in Proceedings of the International Provenance and Annotation Workshop,

http://www.cs.utk.edu/~library/TechReports/2010/ut-cs-10-652.pdf
http://www.cs.utk.edu/~library/TechReports/2010/ut-cs-10-652.pdf


378 IEEE TRANSACTIONS ON VISUALIZATIONS AND COMPUTER GRAPHICS, VOL. 19, NO. 3, MARCH 2013

ser. Lecture Notes in Computer Science, vol. 5272. Springer, 2008,
pp. 266–279, DOI 10.1007/978-3-540-89965-5 27.

[75] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. T. Silva,
“Querying and creating visualizations by analogy,” Querying and
Creating Visualizations by Analogy, vol. 13, no. 6, pp. 1560–1567,
November/December 2007.

[76] D. Koop, C. E. Scheidegger, S. P. Callahan, J. Freire, and C. T. Silva,
“VisComplete: Automating suggestions for visualization pipelines,”
IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 6,
pp. 1691–1698, November/December 2008.

[77] R. Stevens, A. White et al., “Architectures and technology for extreme
scale computing,” ASCR Scientific Grand Challenges Workshop Se-
ries, Tech. Rep., December 2009.

[78] H. T. Vo, “Designing a parallel dataflow architecture for streaming
large-scale visualization on heterogeneous platforms,” Ph.D. disser-
tation, University of Utah, May 2011.

[79] H. Childs, “Architectural challenges and solutions for petascale post-
processing,” Journal of Physics: Conference Series, vol. 78, no. 012012,
2007, DOI 10.1088/1742-6596/78/1/012012.

[80] R. B. Ross, T. Peterka, H.-W. Shen, Y. Hong, K.-L. Ma, H. Yu, and
K. Moreland, “Visualization and parallel I/O at extreme scale,”
Journal of Physics: Conference Series, vol. 125, no. 012099, 2008,
DOI 10.1088/1742-6596/125/1/012099.

[81] T. Peterka, H. Yu, R. Ross, and K.-L. Ma, “Parallel volume rendering
on the IBM Blue Gene/P,” in Proceedings of Eurographics Parallel
Graphics and Visualization Symposium 2008, 2008.

[82] T. Peterka, H. Yu, R. Ross, K.-L. Ma, and R. Latham, “End-
to-end study of parallel volume rendering on the ibm blue
gene/p,” in Proceedings of ICPP ’09, September 2009, pp. 566–573,
DOI 10.1109/ICPP.2009.27.

[83] C. Johnson, R. Ross et al., “Visualization and knowledge discovery,”
Report from the DOE/ASCR Workshop on Visual Analysis and Data
Exploration at Extreme Scale, October 2007.

[84] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J.-G. Piccinali,
“Parallel computational steering and analysis for hpc applications
using a paraview interface and the hdf5 dsm virtual file driver,” in
Eurographics Symposium on Parallel Graphics and Visualization, 2011, pp.
91–100, DOI 10.2312/EGPGV/EGPGV11/091-100.

[85] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P. Mar-
ion, B. Geveci, M. Rasquin, and K. E. Jansen, “The ParaView
coprocessing library: A scalable, general purpose in situ visual-
ization library,” in Proceedings of the IEEE Symposium on Large-
Scale Data Analysis and Visualization, October 2011, pp. 89–96,
DOI 10.1109/LDAV.2011.6092322.

[86] S. Klasky et al., “In situ data processing for extreme scale computing,”
in Proceedings of SciDAC 2011, July 2011.

[87] K. Moreland, R. Oldfield, P. Marion, S. Jourdain, N. Podhorszki,
V. Vishwanath, N. Fabian, C. Docan, M. Parashar, M. Hereld, M. E.
Papka, and S. Klasky, “Examples of in transit visualization,” in Petas-
cale Data Analytics: Challenges and Opportunities (PDAC-11), November
2011.

[88] B. Whitlock, “Getting data into VisIt,” Lawrence Livermore National
Laboratory, Tech. Rep. LLNL-SM-446033, July 2010.

[89] S. Bryson, D. Kenwright, and M. Gerald-Yamasaki, “FEL: The field
encapsulation library,” in Proceedings Visualization ’96, October 1996,
pp. 241–247.

[90] M. Cox and D. Ellsworth, “Application-controlled demand paging
for out-of-core visualization,” in Proceedings Visualization ’97, October
1997, pp. 235–244, DOI 10.1109/VISUAL.1997.663888.

[91] P. J. Moran and C. Henze, “Large field visualization with demand-
driven calculation,” in Proceedings Visualization ’99, October 1999, pp.
27–33, DOI 10.1109/VISUAL.1999.809864.

[92] D. Ellsworth, C. Henze, B. Green, P. Moran, and T. Sand-
strom, “Concurrent visualization in a production supercomputer
environment,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 997–1004, September/October 2006,
DOI 10.1109/TVCG.2006.128.

[93] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, January 2008.

[94] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
latin: A not-so-foreign language for data processing,” in Proceedings
of the 2008 ACM SIGMOD International Conference on Management of
Data, 2008, DOI 10.1145/1376616.1376726.

[95] M. Isard and Y. Yu, “Distributed data-parallel computing using
a high-level programming language,” in Proceedings of the 35th
SIGMOD International Conference on Management of Data, 2009,
DOI 10.1145/1559845.1559962.

[96] H. T. Vo, J. Bronson, B. Summa, J. L. Comba, J. Freire, B. Howe,
V. Pascucci, and C. T. Silva, “Parallel visualization on large clus-
ters using MapReduce,” in Proceedings of the IEEE Symposium on
Large-Scale Data Analysis and Visualization, October 2011, pp. 81–88,
DOI 10.1109/LDAV.2011.6092321.

[97] J. A. Stuart, C.-K. Chen, K.-L. Ma, and J. D. Owens, “Multi-GPU
volume rendering using MapReduce,” in 1st International Workshop
on MapReduce and its Applications, June 2010.

[98] L.-T. Lo, C. Sewell, and J. Ahrens, “PISTON: A portable
cross-platform framework for data-parallel visualization
operators,” Los Alamos National Laboratory, LA-UR-11-11689,
http://viz.lanl.gov/projects/PISTON.html.

[99] N. Bell and J. Hoberock, GPU Computing Gems, Jade Edition. Mor-
gan Kaufmann, October 2011, ch. Thrust: A Productivity-Oriented
Library for CUDA, pp. 359–371.

[100] K. Moreland, U. Ayachit, B. Geveci, and K.-L. Ma, “Dax toolkit:
A proposed framework for data analysis and visualization at
extreme scale,” in Proceedings of the IEEE Symposium on Large-
Scale Data Analysis and Visualization, October 2011, pp. 97–104,
DOI 10.1109/LDAV.2011.6092323.

[101] J. S. Meredith, R. Sisneros, D. Pugmire, and S. Ahern, “A distributed
data-parallel framework for analysis and visualization algorithm
development,” in Proceedings of the 5th Annual Workshop on General
Purpose Processing with Graphics Processing Units (GPGPU-5), March
2012, pp. 11–19, DOI 10.1145/2159430.2159432.

[102] B. Corrie and P. Mackerras, “Data shaders,” in Proceedings of Visual-
ization ’93, October 1993.

[103] R. A. Crawfis and M. J. Allison, “A scientific visualization synthe-
sizer,” in Proceedings of Visualization ’91, October 1991, pp. 262–267,
DOI 10.1109/VISUAL.1991.175811.

[104] P. McCormick, J. Inman, J. Ahrens, J. Mohd-Yusof, G. Roth, and
S. Cummins, “Scout: A data parallel programming environment for
graphics processors,” Parallel Computing, vol. 33, no. 10–11, pp. 648–
662, November 2007.

[105] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrien-
tos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso,
and P. Hanrahan, “Liszt: A domain specific language for building
portable mesh-based PDE solvers,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’11), November 2011.

[106] W. J. Schroeder, F. Bertel, M. Malaterre, D. Thompson, P. P. Pébay,
R. O’Bara, and S. Tendulkar, “Methods and framework for visualizing
higher-order finite elements,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 4, pp. 446–460, July/August 2006,
DOI 10.1109/TVCG.2006.74.

Kenneth Moreland received the BS degrees in com-
puter science and in electrical engineering from the
New Mexico Institute of Mining and Technology in
1997. He received the MS and PhD degrees in
computer science from the University of New Mexico
in 2000 and 2004, respectively, and currently re-
sides at Sandia National Laboratories. Dr. Moreland
specializes in large-scale visualization and graphics
and has played an active role in the development of
ParaView, a general-purpose scientific visualization
system capable of scalable parallel data processing.

His current interests include the design and development of visualization al-
gorithms and systems to run on multi-core, many-core, and future-generation
computer hardware.


	Introduction
	Basic Visualization Pipelines
	Execution Management
	Execution Drivers
	Caching Intermediate Values
	Centralized vs. Distributed Control
	Interchangeable Executive
	Out-of-Core Streaming
	Block Iteration

	Metadata
	Regions
	Time
	Contracts
	Prioritized Streaming
	Query-Driven Visualization

	Parallel Execution
	Basic Parallel Execution Modes
	Task Parallelism
	Pipeline Parallelism
	Data Parallelism

	Rendering
	Hybrid Parallel

	Emerging Features
	Provenance
	Scheduling on Heterogeneous Systems
	In Situ

	Visualization Pipeline Alternatives
	Functional Field Model
	MapReduce
	Fine-Grained Data Parallelism
	Domain Specific Languages

	Conclusion
	References
	Biographies
	Kenneth Moreland


