
Eurographics Symposium on Parallel Graphics and Visualization (2014)
M. Amor and M. Hadwiger (Editors)

Finely-Threaded History-Based Topology Computation

Robert Miller1 Kenneth Moreland2 Kwan-Liu Ma1

1University of California, Davis
2Sandia National Laboratories

Abstract
Graphics and visualization pipelines often make use of highly parallelized algorithms which transform an input
mesh into an output mesh. One example is Marching Cubes, which transforms a voxel grid into a triangle mesh
approximation of an isosurface. These techniques often discard the topological connectivity of the output mesh,
and instead produce a ‘soup’ of disconnected geometric elements. Calculations that require local neighborhood,
such as surface curvature, cannot be performed on such outputs without first reconstructing its topology. We
present a novel method for reconstructing topological information across several kinds of mesh transformations,
which we demonstrate with GPU and OpenMP implementations. Our approach makes use of input topological
elements for efficient location of coincident elements in the output. We provide performance data for the technique
for isosurface generation, tetrahedralization, subdivision, and dual mesh generation, and demonstrate its use in
visualization pipelines containing further computations of local curvature and mesh coarsening.

1. Introduction

Computer graphics algorithms rarely produce output from
a vacuum. In general, popular algorithms rely on some in-
put mesh. For example, Marching Cubes [Lor87] transforms
a voxel grid into an isosurface. Many of these algorithms
share the property that output mesh elements may be en-
tirely determined by a small set of input mesh elements,
which allows for simple, effective, formulaic parallelization
by splitting the algorithms to work separately on each input
mesh element. This naive parallelization generates a “soup”
of output primitives, with no connectivity information.

Consider the calculation of the curvature of an isosurface.
Given only a triangle soup, there is no simple method to de-
termine the neighbors of any given triangle, which is a re-
quired step to compute the curvature. Visualization pipelines
can be more complex, so that different types of connectivity
information may be necessary depending on the pipeline.

This is not a new problem, and techniques exist to
determine topological information about a primitive soup
[PCC04]. Generally, this approach starts by finding and co-
alescing duplicate vertices, which may require a bounded-
radius search to resolve vertices differing only by floating-
point error. All primitives that share two or more vertices
are linked as neighbors. Some “duplicate” vertices may not
represent desirable connections, and are split in a final pass.

The process just described is computationally intensive,
and is specific to the topological connections of triangles.
We present a technique which applies equally well to other
types of topological connections, such as determining the
neighboring facets of tetrahedra. Some examples supported
by our technique are demonstrated in Figure 1.

To summarize, this paper makes the following contributions:
• Provide a generalized finely-threaded technique for gen-

eration of topological connectivity
• Require no modifications to the algorithms generating ge-

ometry save for the storage of information about the input
topological features used to generate each output feature.

• Make use of history of disconnected geometry to enhance
performance of the topology resolution technique.

• Demonstrate the effectiveness of our technique on several
different topology-generating algorithms

• Show how history-aware algorithms can compute mesh
coarsening in the same pass as topology resolution.

2. Previous Work

New techniques are required for visualization algorithms to
perform efficiently on finely-threaded architectures such as
GPUs and expected exascale machines. Several frameworks
are under development to tackle these challenges. PISTON
[LSA12] approaches this by providing efficient data-parallel
operators as building blocks for efficient parallel algorithms.

c© The Eurographics Association 2014.



Robert Miller, Kenneth Moreland and Kwan-Liu Ma / Finely-Threaded History-Based Topology Computation

(a) Marching Cubes (b) Subdivision (c) Face-Centered Tetrahedralization (d) Dual Mesh

Figure 1: Geometry is usually generated from a known input topology. Marching Cubes (a) generates vertices only on the edges
of a known voxel grid. We retain connectivity by marking these output vertices with the ID of their generating edges. The same
process can be applied to cell subdivision (b). Tetrahedralizations (c) are more complex, but are supportable by keying on input
face as well as input edge. Generating a dual mesh (d) exchanges vertex and face connectivity information. In each figure, output
topological connections known from input topology are displayed by using identical colors to highlight connected vertices.

EAVL [MAPS12] provides a robust data model and a variety
of efficient parallel algorithms. DAX [MAGM11] internally
uses our technique in its implementation. DAX aims to ease
the transition into exascale by providing both a control en-
vironment where programmers work in serial stages and an
execution environment tailored for massive parallelism.

We rely on efficient GPU stream compaction for geome-
try generation, derived from the methods of Horn [Hor05]
and Sengupta [SHZO07]. These rely on data parallelism
techniques described by Blelloch [Ble90]. For our exam-
ples, we use geometry generation methods that make use of
the prefix-sum method of compaction, but other compaction
techniques such as histogram pyramids [DZT08] could be
substituted for the prefix sum technique for increased per-
formance in any case where our method is applied.

There are myriad existing GPU isosurfacing implemen-
tations, dating from Rottger’s implementation [RKE00].
Dyken provides a detailed overview of advancements
in GPU implementations of Marching Cubes/Tetrahedra
[DZT08]. The basic topology resolution technique in the
introduction section is introduced by Park et al. [PCC04].
Additionally, Kipfer and Westermann [KW05] observe that
polygon vertices from Marching Tetrahedra all lie on tetra-
hedral edges to uniquely specify each polygon vertex. We
use a similar observation, but our technique is more gen-
eral and does not require an auxiliary edge structure such as
theirs. We also describe a mesh coarsening method which
improves mesh quality. There are existing methods to im-
prove triangle quality from contouring methods [MW91],
but when our method is used to generate connectivity we can
also coarsen or apply other similar operations for negligible
additional cost.

Many geometry generating algorithms simply forward
disconnected geometry for rendering [DZT08, GF05, JC06].
However, many serial implementations such as VTK and
ParaView determine topological connectivity information
from discrete geometry, relying on search structures to do
so. There exist similar search structures for finely threaded

cases such as the GPU [ZG08]. Because operations like
tetrahedralization, contour methods, dual mesh generation,
and even simple subdivision can radically alter topology, we
can not depend on the reuse of large search structures. In-
stead, we require a lightweight approach that can generate a
new representation of topology quickly using known infor-
mation from a previous representation.

Other researchers [SCMO10,VBS∗11] have implemented
efficient visualization algorithms directly in MapReduce
[DG08]. Although similar in many ways, our work has sev-
eral distinguishing features from MapReduce. One is that the
traditional MapReduce framework is designed for comput-
ing large analysis problems as a batch operation. Thus, it
is a high bandwidth but also high latency approach. How-
ever, in visualization we usually require a low latency so-
lution. We propose doing this by applying the map-reduce
in a localized region. Larger scales can be broken into do-
mains using well-worn techniques like ghost regions to inter-
face partitions [ABM∗01]. Another distinguishing feature is
that we recognize that while key-value pairs are being gener-
ated, other values independent to the first operation can also
be generated. Such information is hard to capture in a clas-
sic MapReduce framework without significant data replica-
tion. We are also describing a specific technique in apply-
ing MapReduce. We are specifically demonstrating how to
use MapReduce to resolve dependent parallel operations on
a mesh. Our algorithms could be implemented in a MapRe-
duce framework, but it would require additional collection
operations to resolve connectivity.

3. Using Topology History

The essential idea behind our history-enabled topology con-
struction is to use components of the input topology as keys
in a MapReduce-like framework, but with an additional par-
tition step as demonstrated in Figure 3.

The map operation generates key-value pairs where the
key is some component of the input topology and the value is

c© The Eurographics Association 2014.



Robert Miller, Kenneth Moreland and Kwan-Liu Ma / Finely-Threaded History-Based Topology Computation

k1, k 3, k2
v9,v10, v11

0, 3, 4 0, 4, 1 1, 4,3 1,3, 2
k0, k0 k 1,k 1,k1 k 2 k 3,k 3,k 3 k 4, k 4,k 4

v0,v1,v 2 v3,v 4,v5 v6,v7, v8

k0, k3, k 4

V 2

V 0
V 1

V 4

V 3

F1

F 0
F 2 F 3

Map Partition Reduce
Welded
Geometry

k0, k4, k1 k1,k 4, k3

F 0 F1 F 2 F 3
keys:

values :

v0

v2

v3

v 4

v5
v6

v7

v8

v9

v10

v11

F 1

F 0 F 2

v1

F 3
F 2

k0
F 1

F 0 F 3

k1

k4

k2

k3

v0,v3 v5,v6,v9 v11 v1,v8,v10 v2, v4, v7

sorted-keys, sorted-values: cell-connections:

counts:

welded-values:

2, 3, 1, 3, 3
V 0, V 1, V 2, V 3, V 4

Figure 2: An example of using topology history to find vertex connections. A map operation defines some collection of cells
as shown at left. A partition phase groups the keys, then a reduce phase combines these vertices and establishes a connections
array to the new indices. We collect the mechanisms of this process in the KEY-REDUCE algorithm.

a generated component of the output topology. In a contour-
ing algorithm, the values are the vertices generated for the
new surface mesh, and each vertex is keyed by an identifier
for the edge used to interpolate the vertex. The map opera-
tion may also generate elements that are known to be unique
and therefore do not need keys. For example, when subdi-
viding cells, some vertices come directly from input vertices
whereas others are interpolated and must be connected. The
map operation must generate key-value pairs independently
to be efficiently computed on a very large thread pool.

The second step is a partition operation to reorganize the
key-value pairs and group duplicate keys. Like most MapRe-
duce implementations, we find parallel sort to be an efficient
way to shuffle the data. We can also use domain decomposi-
tions when available to shorten partitioning time.

The third step is a reduce operation that merges groups of
coincident components identified by the partition and gener-
ates the connected structures. In contouring algorithms, this
reduction consists of averaging of field values on merged
vertices and updating the triangle connection indices.

4. Connecting Vertices

History information can be used to identify topology ele-
ments of any type, but the most common case we have en-
countered is the need to find coincident vertices. Many tech-
niques exist for this purpose, as outlined in Section 2, but
all operate without prior knowledge of input topology. We
show that our history-enabled technique is faster than exist-
ing techniques and is less susceptible to some of the inherent
limitations of other techniques.

4.1. General Merging Algorithm

Figure 2 provides a simple example of applying the topology
history technique, described in Section 3, to find connec-

Map
Generate new topology elements (values)
Identify spawning input elements (keys)

Reduce
Merge coincident components

Output connected topology

Partition
Group identical keys

Key/Value pairs

Values with 
identical keys

Unique
Components

Connection, Coordinate, and Field arrays

Figure 3: Overview of the flow of an algorithm using our
technique.

tions among generated vertices. First, a mapping operation
generates the connections for a set of cells. Vertices are du-
plicated to allow independent operation on multiple threads.
We assume the map operation is a previously known algo-
rithm such as Marching Cubes with the trivial extension that
cell connection lists contain pairs of input index (key) and
output vertex (value) rather than just the output vertices.

Next, key-value pairs are partitioned by sorting the pairs
based on keys. From the sorted list of keys we can efficiently
extract a list of unique keys, which serves to identify the con-
nected vertices to be created. This list of sorted unique keys
can also used to look up where each original unsorted key
resides in the final list of merged vertices, which is how we
generate a cell-connections array defining the cell topology.

The final step is to merge values with identical keys in
the reduction phase. This reduction operation provides an
opportunity to combine neighborhood information such as
averaging normals across surface polygons. To facilitate av-

c© The Eurographics Association 2014.



Robert Miller, Kenneth Moreland and Kwan-Liu Ma / Finely-Threaded History-Based Topology Computation

eraging we also generate a counts array marking the number
of cells incident to each vertex. This array is not necessary
to describe the final topology, but it can be leveraged to find
vertex incidence lists using the VERTEX-INCIDENCE-LIST

method formally described in the supplemental material.

We provide a generalized method that captures these par-
tition and reduce phases named KEY-REDUCE that groups
various types of geometric elements, then merges each of
these groups into single outputs. The formal definition of
KEY-REDUCE is described in the supplemental material.

The KEY-REDUCE algorithm takes the result of a map op-
eration as input. Also passed to KEY-REDUCE are a merge
operation, which combines two values, and a transform op-
eration, which completes a reduction from a fully merged
set. Together the merge and transform operations allow re-
ductions to take place iteratively, which can be important for
distributed or streaming implementations.

The remainder of this section describes applications of
KEY-REDUCE as a typical vertex weld (albeit potentially
faster than VERTEX-WELD with a more robust coincident
point comparison). Subsequent sections apply the KEY-
REDUCE algorithm for other topology generators.

4.2. Marching Cubes

In the case of Marching Cubes/Tetrahedra, we know a good
deal about the input topology on which the output is gener-
ated. Specifically, the output vertices from Marching Cubes
are generated only on the edges of input voxels. To create a
history aware Marching Cubes, we start with a standard im-
plementation, but in addition to recording the coordinates of
each triangle vertex, we also write out an index identifying
the edge on which the vertex lies.

For a structured voxel grid, we assign each unique edge an
implicit integer index, then store the corresponding edge in-
dex for each vertex generated by Marching Cubes. Because
the edge indices are implicit, we need neither to create nor
to store an edge list. For unstructured grids, no such implicit
edge identifiers necessarily exist. However, each edge is
uniquely identified by its two end vertices. We build unique
local edge indices by concatenating these two end vertices
in a canonical order. This also works for voxel grids, but re-
quires more bits in the indices than necessary and can thus
slow down the key sort. The results of this keyed Marching
Cubes map are completed using the KEY-REDUCE process
described in Section 4.1. We can also merge other field in-
formation at the vertices. This is helpful for creating inter-
polated surface normals from flat triangle normals or input
gradients, which are not continuous across cell boundaries.

4.3. Cell Subdivision

Cell subdivision is a simple topology generator which can
be used to smooth or improve the representation of a finite

element mesh. For example, a triangle can be divided into
four sub-triangles as in Figure 1b. As with Marching Cubes,
simplex subdivision only adds vertices on edges of the input
mesh, so application of KEY-REDUCE for this purpose is
similar. One difference is that subdivision reuses all vertices
from the initial mesh whose connectivity is known, so only
new vertices generated on the edges should be partitioned
and reduced, and the others should be passed directly into
the output.

4.4. Face-Centered Tetrahedralization

Face-centered tetrahedralization divides each hexahedron
into 24 tetrahedra by adding new vertices to each face and
the center of the hexahedron. It generates many more tetra-
hedra than some of its counterpart algorithms, but this tetra-
hedralization captures the nonlinear field well [CMS06].

Unlike our previous algorithms, face-centered tetrahedral-
ization generates new vertices on faces instead of on edges.
To use history information, we merely change how keys are
generated. For voxel grids, we can implicitly index the faces
is a similar way we indexed edges. For unstructured grids,
we create a key consisting of the vertices with the lowest,
second lowest, and third lowest indices in that order.

5. Mesh Coarsening

Figure 4: When several Marching Cubes output vertices
(blue) fall close to the same input vertex (black), small or
skinny triangles may be produced (red).

Marching Cubes generates small or skinny triangles when
two adjacent output vertices are generated near the same in-
put mesh vertex as in Figure 4. Skinny triangles lead to a
poor sampling of surface normals, shading, and other fields
as demonstrated in Figure 5. The juxtaposition of skinny and
fat triangles can also cause irregularities in their orientations,
which can yield a staircase-like appearance as in Figure 6.
The skinny triangles can be eliminated by collapsing nearby
vertices. With history-enabled topology generation, this col-
lapsing is simple. Rather than key each output vertex directly
on input edge as described in Section 4.2, we key each out-
put vertex by the nearest input vertex connected to the input
edge. This simple change partitions all nearby vertices in to
one group for the reduce to merge together, thus merging
vertex point coordinates and averaging field values.

There exist many surface coarsening algorithms which
operate without regard to the mesh’s history by either iter-
atively collapsing features [Pot11] or collectively clustering

c© The Eurographics Association 2014.



Robert Miller, Kenneth Moreland and Kwan-Liu Ma / Finely-Threaded History-Based Topology Computation

Figure 5: Top: The normal artifacts at left are reduced at
right. Bottom: Our coarsening also improves mesh quality.

Figure 6: At left artifacts are visible due to sampling error
caused by purely local sampling. At center averaging helps
but does not remove the artifacts. At right our coarsening
removes the artifacts by providing a better local sampling
without additional performance costs.

vertices [DT07]. Our approach is similar except that we pig-
gyback the clustering with the existing partitioning stage of
our method and therefore we can coarsen without requiring a
bounded-radius nearest-neighbor search or auxiliary search
structures. We define triangle quality Q = 4a

√
3

h2
1+h2

2+h2
3
, where

hx are side lengths and a is the triangle area, and triangles
where Q > 0.6 are of acceptable quality [BH].

0 0.2 0.4 0.6 0.8 1
Triangle Quality

0 0.2 0.4 0.6 0.8 1
Triangle Quality

0K

4K

8K

12K

16K

20K

24K

28K

32K

N
um

be
r o

f T
ria

ng
le

s

Removed Triangles

Passed Triangles

Coarsened Triangles

0.0 0.2 0.4 0.6 0.8 1.0
Triangle Quality

0K

10K

20K

30K

40K

50K

60K

70K

Cu
m

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
of

 T
ria

ng
le

s

Removed Triangles

Passed Triangles

Co
ar

se
ne

d 
Tr

ia
ng

le
s

1

Figure 7: Left: Scatterplot of triangle area and quality for the
MRI head dataset. Top Right: Quality histograms of passed,
removed, and coarsened triangles. Bottom Right: Cumula-
tive distributions of triangles before and after coarsening.

Figure 7 demonstrates our coarsening on the isosurface
from Figure 6. Most triangles that are removed by our coars-
ening (green) are small or poor quality as compared with
other triangles in the distribution. Triangles that are not re-
moved (orange) are altered into the output triangles (blue)
when point coordinates are averaged. After coarsening, most
triangles are large and high quality. The cumulative distribu-
tions show that our coarsening reduces the size of the output
by approximately half. The median quality of the removed
triangles is approximately Q= 0.5 whereas the median qual-
ity of passed and output triangles is approximately Q= 0.85.

6. Grouping Cell Connections

Thus far, we have discussed algorithms that are able to lo-
cally determine the structure of cells but require collective
operations to resolve the vertices. However, our technique
can also be applied to the converse problem where vertices
can be locally determined but the cell structure can only be
constructed by tracing through the input topology. The pro-
cess uses the same strategy discussed in Section 3 and the
same KEY-REDUCE process described in Section 4.1. Some
input feature is uniquely assigned to each cell in the output,
and this feature’s index is used for the key. The reduce phase
then generates cell connectivity lists.

We demonstrate the concept of using history-enabled
topology construction for cell grouping with an algorithm
for finding the dual of a surface mesh.The map phase of the
dual mesh algorithm (Figure 1d) first finds the centroid of
each input polygon, which becomes a vertex in the output
dual mesh. Each centroid is known to be unique and can be
written directly to a vertex list. The map also writes a key-
value pair for each vertex of each cell of the input mesh. The
key is the index of the input vertex and the value is a 3-tuple
containing the index to the output vertex (generated from the
polygon centroid) and the two input vertices adjacent to the
keyed vertex and incident to the polygon. These latter ver-
tices describe the edges through which the dual polygon will
connect around the keyed vertex.

These key-value pairs cause the reduce phase to merge to-
gether the centroids of all cells incident to the keyed vertex.
Such a group of centroids corresponds to a polygon in the
output mesh. Thus, our merge operation will output a poly-
gon connecting these centroids. However, the partitioning
generally will not produce the centroids in the proper order
around the polygon, so we use the vertex key and the two in-
cident input vertices stored in the value to sort the generated
vertices based on angle from the input edge, thus yielding
the correct order.

7. Results

Each test dataset, listed in Table 1, originates as a voxel grid.
The 3D unstructured grids are minimal tetrahedralizations

c© The Eurographics Association 2014.



Robert Miller, Kenneth Moreland and Kwan-Liu Ma / Finely-Threaded History-Based Topology Computation

of these voxel grids. The unstructured surfaces are gener-
ated by Marching Cubes with isovalues chosen to show rel-
evant features. We attach vertex normals and a scalar color
value as associated attributes to each input vertex for surface
contour data. Memory constraints prevent tetrahedral tests
on datasets larger than 2563. Our measurement system has
an Intel Core i7 975 Processor, which has a clock speed of
3.33GHz. It also has 12GB of RAM, and contains 2 nVidia
Tesla C2070 cards. For OpenMP tests, we use 8 threads.

Table 1: Test Datasets

Name Dims Triangles Tetrahedrons
Spherical Distance A 1283 149,420 10,241,915
Spherical Distance B 2563 607,388 82,906,875
Spherical Distance C 5123 2,451,212 N/A
MRI Head A 1283 789,440 10,241,915
MRI Head B 2563 4,947,294 82,906,875
Supernova 4323 7,036,776 N/A

The supernova dataset shown in Figure 8 is from a su-
pernova simulation made available by John Blondin at the
North Carolina State University and Anthony Mezzacappa
of Oak Ridge National Laboratory [BD03]. We calculate a
per-vertex estimate of mean curvature [KM03] during the
marching cubes algorithm and attach this as a vertex attribute
through all additional computational passes.

7.1. Marching Cubes

Bell, a primary developer of the Thrust library, presents
VERTEX-WELD as an example application of Thrust
[Bel10]. Bell suggests a lexicographic sort where first the
x, then y, then z coordinates are compared and compacted,
which is sensitive to floating-point error because small dif-
ferences may lead to nonadjacent placement of otherwise
identical vertices. VERTEX-WELD merges duplicate ver-
tices, allowing for simple determination of all facets that
contain a particular vertex, which allows computation of in-
cidence and adjacency lists. Our approach has many simi-
larities, but VERTEX-WELD was not designed to accommo-
date topological reconstruction, and because we sort based
on input mesh features, our method is robust against floating-
point error.

One of the features of our implementation is the ability to
merge vertex properties. We report the time of the algorithm
without any attribute merge and with the averaging of sur-
face normals. We also provide timings for VERTEX-WELD.
Note, however, that the VERTEX-WELD algorithm does not
feature the ability to merge vertex attributes, so the timing
is only comparable to the non-merging version of our algo-
rithm. These timings are listed in Table 2

Our CUDA implementation achieves better performance
than the spatial search in VERTEX-WELD, but the OpenMP

Figure 8: Supernova dataset, displayed with a single subdi-
vision step. Our coarsening technique has also been applied
to reduce shading artifacts. Red and blue areas in the image
highlight regions of high local mean curvature.

Figure 9: Bezier patch cell subdivision on a rippled surface.

implementation does not appear to have the same benefit.
Our method allows for attribute merging with a small over-
head in both cases, and performance scales approximately
with the number of input vertices.

The tetrahedral case achieves approximately twice the
performance per vertex of the contour case because of the
absence of the normal vector as an attribute. The OpenMP
version scales similarly to the CUDA version until system
memory is exceeded in the largest tetrahedral dataset, at
which point disk thrashing occurs during the sorts.

7.2. Cell Subdivision

We compare our history-enabled cell subdivision against one
using VERTEX-WELD in Table 3, with an example shown in
Figure 9. Tetrahedral grids performed similarly.

7.3. Face-Centered Tetrahedralization

We compare our history-enabled face-centered tetrahedral-
ization against a similar version that uses VERTEX-WELD.
See Figure 1c for a diagram of face-centered tetrahedraliza-
tion of two voxels. Timings are listed in Table 4.

7.4. Mesh Coarsening

Table 5 shows timings for mesh coarsening during vertex
welding. Compare with Table 2 to observe that the coarsen-
ing has no significant effect on performance.

c© The Eurographics Association 2014.



Robert Miller, Kenneth Moreland and Kwan-Liu Ma / Finely-Threaded History-Based Topology Computation

Table 2: Time to perform Marching Cubes complete with
vertex merging for a manifold surface.

VERTEX KEY KEY

WELD REDUCE REDUCE

Data (no merge) (no merge) (averaging)
Spherical Distance, Structured CUDA

1283 40ms 31ms 42ms
2563 166ms 141ms 177ms
5123 847ms 752ms 894ms

Spherical Distance, Unstructured CUDA
1283 242ms 226ms 251ms
2563 1871ms 1791ms 2014ms

MRI Head, Structured CUDA
1283 168ms 138ms 181ms
2563 1092ms 903ms 1193ms

MRI Head, Unstructured CUDA
1283 545ms 476ms 583ms
2563 4193ms 4011ms 4347ms

Supernova, Structured CUDA
4323 842ms 723ms 885ms

Spherical Distance, Structured OpenMP
1283 184ms 168ms 191ms
2563 652ms 640ms 721ms
5123 3266ms 3254ms 3582ms

Spherical Distance, Unstructured OpenMP
1283 816ms 771ms 901ms
2563 9623ms 9159ms 10515ms

MRI Head, Structured OpenMP
1283 654ms 634ms 721ms
2563 4022ms 3090ms 4851ms

MRI Head, Unstructured OpenMP
1283 2123ms 2117ms 2514ms
2563 29425ms 29224ms 31429ms

Supernova, Structured OpenMP
4323 3145ms 3108ms 3427ms

Figure 10: Dual mesh (blue) overlaid as as a skeleton upon a
contour mesh (green) on the spherical distance dataset

7.5. Dual Mesh Generation

Figure 10 shows a mesh and its dual overlaid as a skeleton.
Table 6 shows the timings for generating dual meshes.

Table 3: Time to perform one level of cell subdivision

Data VERTEX-WELD KEY-REDUCE

Spherical Distance CUDA
1283 91ms 84ms
2563 362ms 340ms
5123 1443ms 1367ms

MRI Head CUDA
1283 479ms 409ms
2563 3768ms 3231ms

Supernova CUDA
4323 5798ms 5514ms

Spherical Distance OpenMP
1283 360ms 337ms
2563 1410ms 1304ms
5123 5566ms 5334ms

MRI Head OpenMP
1283 1532ms 1376ms
2563 8905ms 7939ms

Supernova OpenMP
4323 13797ms 13548ms

Table 4: Time to perform face-centered tetrahedralization.

Data VERTEX-WELD KEY-REDUCE

CUDA Spherical Distance
1283 79ms 75ms
2563 624ms 595ms

CUDA MRI Head
1283 152ms 125ms
2563 1219ms 997ms

OpenMP Spherical Distance
1283 95ms 77ms
2563 766ms 721ms

OpenMP MRI Head
1283 215ms 194ms
2563 1994ms 1781ms

8. Conclusions and Future Work

We provide an efficient, generalized method for parallel gen-
eration of topological connectivity information. We require
little to no alteration to the algorithms generating geome-
try, although we leverage small modifications to allow for
knowledge of input topological features for better perfor-
mance. We demonstrate how to use such modifications to
gain performance on structured grids, and to perform a sim-
ple mesh coarsening on either structured or unstructured
grids. Future work includes determination of bottlenecks for
scalability on larger architectures.

9. Acknowledgements

This work was supported in full by the DOE Office of
Science, Advanced Scientific Computing Research, award

c© The Eurographics Association 2014.



Robert Miller, Kenneth Moreland and Kwan-Liu Ma / Finely-Threaded History-Based Topology Computation

Table 5: Performance of Marching Cubes with coarsening.

Data CUDA OpenMP
Spherical Distance, Structured

1283 41ms 199ms
2563 175ms 725ms
5123 885ms 3571ms

Spherical Distance, Unstructured
1283 245ms 899ms
2563 1997ms 10529ms

MRI Head, Structured
1283 179ms 729ms
2563 1150ms 4875ms

MRI Head, Unstructured
1283 589ms 2519ms
2563 4332ms 31444ms

Supernova, Structured
4323 717ms 2958ms

Table 6: Time to create a dual mesh from a contour surface.

Data CUDA OpenMP
Spherical Distance, Structured

1283 38ms 100ms
2563 138ms 465ms
5123 575ms 1992ms

Spherical Distance, Unstructured
1283 52ms 124ms
2563 198ms 657ms

MRI Head, Structured
1283 203ms 662ms
2563 1348ms 4414ms

MRI Head, Unstructured
1283 297ms 904ms
2563 1321ms 4259ms

Supernova, Structured
4323 1653ms 5779ms

number 10-014707 and DE-CS0005334, program manager
Lucy Nowell, and DE-FC02-12ER26072, program manager
Ceren Susut-Bennett. Part of this work was performed by
Sandia National Laboratories. Sandia National Laboratories
is a multi-program laboratory operated by Sandia Corpora-
tion, a wholly owned subsidiary of Lockheed Martin Corpo-
ration, for the U.S. Department of Energy’s National Nuclear
Security Administration.

References
[ABM∗01] AHRENS J., BRISLAWN K., MARTIN K., GEVECI

B., LAW C. C., PAPKA M.: Large-scale data visualization using
parallel data streaming. IEEE Computer Graphics and Applica-
tions 21, 4 (July/August 2001), 34–41. 2

[BD03] BLONDIN J. M. M. A., DEMARINO C.: Stability of
Standing Accretion Shocks, with an Eye toward Core-Collapse
Supernovae. The Astrophysical Journal (2003). 6

[Bel10] BELL N.: High-Productivity CUDA Development with
the Thrust Template Library, 2010. 6

[BH] BANK R. E., HOLST M.: A New Paradigm for Parallel
Adaptive Meshing Algorithms. SIAM 2003. 5

[Ble90] BLELLOCH G.: Prefix sums and their applications. Syn-
thesis of Parallel Algorithms (1990). 2

[CMS06] CARR H., MÖLLER T., SNOEYINK J.: Artifacts caused
by simplicial subdivision. TVCG (2006). 4

[DG08] DEAN J., GHEMAWAT S.: MapReduce: Simplified data
processing on large clusters. ACM Communications (2008). 2

[DT07] DECORO C., TATARCHUK N.: Real-time mesh simplifi-
cation using the GPU. In I3D (2007). 5

[DZT08] DYKEN C., ZIEGLER G., THEOBALT C.: High-speed
Marching Cubes using HistoPyramids. CGF (2008). 2

[GF05] GOETZ F. JUNKLEWITZ T.: Real-Time Marching Cubes
on the Vertex Shader. EUROGRAPHICS (2005). 2

[Hor05] HORN D.: Stream Reduction Operations for GPGPU Ap-
plications. In GPU Gems 2. 2005. 2

[JC06] JOHANSSON G., CARR H.: Proceedings of the 2006 con-
ference of the Center for Advanced Studies on Collaborative re-
search. SIGGRAPH (2006). 2

[KM03] KINDLMANN G. W. R. T. T., MOLLER T.: Curvature-
based transfer functions for direct volume rendering: Methods
and applications. Vis (2003). 6

[KW05] KIPFER P., WESTERMANN R.: GPU construction and
transparent rendering of iso-surfaces. In VMV (2005). 2

[Lor87] LORENSEN W.: Marching cubes: A high resolution 3D
surface construction algorithm. SIGGRAPH (1987). 1

[LSA12] LO L.-T., SEWELL C., AHRENS J. P.: Piston: A
portable cross-platform framework for data-parallel visualization
operators. In EGPGV (2012), pp. 11–20. 1

[MAGM11] MORELAND K., AYACHIT U., GEVECI B., MA K.-
L.: Dax Toolkit: A proposed framework for data analysis and
visualization at Extreme Scale, 2011. 2

[MAPS12] MEREDITH J. S., AHERN S., PUGMIRE D., SIS-
NEROS R.: Eavl: the extreme-scale analysis and visualization
library. In Eurographics Symposium on Parallel Graphics and
Visualization (2012), The Eurographics Association, pp. 21–30.
2

[MW91] MOORE D., WARREN J.: Mesh displacement: An im-
proved contouring for trivariate data. Computer (1991). 2

[PCC04] PARK J., CHOI B., CHUNG Y.: Efficient topology con-
struction from triangle soup. In GMP (2004). 1, 2

[Pot11] POTTER M.: Anisotropic mesh coarsening and refinement
on GPU architecture. PhD thesis, Imperial College London, De-
partment of Computing, June 2011. 4

[RKE00] RÖTTGER S., KRAUS M., ERTL T.: Hardware-
accelerated volume and isosurface rendering based on cell-
projection. In Visualization (2000). 2

[SCMO10] STUART J., CHEN C., MA K.-L., OWENS J.: Multi-
GPU volume rendering using MapReduce. In 1st International
Workshop on MapReduce and its Applications (June 2010). 2

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS J.:
Scan Primitives for GPU Computing. Computing (2007). 2

[VBS∗11] VO H., BRONSON J., SUMMA B., COMBA J., FREIRE
J., HOWE B., PASCUCCI V., SILVA C.: Parallel visualization on
large clusters using MapReduce. In LDAV (2011). 2

[ZG08] ZHOU K. H. Q. W. R., GUO B.: Real-time KD-tree con-
struction on graphics hardware. ACM Graphics (2008). 2

c© The Eurographics Association 2014.


