
Sort-Last Parallel Rendering for Viewing Extremely Large
Data Sets on Tile Displays

 Kenneth Moreland Brian Wylie Constantine Pavlakos
 kmorel@sandia.gov bnwylie@sandia.gov cjpavla@sandia.gov

Sandia National Laboratories

Abstract

Due to the impressive price-performance of today’s PC-
based graphics accelerator cards, Sandia National Laboratories is
attempting to use PC clusters to render extremely large data sets
in interactive applications. This paper describes a sort-last
parallel rendering system running on a PC cluster that is capable
of rendering enormous amounts of geometry onto high-resolution
tile displays by taking advantage of the spatial coherency that is
inherent in our data. Furthermore, it is capable of scaling to larger
sized input data or higher resolution displays by increasing the
size of the cluster. Our prototype is now capable of rendering 120
million triangles per second on a 12 mega-pixel display.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems-
Distributed/network graphics.

Keywords: Parallel Rendering, Sort-Last, Compositing, PC-
Cluster, Tile Display.

1. Introduction
The Department of Energy’s Accelerated Strategic

Computing Initiative (ASCI) is producing computations of a scale
and complexity that are unprecedented [5, 19]. High fidelity
simulations, at high spatial and temporal resolution, are needed to
achieve the necessary confidence in simulation results. The
ability to visualize the enormous data sets produced by such
simulations is well beyond the current capabilities of a single-pipe
graphics machine. Our needs require interactive rendering of
several hundred million polygons, which can only be achieved by
applying parallel techniques. We are, however, willing to
sacrifice the ability to render at real-time rendering rates for the
ability to work with hundreds of millions of polygons at a time.

The focus of our work has been to develop highly scalable
rendering techniques. Highly scalable techniques will be
necessary to address projected rendering performance targets,
which are as high as 19 billion polygons per second on displays of
64 million pixels in 2004 [19]. As a part of a broader effort in
ASCI’s Visual Interactive Environment for Weapons Simulations
(VIEWS) program, Sandia National Laboratories (SNL) is
exploring the development of cluster-based rendering systems to
address these extreme data sets. The intent is to leverage widely
available commodity graphics cards and workstations in lieu of

traditional, expensive, specialized graphics systems.
Rendering on cluster computers requires specialized parallel

rendering algorithms. Parallel rendering algorithms, regardless of
hardware architecture, fall into three categories first proposed by
Molnar [14], sort-first, sort-middle, and sort-last, based on how
the geometric primitives are sorted from object space to screen
space. Both sort-first and sort-middle strategies require primitives
to be rasterized by the rendering processors responsible for the
screen space in which each primitive lies. To achieve this as
viewpoints change arbitrarily, either some of the primitives must
be transferred in between frames, or the data must be replicated on
all processors. Neither of these strategies can scale to SNL’s
extreme data sets.

In contrast, the sort-last strategy combines images after
rasterization occurs. Sort-last allows each geometric primitive to
be rendered on any processor. Hence, each processor only needs
to hold a fraction of the primitives, and the primitives never need
to be transferred between processors. In fact, parallel rendering
using sort-last yields a faster polygon per second rendering rate as
data sets get larger. However, unlike the sort-first and sort-middle
strategies, the performance of sort-last parallel rendering drops
sharply as the resolution of the display increases. Yet we feel we
can address this issues. Our goal is to drive multiple tile displays
with frame rates that are comparable to a single tile display using
a sort-last-based parallel algorithm that scales appropriately with
large data sets.

2. Related Work
A substantial amount of work pre-exists in this area,

especially with regard to software implementations on parallel
computers [2, 8, 12, 15, 21, 22, 23]. As with our work, these
efforts have been largely motivated by visualization of big data,
with an emphasis on demonstrating scalability across significant
numbers of compute processors. However, these software-based
efforts have yielded relatively modest raw performance results
when compared with hardware rendering rates. Recent efforts
have provided parallel rendering using commodity hardware at
close to aggregate hardware rendering rates [24], but at moderate
display resolutions. Others have designed highly specialized
parallel graphics hardware, such as the PixelFlow system [4], that
scales and is capable of delivering extensive raw performance, but
such systems have not yet proven to be commercially viable. Still
others are developing parallel hardware to be used in conjunction
with commodity graphics hardware such as Sepia [13], the
Metabuffer [1], and Lighting-2 [20].

The desire to drive large, high-resolution tiled displays has
recently become an additional motivation for building parallel
rendering systems. ASCI partners, including Princeton University
[16] and Stanford University [6, 7], as well as the ASCI labs
themselves [17], are pursuing the implementation of such systems.
Both Stanford and Princeton have implemented scaleable display
systems using PC-based graphics clusters.

mailto:kmorel@sandia.gov
mailto:bnwylie@sandia.gov
mailto:cjpavla@sandia.gov
kmorel
Copyright 2001 IEEE

3. Overview of Approach
Traditional approaches to the sort-last rendering problem

require each processor to render an image of the same size as the
final display. However, our current target output resolution is 12
million pixels and growing. Producing an image of this size is
well beyond the capabilities of commodity graphics hardware.
Buffer space for images of this size, almost 100MB for each
image, can be taxing even for memory available to a PC’s CPU.
Furthermore, given that we are using a distributed memory
parallel-computing environment, the image will likely need to be
split and distributed among several display processors before it
can be viewed.

In fact, because commodity graphics hardware is incapable
of generating high-resolution images, many high-resolution
displays do not take input from a single graphics engine. Instead,
they take the input of several graphics engines and display them in
a tiled grid [9, 17]. A tiled display such as this is our target
output, so it makes sense to follow a similar convention in our
parallel rendering. Rather than render a single high-resolution
image, each processor generates images for the tiles that make up
the display. This may require each processor to render several
images for each frame: one image for each tile on which it
displays data. Just as the image for each tile is rendered
individually, each tile image is composed individually and drawn
onto the appropriate portion of the display. In short, our approach
is to use N processors to render and compose a large geometry
with T different projections, one for each display tile.

4. System Organization
SNL has built the VIEWS Data Visualization Corridor,

shown in figure 15, to service our demanding visualization needs.
The Corridor includes a 4x4, 16-tile display, which is expandable
up to 48 tiles (12x4). The tiled display uses an array of rear
projectors with each array element connected to a single node in
our graphics cluster, known as “RiCky.” RiCky is comprised of
64 Compaq 750 nodes. Each of these nodes is equipped with
512MB of main memory and 4x AGP versions of nVidia’s
GeForceTM 256 graphics chipset. Switched fast Ethernet
interfaces on each node in RiCky provide an administrative and
general purpose TCP/IP channel to the cluster. The message
passing and parallel communications interconnect between the
nodes is composed of a high-speed system area network. As of
spring 2001, this network is based on Compaq/Tandem’s
Servernet II VIA-based hardware. We found this system area
network to yield a peak throughput of 95 MB/s from point to point
using VIA protocols, but the peak bandwidth dropped to about 70
MB/s when using our implementation of MPI. An upgrade to
Myrinet 2000 is scheduled for this summer. Total cost for the 64-
node graphics cluster was approximately $500K. In this paper, a
reference to a “processor” is considered a unit like the nodes in
our cluster containing a general purpose CPU and dedicated
rendering and network hardware.

The system is designed to allow any number of N processors
to contribute to rendering T images for a tile display as long as N
≥ T. Thus, some processors will be responsible for displaying
fully composed images on a viewable display tile while other
processors will be solely responsible for rendering and composing
images. However, the system does not make a clear distinction
between these display processors and those that do not output an
image to the user. Because it takes so little time to display an
image on a tile, we can achieve much better load balancing by
letting the display processors render and compose images along

with the rest of the processors. Only after the rendering and
composing of images is complete are the display processors
differentiated by drawing the final image on the screen.

1

1

1

11

Figure 1: Processor 1’s geometry spans four tiles and
contributes to the compositing networks of each.

The system software is intended to draw polygons that are
evenly distributed amongst all the processors. Like other sort-last
systems, the system does not need to redistribute any of these
polygons to draw different viewpoints. To draw an image on the
multiple tile screen, each processor first determines which tiles its
polygons will be drawn on using bounding box information and
the current transformation matrices. The geometry on processor 1
shown in figure 1 is projected onto four tiles. Thus, the processor
must render four images, one for each tile. Rather than render and
cache all the images up front, which can take a substantial amount
of memory, the images are rendered through callbacks on an as-
needed basis.

The projection information is scattered amongst the
processors, and a compositing network for each of the tiles is
collectively built. In figure 1, because processor 1 generates
image data for each of the four tiles shown, it must participate in
the compositing network for each tile. The load balancing of the
system depends a great deal on the strategy for building these
networks and performing the composition in parallel. For
experimental purposes, the composition function was
implemented as a swappable component. In the following
sections, we describe several methods of composing multiple
images in parallel and some optimizations that can be made on the
process.

5. Composition Strategies
Sort-last rendering strategies such as those described by Ma

[10] and Mitra [12] are designed to generate a single, full-
resolution image. However, our approach is to generate several
lower-resolution images for use in a tile display. Thus, we require
other methods to generate these multiple images.

Our data sets come from simulation codes run on massively
parallel machines. For basic efficiency, these codes must work to
keep cell elements spatially coherent within each processor and
amongst adjoining processors [3]. When geometry such as an
isosurface is extracted from the simulation’s final model, the
geometry contained by each processor also tends to be spatially
coherent. Even geometries that do not initially have good spatial
locality can be preprocessed through a straightforward algorithm
that groups geometric primitives into three-dimensional regions.

When spatially coherent, the geometry of each processor is
typically projected onto a fraction of the total viewing area. Thus
as a rule, each processor will not have to render every tile because
many of the tiles will not have any geometry rendered into them.
This reduction of images significantly reduces the total amount of
work that needs to be done to render tiles. We wish our
composition strategies to take advantage of this.

5.1. Serial Properly scheduling when and where each processor will
participate in each tree is vital to ensure that the depth of each tree
is low and the load utilization is high. The scheduling algorithm
we used is based on the observation that processors that still have
many images to contribute should attempt to send an image to free
its resources for other trees. Likewise, processors with few
images to contribute should attempt to receive images to continue
to be included in the compositions. Thus, the scheduling
algorithm first sorts the processors keyed on how many images
each contain. It then pairs senders and receivers, starting with the
processes with the most images as senders and those with the
fewest images as receivers. The images are then transferred and
depth compared. The whole process is repeated until there
remains only one image for each display tile. (Note that this
scheduling is not demonstrated in figure 2 to better demonstrate
the properties of virtual trees.)

A simple approach to compose T images for a tile display is
to serially run a composition algorithm for a single display T
times. Because the composition is independently run T times, we
can expect it to take T times as long to complete. However, the
serial strategy does not take advantage of any spatial
decomposition of the geometry. Processors perform no valuable
work when composing images it does not render. It was built
mostly for comparison for other composition strategies. Any
other strategy should perform much better than the serial strategy
in the average case and perform as well as the serial strategy in
the worst case.

5.2. Virtual Trees
Our virtual trees strategy is derived from the binary tree

algorithm for composing a single image [12]. In each step of the
binary tree algorithm, half of the participating processors
relinquish their entire image and drop out of the computation
while the other half receive one image, perform a depth
comparison to their own image, and reiterate. We observed that if
we were running several binary tree compositions in parallel,
these freed processors could join other binary tree computations.

We had moderate success with the virtual trees strategy.
The algorithm composed images for a 16-tile display much faster
than the serial strategy. However, the weakness of the virtual
trees strategy is that eventually processors must drop out of the
computation regardless of how good the scheduling. When
composing the 16 tile images on our rendering cluster, the last
stage could only have 16 processors participating in the
composition while the other 48 processors remained idle. While
the load balancing of the strategy was basically good until the last
two or three stages of the algorithm, these were the stages where
our compression techniques (described in section 6.2) were least
effective and poor load balancing hit us hardest.

413

13
4

43
1

1

4

4 3

4

2 1

2

5 6

53

2

4

5

2

1 4

1

Stage 1

Stage 2

Stage 3

1 2
3

4
5

6

(a) Six processing nodes (numbered one through six) independently
generate the above images on two tiles. Some processors

generate two images, one for each tile.

(b) Two virtual trees used to compose two complete tile images.
The nodes are the numbered circles with their current image for
the given composed tile next to them. At the leaves, each node
has an image they have just rendered, shown in bold. As stated

before, some nodes must render more than one image.

5.3. Tile Split and Delegate
Next, we tried to develop a simpler strategy that involved all

the processors throughout the computation. Our strategy is an
extension of the direct send algorithm described by Ma [10]. We
assign each processor to one section of a single tile. Each
processor then collects image data pertinent to its section from
other processors and depth compares them. The tile sections are
then combined to form a complete image for each tile. The
processes are load balanced by assigning tile sections in such a
way that each processor receives the same amount of pixel data to
compose. This balance can be created by splitting tiles which
have more images rendered in them into smaller pieces.

Figure 3 shows an example of using tile split and delegate
to compose the same six objects shown in figure 2a. The tile split
strategy first assigns each processor to be involved in the
composition of a single display tile. The number of processors
assigned to each display is proportional to the number of images
that need to be composed for that tile. That is, if more processors
generated images for a given tile than the other tiles, more
processors will take part in composing the given tile. In this
example, there are three images generated for the left tile and six
images generated for the right tile. Because there are twice as
many images in the right tile, twice as many processors are
assigned to that tile. Hence, the right tile gets four processors
assigned to it while the left tile only gets two.

Figure 2: Example of virtual trees parallel composition.

The strategy works by creating a “virtual” tree for each
display tile. Contained in each tree are processors that have
rendered an image for that display tile. The algorithm proceeds
much like the binary tree composition algorithm except that the
processors float among the trees, helping with the composition, as
they become available. Figure 2 shows an example of virtual
trees that may be used to compose the six objects shown. The
composition for each image proceeds as a binary tree composition
except that processors will float their participation between the
trees. In particular, notice that processor 4 takes part in the left
tree in stage 1, then floats to take part in the right tree in stage 2,
and returns to take part in the left tree in stage 3. When necessary,
the processor must keep track of multiple images belonging to
several virtual trees.

After a set of processors is assigned to a given tile, the tile is
split evenly amongst the processors in this set. Each processor is
solely responsible for the portion of the screen assigned to it.
Then, each processor renders each applicable image, splits it, and
sends each piece directly to the processor responsible for
composing that piece. Figure 3c shows how the two images
generated by processor 1 get split up and sent to the responsible
processors.

1

2

3

4

5

6

11

1

2

3

4

5

6

1

3

4

2

5

1
3

6
2

5

1
3

6

(a) Processors are assigned to tiles.
The numbers in each tile are the

processors assigned to it.

(b) Tiles are split up evenly.
The assigned processor is
marked in each section.

(c) Processor 1 splits tiles and sends to responsible processors.

(d) Processor 1 collects 3 image sections (from processors 1, 3,
and 4) and combines with sections from other processors for the

total tile image.

1, 2 3, 4, 5, 6

Figure 3: Example of tile split and delegate parallel
composition.

The PCs in our cluster, like all standard PCs, have separate
hardware for graphics and networking. We take advantage of this
by asynchronously sending the first image while rendering the
second image. Exercising both the graphics and networking
hardware at the same time rather than letting one go idle makes
better use of the system resources and reduces the overall
processing time.

While rendering and sending images, each processor is also
asynchronously receiving image sections from processors it
knows will be rendering to the tile. As each processor receives
incoming image fragments, it performs depth buffer comparisons
on them. Once the processor has finished comparing all incoming
image fragments, it sends its fully composed screen portion to the
display processor. The display processor then pieces together the
fragments before drawing the final image for the user. Figure 3d
shows which image sections processor 1 receives, what they look
like after they are depth-compared, and how the resulting segment
fits within the tile.

The tile split and delegate strategy worked very well in the
average case. It consistently performs better than the virtual trees
strategy. However, the tile split strategy can require a large
amount of message passing. In the degenerate case, where every
processor renders images for every tile, the tile split strategy
requires all-to-all communication within the processors,
generating O(N2) messages. Furthermore, these messages are not
generated in any predefined sequence. In some cases, the tile split
strategy generated so many messages it caused flow control
problems with our Servernet II interconnect. Therefore, we began
looking for other strategies that could be load balanced as well as
tile split, but did not generate as many messages.

5.4. Reduce to Single Tile
Our next attempt at parallel composition was to reduce the

problem to that of composing a single image in the same manor as
traditional sort-last parallel rendering systems. We observed that

if each processor contains at most one image, then each processor
could take part in the composition of that image without affecting
the composition of any other images that may be happening in
parallel. Of course, we need to do some image transfers first to
ensure that each processor only has one tile image.

Before composition begins, each processor holds between
zero and T images for separate tiles. The goal is for each
processor to hold exactly one image. The reduce to single tile
strategy first designates each processor to hold an image for a
particular tile. Much like the tile split and delegate strategy, more
processors are assigned to tiles with more images rendered in
them. The processors are then scheduled to receive images for the
tile they have been assigned, and send all the images for tiles they
have not been assigned. The transfers are scheduled in such a
way that all processors assigned to a given tile receive about the
same amount of images. As processors accept incoming images,
they are depth compared to generate a single image.

Once all of these transfers are complete, each processor
should have exactly one image. Now each processor performs the
binary swap algorithm [10, 12] with the other processors that hold
images for the same tile. Mitra has shown that binary swap’s
running time asymptotically approaches a constant as the number
of processors is increased [12], so each composition completes at
about the same time.

1

3

1
3

1 3 4

1
3

435
12

6

2

5

41
3

6

(a) A single processor depth-compares some, but not all,
full images for a single tile.

(b) Groups of disjoint processors, each collectively holding
all information for a single tile, perform a standard

single tile composition such as binary swap.
Figure 4: Example of reduce to single tile parallel composition.

Consider a reduce to single tile parallel composition
working on six processors that are rendering the same six objects
shown in figure 2a. The processors are assigned to tiles in the
same manner as in the tile split and delegate strategy as shown in
figure 3a. Each processor then receives a subset of the images for
that tile. Figure 4a shows how one of the processors for the left
tile may collect two of the images for that tile. Figure 4b shows
the partially composed images contained by the two disjoint
groups of processors. Each group collectively holds all the data
for a tile image. The groups perform a traditional single image
composition to produce the two tile images also shown in Figure
4b.

The reduce strategy gives us load balancing that is nearly as
good as the tile split and delegate strategy. Furthermore, it
produces many fewer messages: O(N*T + N log N) where N is the
number of processors and T is the number of tiles. The reduce

strategy was not nearly as taxing for the interconnect switches as
the tile split strategy. Our Servernet II interconnect has no
problem handling the message passing of the reduce strategy.
Moreover, because the growth rate of messages does not have an
N2 term in it, we expect it to scale to large clusters better.

6. Optimizations
In addition to developing efficient strategies for parallel

composition of multiple images, we were constantly looking for
other techniques that would help maximize the performance of
our system. This section describes general optimizations that are
applicable to the system when it is running any of the composition
strategies described above. The optimizations focus mainly on
reducing the overhead of generating multiple tiles and reducing
network traffic.

6.1. Bucketing
Consider a set of

polygons that lies within
four tiles as shown in
figure 5. Only a small
subset of polygons
actually lies within the
upper right quadrant.
Without first testing the
polygons to determine in
which tiles they lie, it is

necessary to feed every
polygon to the graphics
hardware four times
(once for each tile image
to be drawn) and let the hardware clip unnecessary polygons.
While this is certainly a correct solution, it incurs a heavy penalty
in the geometry processing in the graphics pipeline.

To reduce the total amount of polygons sent to the graphics
hardware, we estimated which polygons could be ignored with
bucketing. Before rendering begins, each processor’s polygons
are grouped into several 3D regions called buckets. This
bucketing only occurs at initialization when the data is read from
disk. Before each tile image is rendered, the buckets are tested to
determine which lie in the tile. Only the polygons in these
buckets are rendered. Now if all the polygons in figure 5 are split
into the four buckets defined by the dotted lines, only one fourth
of the polygons will need to be rendered in the upper right tile.
This number can be decreased further by making larger numbers
of smaller buckets. However, the more buckets used, the greater
the overhead in determining screen projections.

We found that using even a moderate amount of buckets
could cut our rendering time in half if the geometry straddled
several tiles. With our very large data set, we found that the
spatial coherency of the geometry was fine grained enough to base
our buckets around the layout of the data rather than to sort the
data into new buckets.

6.2. Active Pixel Encoding
Because each processor renders only a fraction of the total

geometry, the geometry often occupies only a fraction of the
screen space in some or all of the tiles in which it lies.
Consequently, the initial images distributed between processors at
the beginning of composition often have a significant amount of
blank space within them. Explicitly sending this information

between processors is a waste of bandwidth. Transferring sparse
image data rather than full image data is a well-known way to
reduce network overhead [14]. So far, our best method to do this
has been with active pixel encoding.

The sparse image data is sent via alternating run lengths of
“active” pixels, pixels that contain geometry information, and
“inactive” pixels, pixels that have no polygons drawn on them.
The active pixel run length is followed by pairs of color and depth
values. The inactive pixels are not accompanied by any color or
depth information. The depth information is assumed to be of
maximum depth, and the color values are ignored since they
contain no geometry information.

There are many other ways to encode sparse images and
reduce data redundancy. However, we are particularly enamored
with our active pixel encoding for this application because it
exhibits all of the following properties:

• Fast encoding. Image encoding requires each pixel to
be visited exactly once. Each visit includes a single
depth buffer comparison, a single addition, and at most
one copy.

• Free decoding. Processors typically perform a depth
comparison as soon as they receive incoming data.
The depth comparison can be done directly against an
image that is still encoded in sparse form. In fact, the
depth comparison can skip the comparisons for the
inactive pixels. Thus doing depth comparisons against
encoded images is often faster than against unencoded
images.

• Effective compression. During the early stages of
composition when the largest images must be
transferred, the sparse data is commonly less than one
fifth the size of the original data.

Figure 5: Using buckets on object
straddling tile boundaries.

• Good worst case behavior. No image will ever grow
by more than a few bytes of header information.
Images that have geometry drawn on every pixel will
only have one run length. Even images that alternate
between active and inactive status for every pixel, and
hence have a run length for every pixel, do not grow
when encoded. The number of bytes required to record
two run lengths is equal to the number of bytes saved
by not recording color and depth information for a
single inactive pixel. Thus, there is no penalty for
recording run lengths of size one.

6.3. Floating Viewport
Consider the

geometry shown in
figure 6 that projects
onto a screen space that
fits within a single tile
but is moved in the
horizontal and vertical
directions so that it
straddles four tiles. If
the system limits itself
to projecting onto
physical tiles, the
processor must render
and read back four
images; although it could generate a single image that contains the
entire geometry with the exact same pixel spacing. Instead of
rendering four tiles, the system can float the viewport in the global
display to the space straddling the tiles. That is, the system may

Figure 6: Using floating viewport on
object straddling tile boundaries.

project the geometry to the space shown by the dotted line in
figure 6 and split the resulting image back into pieces that can be
displayed directly on each tile. Hence, the system does not need
to render any polygon more than once, and the frame buffer is
read back one time instead of four.

When a processor’s geometry fits within the floating
viewport, it can cut the rendering time dramatically. This is most
likely to happen when the number of tiles is small compared to the
number of processors and the spatial coherency of the data is
good.

7. Experimental Results
The system and algorithms described above have been

implemented in C. The system was then tested on the rendering
cluster described in section 4 running Windows 2000. The goal of
these tests was to demonstrate the characteristics of the system,
compare the algorithms described in section 5, and determine the
feasibility of using a sort-last parallel rendering system on a PC
cluster to perform interactive rendering onto multiple tile displays.

Four data sets were used to test the system. Three are sets
of triangles with various random distributions. In the first, shown
in figure 11, all triangles are distributed linearly throughout the
viewable area. This serves as worst-case scenario: each processor
has triangles projected onto every tile. The second data set,
shown in figure 12, has triangles placed in a Gaussian distribution,
where every processor has its triangles centered at a different,
randomly chosen point. The Gaussian distribution allows the
triangles within each processor to be spatially coherent while still
allowing irregular overlapping. The third data set, shown in
figure 13, has the triangles for each processor contained in non-
overlapping boxes. This creates a perfect separation of triangles
between processors and maximizes the spatial coherency within
each processor. The images in figures 11, 12, and 13 are drawn
with each processor rendering its triangles in a single color to
show how the polygons are distributed amongst the processors.
The forth data set, shown in figure 14, is a 469 million triangle
isosurface generated from a large turbulence simulation provided
by Lawrence Livermore National Laboratories [11]. No pre-
processing is done on this data set. The distribution of polygons
amongst processors and the bucketing of polygons within
processors (see section 6.1) are based entirely on the organization
of the original data set. That is, all spatial decomposition is

inherited from the original simulation.
Table 1 shows run time statistics when using the parallel

composition strategies described in section 5 on these four data
sets. The times required to render polygons, read and write
images to and from the graphics cards, compress images, and
compare images in each frame are given. The overall amount of
data transferred between frames and the frame rate are also given.
The “serial,” “v tree,” “split,” and “reduce” strategies are those
described in sections 5.1, 5.2, 5.3, and 5.4 respectively. The
measurements were taken by a simple application that displays the
given data and rotates it about the Y-axis. The application was
run on all 64 nodes of our rendering cluster and displayed on 16
tiles laid out as a 4x4 grid. The total resolution of this display is
12 mega-pixels. The tile split and delegate strategy failed to
compose the linear distribution of triangles. We believe this is
caused by flow control problems in our Servernet II interconnect
generated by the all-to-all communication of the tile split strategy.

7.1. Comparison of Strategies

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Linear
Distribution

Gaussian
Distribution

Perfect
Separation

LLNL Isosurface

Serial

V Tree

Split

Reduce

Figure 7: Relative frame rates for composition strategies.

Figure 7 shows the relative frame rates that each
composition strategy required for each data set. The relative
frame rate is the frame rate measured for the given strategy
divided by the frame rate of performing a sort-last composition on
each tile individually (i.e., using the serial strategy). As expected,
when the data is not spatially decomposed, as is the case with the
“linear distribution” data set, the serial strategy is optimal.
However, for data sets that are spatially decomposed, any of the
other strategies are a much better alternative.

 Strategy Render
Time (ms)

Read Time
(ms)

Write Time
(ms)

Compress
Time (ms)

Z Compare
Time (ms)

Net Usage
(Mbytes)

Frame Rate
(Hz)

Serial 94.9 638.5 10.0 436.5 269.3 2638 0.269
V Tree 93.8 603.6 9.9 435.4 430.5 2598 0.241
Split — — — — — — —

Linear
Distribution

Reduce 94.8 554.1 9.9 359.5 363.3 2046 0.247
Serial 79.3 514.1 9.9 307.3 62.0 491 0.370
V Tree 78.1 357.8 10.1 184.8 127.0 386 0.652
Split 78.5 505.0 10.2 238.6 43.0 238 0.886

Gaussian
Distribution

Reduce 78.3 313.1 9.9 140.1 109.5 296 1.093
Serial 76.3 487.4 9.9 317.3 78.9 562 0.309
V Tree 76.3 380.8 10.0 201.3 131.0 464 0.657
Split 76.6 483.4 10.3 235.2 56.1 279 0.930

Perfect
Separation

Reduce 76.8 357.1 9.9 163.4 95.3 383 1.040
Serial 2229.2 430.8 9.9 292.6 41.6 340 0.076
V Tree 2416.3 332.0 10 188.1 96.8 236 0.155
Split 2424.1 423.7 10.3 205.4 30.0 156 0.361

LLNL
Isosurface

Reduce 2416.7 254.9 9.8 119.3 78.9 213 0.262

Table 1: Statistics for rendering each data set under each composition strategy.

The results show that both the tile split and the reduce
strategies performed surprisingly well composing the Lawrence
Livermore National Laboratories data set. The tile split strategy
ran 4.75 times as fast as the serial strategy, and the reduce
strategy ran 3.45 times as fast. In fact, we were pleasantly
surprised to find that the performance boost for real data with
spatial sorting inherited from a parallel simulation was better than
that for our fabricated data with “perfect” separation. The data
suggests that these methods can effectively take advantage of the
same spatial locality requirements for efficient parallel
simulations.

7.2. Tradeoffs

0

20

40

60

80

100

120

140

16 32 64

Number of Processors

Tr
ia

ng
le

 R
at

e
(M

tr
i/s

ec
)

Figure 8: Measured triangle rates while rendering the LLNL
isosurface data set on 16 tiles. Triangle rates are measured in
millions of triangles per second.

Figure 8 shows a plot of the rendering speeds of the system
while rendering the Lawrence Livermore National Laboratories
data set on a 16-tile display using the reduce strategy. The
number of nodes used in rendering and composing is varied to
determine its effect on the system performance. Notice that each
time the number of render processors is doubled the triangle rate
is also nearly doubled.

0

50

100

150

200

4 8 12 16 20 24

Number of Tiles

Tr
ia

ng
le

 R
at

e
(M

tr
i/s

ec
)

Figure 9: Measured triangle rates while rendering the LLNL
isosurface data set using 64 processing nodes.

Figure 9 shows a plot of the rendering speeds of the system
while rendering the same data set. However, instead of varying
the number of processing nodes, it varies the number of tiles in
the display. As can be expected, the rendering performance is
negatively affected by increased display sizes, but not by as much
as might be expected by a traditional sort-last composition.
Quadrupling the display by increasing the number of tiles from 4
to 16 only drops the rendering rate by 33%.

These two graphs suggest a tradeoff that the system
provides. The aggregate computational power of the processors

can be directed toward the display resolution or the rendering rate.
Increasing the resolution of the display will drop the rendering
speed, but the speed can be increased again by adding more
processors. In effect, we are trading display resolution for
rendering speed.

7.3. Comparison to Other Parallel Cluster
Rendering Systems
Typical software implementations of parallel rendering

systems using a sort-last approach can render large data sets as
fast or even faster than the system described here, but they cannot
handle the large output display. Consider the sort-last parallel
renderer described by Wylie [24]. Using the same hardware and
LLNL isosurface data described in this paper, Wylie was able to
generate a 1024 x 768 image in about 1.5 seconds. In order to
render the images used in the benchmarks in table 1, it would
need to be run 16 times, taking a total of 24 seconds. That is over
six times as long as it took our system using the reduce strategy.

ASCI-Sized Data
0

100

200

300

400

500

0 2000 4000 6000 8000 10000

Input G eo m etry Size (M B)

N
et

w
or

k
U

se
/F

ra
m

e
(M

B
)

So rt-First, 100% So rt-First, 5% M TIC
Figure 10: The network bandwidth required for rendering
large input geometries.

Typical software implementations of parallel rendering
systems using a sort-first approach can potentially render frames
at much higher rates, but they cannot handle large input data sets.
Figure 10 compares the amount of network bandwidth required
for a sort-first system that needs to transfer every polygon (such
as WireGL [7]), a sort-first system that needs to transfer about 5%
of the polygons, and the multiple tile image compositor described
in this paper. The sort-first system that transfers 100% of the
polygons requires much more bandwidth than our system for
ASCI-sized data sets. A sort-first system that transfers only 5% of
the polygons will be using about the same amount of network
bandwidth as our system with our large data sets. However, a
sort-first system of this type probably achieves this reduced
network bandwidth by taking advantage of frame-to-frame
coherency. On our hardware, it takes over 1 second just to render
our data in parallel on all 64 nodes with perfect load balancing. In
an interactive application with a 1 second refresh, the user is
likely to significantly change the viewing angle between
refreshes. Thus, we may expect little frame-to-frame coherency,
and the sort-first system will begin to consume much more
network bandwidth.

8. Conclusions
In this paper, we have demonstrated the use of a sort-last

parallel rendering system that is capable of rendering to large tile
displays. Because the system does not replicate input data
amongst processors or transfer input data between processors, it

can handle continually growing data set sizes. Furthermore, we
can support ever-growing display resolutions with larger
rendering clusters.

We have demonstrated several composition algorithms that
are designed to create the multiple images required for a tile
display. Our running tests show that some of these algorithms can
generate these images in one quarter of the time required for
previous sort-last composition algorithms. We also described
some effective optimization techniques that can be used to help
render and compose these images in an interactive application.

As can be expected, we noticed a processing overhead for
rendering to larger displays. However, we feel that the system’s
extra computational needs as the display resolution grows are
quite reasonable. Furthermore, this extra computational load can
be recovered by adding more rendering nodes to the cluster. We
feel we have demonstrated that the system is a viable driver for
visualizing the extremely large data sets generated by Sandia
National Laboratories and the other DOE laboratories.

9. Future Work
We expect to continue to explore the use of sort-last

rendering techniques for use on tile display systems. We also
anticipate continued optimization of our current software and
possible consideration of hybrid sorting schemes.

We are also looking to adapt our current software to existing
APIs to make porting applications easier. Our most likely
candidate is the Visualization Toolkit [18]. Implementing a new
renderer in the Visualization Toolkit is straightforward, and its
organization complements the callback structure of our system
nicely.

We also note with respect to table 1 that one of the
bottlenecks of the system, like many other software-based sort-
last systems, is the time required to read back the frame buffers.
The Metabuffer [1] and Lightning-2 [20] technologies attempt to
circumvent this cost by reading the frame buffers from DVI
outputs. Unfortunately, current 3D graphics cards do not have a
direct path from their depth buffer to their DVI output. Once this
issue has been resolved and these technologies improve, we hope
the techniques discussed in this paper can be combined with DVI
reading hardware for a significant speedup.

10. Acknowledgements
Funding was provided by the Accelerated Strategic

Computing Initiative’s Visual Environment for Weapons
Simulations (ASCI/VIEWS) program. Thanks to LLNL for the
large isosurface data (particularly Randy Frank and Dan Schikore,
now with CEI). Thanks to Pat Crossno for her vast technical
library and extremely helpful suggestions, Dan Zimmerer, Milt
Clauser, and Steve Monk for their cluster support, and Philip
Heermann for his inspiration and motivation. This work was
performed at Sandia National Laboratories. Sandia is a multi-
program laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy
under contract DE-AC04-94AL85000.

11. References
[1] Blanke, W. et al. The Metabuffer: A Scalable Multiresolution

Multidisplay 3-D Graphics System Using Commodity Rendering
Engines. Technical Report TR2000-16, Department of Computer
Science, University of Texas at Austin, 2000.

[2] Crockett, T. W. and Orloff, T. A MIMD Rendering Algorithm for
Distributed Memory Architectures. 1993 Parallel Rendering
Symposium Proceedings, pages 35-42. IEEE. October 1993.

[3] Devine, K. D. et al. Design of Dynamic Load-Balancing Tools for
Parallel Applications. Proceedings of the International Conference
on Supercomputing, Sante Fe, May 2000.

[4] Eyles, J. et al. PixelFlow: The Realization, Proceedings of the
SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages
57-68. Los Angeles, CA, August 1997.

[5] Heermann, P. Production Visualization for the ASCII One
TeraFLOPS Machine. Proceedings of Visualization ’98, pages 459-
462. IEEE, October 1998.

[6] Humphreys, G. and Hanrahan, P. A Distributed Graphics System for
Large Tiled Displays. Proceedings of Visualization ’99, pages 215-
223. IEEE, October 1999.

[7] Humphreys, G. et al. Distributed Rendering for Scalable Displays.
Proceedings of SC2000. IEEE, 2000.

[8] Lee, T. et al. Image Composition Methods for Sort-Last Polygon
Rendering on 2-D Mesh Architectures. 1995 Parallel Rendering
Symposium Proceedings, pages 55-62. IEEE. October 1995.

[9] Li, K. et al. Building and Using A Scalable Display Wall System.
IEEE Computer Graphics and Applications, pages 29-37. IEEE
Computer Society, July/August 2000.

[10] Ma, K. et al. Parallel Volume Rendering Using Binary-Swap Image
Composition. IEEE Computer Graphics and Applications, pages 59-
68. IEEE Computer Society, July 1994.

[11] Mirin, A. Performance of Large-Scale Scientific Applications on the
IBM ASCI Blue-Pacific System. Proceedings of the Ninth SIAM
Conference of Parallel Processing for Scientific Computing, CD-
ROM. SIAM Philadephia. March 1999.

[12] Mitra, T. and Chiueh, T. Implementation and Evaluation of the
Parallel Mesa Library. IEEE International Conference on Parallel
and Distributed Systems (ICPADS). December 1998.

[13] Moll, L., Heirich, A., and Shand, M. Sepia: Scalable 3D
Compositing Using PCI Pamette. IEEE Symposium on Field
Programmable Custom Computing Machines (FCCM ’99), April
1999.

[14] Molnar, S. et al. A Sorting Classification of Parallel Rendering.
IEEE Computer Graphics and Applications, pages 23-32. IEEE
Computer Society, July 1994.

[15] Samanta, R. et al. Hybrid Sort-First and Sort-Last Parallel
Rendering with a Cluster of PCs. SIGGRAPH/Eurographics
Workshop on Graphics Hardware. Interlaken, Switzerland, August
2000.

[16] Samanta, R. et al. Load Balancing for Multi-Projector Rendering
Systems. SIGGRAPH/Eurographics Workshop on Graphics
Hardware. August, 1999.

[17] Schikore, D. et al. High-resolution multi-projector display walls and
applications. IEEE Computer Graphics and Applications, pages 38-
44. IEEE Computer Society, July/August 2000.

[18] Schroeder, W. et al. The Visualization Toolkit 2nd Edition. Prentice
Hall, Upper Saddle River, NJ. 1998.

[19] Smith, P. H. and van Rosendale, J. Data and Visualization
Corridors, Report on the 1998 DVC Workshop Series. Caltech,
1998.

[20] Stoll, G. et al. Lightning-2: A High-Performance Display Subsystem
for PC Clusters. Computer Graphics (Proceedings of SIGGRAPH
01), August 2001.

[21] Udeshi, T. and Hansen, C. Parallel Multipipe Rendering for Very
Large Isosurface Visualization. Joint EUROGRAPHICS – IEEE
TCCG Symposium on Visualization. 1999.

[22] Whitman, S. A Load Balanced SIMD Polygon Renderer. 1995
Parallel Rendering Symposium Proceedings, pages 63-69. IEEE.
October 1995.

[23] Whitman, S. et al. A Task Adaptive Parallel Graphics Renderer.
1993 Parallel Rendering Symposium Proceedings, pages 27-34.
July 1994.

[24] Wylie, B. et al. Scalable Rendering on PC Clusters. To appear in
IEEE Computer Graphics and Applications. IEEE Computer
Society. July/August 2001.

Figure 11: Linear distribution of random triangles.

Figure 12: Gaussian distribution of random triangles.

Figure 13: A distribution of random triangles with (almost)
perfect separation (i.e. spatial decomposition).

Figure 14: 469 million triangle isosurface from Lawrence
Livermore National Laboratories. Images covered by LLNL:
UCRL-MI-142527 Rev 1.

Figure 15: Sandia National Laboratories’ VIEWS Data Visualization Corridor. The image of the LLNL isosurface displayed in the
center is 5120 pixels wide by 4096 pixels high.

Sort-Last Parallel Rendering for Viewing Extremely Large Data Sets on Tile Displays
Kenneth Moreland, Brian Wylie, Constantine Pavlakos

	Abstract
	Introduction
	Related Work
	Overview of Approach
	System Organization
	Composition Strategies
	Serial
	Virtual Trees
	Tile Split and Delegate
	Reduce to Single Tile

	Optimizations
	Bucketing
	Active Pixel Encoding
	Floating Viewport

	Experimental Results
	Comparison of Strategies
	Tradeoffs
	Comparison to Other Parallel Cluster Rendering Systems

	Conclusions
	Future Work
	Acknowledgements
	References

