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ABSTRACT

A key component of most large-scale rendering systems is a parallel
image compositing algorithm, and the most commonly used com-
positing algorithms are binary swap and its variants. Although shown
to be very efficient, one of the classic limitations of binary swap is
that it only works on a number of processes that is a perfect power
of 2. Multiple variations of binary swap have been independently
introduced to overcome this limitation and handle process counts
that have factors that are not 2. To date, few of these approaches
have been directly compared against each other, making it unclear
which approach is best. This paper presents a fresh implementation
of each of these methods using a common software framework to
make them directly comparable. These methods to run binary swap
with odd factors are directly compared. The results show that some
simple compositing approaches work as well or better than more
complex algorithms that are more difficult to implement.

Index Terms: Computing methodologies—Computer graphics—
Rendering; Computing methodologies—Parallel computing
methodologies—Parallel algorithms—Massively parallel algorithms

1 INTRODUCTION

Parallel rendering is critical for large-scale scientific visualization.
Broadly speaking, there are two general approaches to render data in
a distributed parallel system. The first approach is to distribute the ge-
ometry such that each process can completely render a subregion of
the screen (known as sort-first rendering [12]). The second approach
is to have each process render a full image with partial data and then
combine (a.k.a. composite or reduce) these to a single, complete
image (known as sort-last rendering [12]). It has long been shown
that for large parallel jobs, sort-last provides much better scalabil-
ity [16, 29]. The efficiency of sort-last parallel rendering with image
compositing has been demonstrated in many systems [3, 13, 21, 22].

The efficiency of sort-last parallel rendering depends on the ability
to composite the images generated by each process into a single
image. One of the most well known algorithms, and one still used
commonly to date, is binary swap [11]. Binary swap is popular
because it is straightforward to implement and has good scaling
behavior in terms of data transfer and number of iterations [21].

One natural problem with binary swap is that because it itera-
tively divides processors into two groups, and these groups need to
be the same size, it only works well when the number of processes is
a perfect power of 2. Multiple variations of binary swap have been
independently introduced to overcome this limitation, but few have
previously been directly compared with each other. This paper con-
solidates this research by implementing each of these binary swap
algorithms in a common code base and running a direct comparison
across them. This direct comparison draws some surprising results
about the comparative performance of each.
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2 COMPOSITING ALGORITHMS

This section reviews the compositing algorithms used in this paper.
Note that the compositing techniques outline here have been pre-
sented in some form in previous literature. However, this is the first
time all these algorithms have been brought together and directly
compared in a common code base.

2.1 Base Binary Swap

Binary swap is first introduced by Ma et al. [11]. It is a straight-
forward divide-and-conquer algorithm where at each phase each
process exchanges pixels with another process. During the exchange,
each process offloads half of its pixels, which are blended into the
remaining images in the paired process.

0 1 2 3 4 5 6 7Binary swap occurs on a series of itera-
tions. In the first iteration, processes group
in adjacent pairs. Pairs exchange halves of
their image, as shown at right.

1 3 5 70 2 4 6For the next iteration, all the process hold-
ing the same image group together, and then
repeat the swapping operation. In the ex-
ample at right with 8 processes, highlighted
processes 0, 2, 4, and 6 group together and split their remaining im-
ages. (The remaining processes form their own group and similarly
subdivide.)

1 3 5 72 60 4Binary swap iterations continue until each
process has a unique portion of the image. In
our example with 8 processes, binary swap
completes after the third iteration. In gen-
eral, binary swap takes log2 p iterations, where p is the number of
processes.

2.2 Binary Swap Variations for Odd Process Factors

Binary swap has many desirable qualities. The number of iterations
grows slowly with respect to the number of processes. Also, each
iteration halves the amount of work required per process. In total,
each process will send, receive, and operate on no more than the
number of pixels in a single image. However, a well known limita-
tion is that binary swap only works when the number of processes
is a perfect power of 2. If there are any odd factors, then at some
iteration there will be an odd number of processes in a group, and
they will not all be able to pair up properly. In response, there are
numerous modifications to binary swap to handle odd factors.

2.2.1 Naive
0 1 2 3 4 5The most obvious way to manage odd factors is

to find the largest power of 2 less than the number
of processes and then offload images from any
processes that do not fit in a group of that size. In
the example at right, we have 6 processes. The largest power of 2
less than 6 is 4, so two processes send their images away and drop
out of the communication. The remaining 4 processes do a normal
binary swap as outlined in Section 2.1.

This method has been given multiple names such as reduced [31]
and folding [13]. To avoid confusion from the other techniques
(many of which can be thought of as “reducing” or “folding”), this
paper refers to this technique as naive.



2.2.2 234 Composite
One of the big drawbacks of the naive technique is that it adds
another iteration to the compositing. It also requires the transfer of
full images, which potentially doubles the amount of data transferred
or computed by each process. Nonaka et al. [18, 19] propose 234
composite to roll the reduction into the first iteration of the binary
swap algorithm.

234 composite does this using a combination of 3-2 reduction
and 4-2 reduction operations. These operations take a group of
3 and 4 processes, respectively, and reduce them to a group of 2.
The resulting 2 processes each end with half an image much like a
standard binary-swap pair.

0 1 2 3 4 5 6
3-2 Reduction 4-2 ReductionIn this example of 7 processes, there is 1

group for a 3-2 reduction and 1 group for a 4-2
reduction. After the operations are complete,
there are 4 remaining processes in a state equiv-
alent to have running the first step of binary
swap. The remainder of the algorithm follows
that of binary swap.

2.2.3 Telescoping
Moreland et al. [13] propose the telescoping algorithm. Like the
naive algorithm, telescoping reduces the problem to groups that
are a power of 2. However, rather than reduce the size of the groups
before compositing starts, telescoping performs this reduction after
compositing primarily finishes. It does this by breaking the processes
into a series of groups that are the largest powers of 2 that it can
make. It then runs binary swap on all such groups simultaneously.
When compositing finishes, the smaller groups transfer their images
to the larger groups.

1 3 50 2 4 6

binary
swap

binary
swap

In the example at right, 7 processes are split
into a group of 4, a group of 2, and a group of
1 (all perfect powers of 2). Binary swap is run
concurrently and independently on each group.
The group of size 1 splits its image and sends
it to the size 2 group. Subsequently, the size
2 group splits its images and sends them to the size 4 group (thus
collapsing the images in a telescoping manner). Since smaller groups
have less work, we can expect the smaller groups to finish more
quickly and have its data in transit while the larger groups finish.

2.2.4 Remainder
Rather than attempt to reduce the number of processes to a power of
2, another approach is to modify the binary swap algorithm to man-
age the situation where a group cannot be evenly divided. A simple
approach, which we will refer to as remainder, simply rolls the
image from any remainder when dividing the processes by employ-
ing a single 3-2 reduction to absorb the remainder. This is roughly
equivalent to the reduction technique proposed by Rabenseifner and
Träff [23] although, to the author’s knowledge, this has not been
directly applied to parallel rendering. (Also, the implementation
used in this paper actually uses the overlap variant of 3-2 reduction
as proposed by Nonaka [18].)

0 1 2 3 4 5 6In this example of 7 processes to the right,
the processes are divided by employing a 3-2
reduction on the last 3 processes. The last process drops out of the
computation at this point.

1 3 5 6420The next (and final) iteration has groups of
3. These again are managed by a 3-2 reduction.
The highlighted processes 0, 2, and 4 blend image data in processes
0 and 2 while dropping process 4.

2.2.5 2-3 Swap
All the previous algorithms for odd factors of processes require
processes to go idle at some point during the computation. Yu et
al. [31] describe 2-3 swap, which can perform image compositing

on any number of processes while balancing the computation among
all processes at all iterations. It does so by dividing processes into
groups of 2 or 3 and likewise dividing images by 2 and 3.

0 1 2 3 4 5 6For example, the first step of a 7 process
composite, shown at right, splits the processes
in a group that does a 3-way swap and 2 more
groups that do a 2-way swap. The details on
when 2-3 swap does a 2-way vs. 3-way swap is complicated and
requires precomputing a compositing tree. For details, see Yu’s
paper [31].

0 1 243 5 6After the first step it is notable that the image
partitions of processes do not line up as they
do for binary swap. 2-3 swap manages this by
interlacing the processes that are regrouped and
redividing evenly. (Note the reordering of processes in this example.)
The interlacing ensures that each process receives only pixels that it
started with.

2.3 Alternatives to Binary Swap
Finally, we quickly review some alternatives to binary swap that are
viable but not considered in this paper.

Direct send [17] is a simple algorithm that assigns a piece of the
image to each process, and then each process sends all its pieces
directly to the responsible process. Direct send minimizes latency
because all data reaches its destination in one step, but the number
of messages required to do this grows quadratically with respect to
the number of processes. Thus, the technique is unsuitable for large
scales [13]. An often cited but seldom implemented variant of direct
send is Scheduled Linear Image Compositing (SLIC) [25], which op-
timizes pixel assignment by assigning non-contiguous image pieces.

The parallel pipeline method [9] establishes processes in a linear
chain where image data are passed down the chain. Parallel pipeline
has a long latency as images must be passed down the entire pipeline,
but it has been shown that the regular message passing can be used to
optimize for physical hardware connections [28]. Rotate tiling [10]
is a variant of parallel pipeline that establishes multiple pipelines to
reduce latency.

Radix-k [20] combines binary swap and direct send by allowing
each iteration of binary swap to group into any size rather than just 2
and uses a direct send in that subgroup to swap data around. Because
it can divide processes in any way, it is not limited to powers of
2 like binary swap. However, because the performance of radix-k
can vary based on factors chosen [5, 13], it would be interesting to
explore ways to adjust available factors. However, this is beyond the
scope of this paper and left for future work.

3 EXPERIMENTS

For these experiments, versions
of binary swap and the vari-
ants described in Section 2.2
were implemented in a common
code base. All the algorithms
use a common infrastructure for
rendering and image data struc-
tures. This test infrastructure renders a simple scene where each
process renders an opaque box like that shown here.

The experiments were run on the Sky Bridge cluster at Sandia
National Laboratories [24]. Sky Bridge is a water cooled Cray capac-
ity cluster with 1,848 nodes (although at most 512 nodes were used
at any one time during these experiments). Each node contains 2
2.6 GHz Intel Xeon E5-2670 processors, each with 8 cores (16 cores
total). The nodes are connected with an Infiniband interconnect. The
experiments were run in “virtual node” mode where each core ran a
separate MPI process (except where specified in Section 3.3).

Each experiment has 20 trials (rendered frames). Each trial is
performed from random camera rotations around the geometry (al-



though these random locations are consistent across experiments
by using the same pseudorandom number generator seed). Ren-
dering times for two different image sizes are reported: HDTV
(1920×1080) and 8K UHD (7680×4320).

The compositing engaged active pixel encoding for compression
(except where specified in Section 3.2). The times reported here are
specifically the time to divide the image and blend pixels. This leaves
the final composited image divided across many MPI processes.
The time to gather the image pieces is not reported except where
discussed in Section 3.4.1. The time to map the geometry to pixels
is not reported as this time is independent from the compositing
algorithm.

3.1 Algorithm Comparison and Scaling

The first experiment performs a scaling study of the behavior of the
binary swap algorithm with the 5 variations discussed in Section 2.2.
The tests include runs on 128 processes (8 real nodes) up to 8192
processes (512 real nodes). It is impractical to run an experiment on
every possible number of processes. Instead, jobs are run on every
2i/6 processes, rounded to the nearest integer. This hits all jobs sizes
that are a perfect power of 2 and 5 in between.
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The results of these
experiments are shown at
right. The top plot shows
results for HDTV im-
ages whereas the bottom
plot shows results for 8K
UHD images. Each trial
(20 per experiment) is
drawn as a dot. Exper-
iments with little devi-
ation in the trials have
their dots drawn on top
of each other. A trend
line is drawn for the
average values. The
plots are labeled as “Par-
tial Composite Time” be-
cause these times include
only splitting the images
and blending pixels. The
fully composited image is left in pieces scattered across the MPI
processes. Section 3.4.1 discusses the collection of these pieces.

A first observation about the data is to note that the naive al-
gorithm pays a significant but consistent penalty for running on a
number of processes that is not a power of 2. This is consistent with
the findings of Yu et al. [31].

A second observation is that the 234 composite algorithm fol-
lows a similar pattern as the naive algorithm. Although Nonaka et
al. [18] suggest that the combination of reduction into the first step
of binary swap will make 234 composite faster than naive, these
measurements do not show an improvement.

A third observation is that the 2-3 swap algorithm behaves well
up to 1024 processes (which is as large as was measured by Yu et
al. [31]), but the performance starts to deteriorate on larger sizes,
particularly for the HDTV images. This appears to be caused by the
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time taken to build the
compositing tree, which
is complex for 2-3 swap
and has to take into ac-
count all the processes.

The plot at right
demonstrates the frac-
tion of time spent
in building the 2-3
compositing tree. The

top lighter shade shows the time spent building the compositing
tree whereas the bottom darker shade shows the remainder of the
algorithm (transferring data, blending colors, etc.).

A fourth observation is that both the telescoping and remainder
versions of binary swap perform very well throughout the entirety
of the experiments. This is somewhat counterintuitive for the re-
mainder algorithm, which, much like the poor performing naive,
and 234 composite algorithms, lets processes go idle. However,
unlike the naive and 234 composite algorithms, remainder delays
letting processes go idle until as late as possible.

A fifth observation is that all of the binary swap algorithms
implemented for this paper perform less well than the IceT software.
IceT uses a combination of radix-k and telescoping, but the real
performance gain is in its high-speed blending and management of
memory to reduce allocation and messages. In contrast, this paper’s
implementation sacrifices some efficiency for readability of code
and ease of implementation to facilitate comparisons like those in
this paper.

3.2 No Image Compression

The compositing reported in Section 3.1 compresses images during
compositing using run lengths of active and inactive pixels (some-
times called active pixel encoding). Any practical system should
employ active pixel encoding or something like it as previous work
has shown dramatic improvements in compositing time [1,15,26,30].
However, active pixel encoding can change the performance behav-
ior of the compositing. The overall time will increase and decrease
depending on the effectiveness of the compression. Image compres-
sion can also add load imbalance.

To verify that active pixel encoding is not artificially skewing
the previous results, a second set of runs replicates the experiments
with image compression turned off. This set of experiments only
includes the naive, 2-3 swap, and remainder algorithms. 234
composite and telescoping were not run to save time because their
performance is similar to naive and remainder, respectively. IceT
was not run because it always compresses the data.
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The results are shown
at right. The top plot
shows results for HDTV
images whereas the bot-
tom plot shows results
for 8K UHD images.
As before, the measure-
ments for all trials are
shown as dots drawn on
an average trend line.

A first observation
is that the behavior of
the three algorithms
is roughly consistent,
proportionally speaking,
with the behavior using
active pixel encoding
with the exception of
2-3 swap. Both the
naive and 2-3 swap
algorithms pay a large penalty when not using a perfect power
of 2 number of processes (although 2-3 swap has about half the
penalty). The remainder algorithm’s performance is consistent and
is the best performer in all cases.

A second observation is that without compression, the composit-
ing takes about 2.5 to 4 times as long, which verifies the statements
about the utility of active pixel encoding during compositing.



3.3 Virtual Node vs. Pure Distributed
To maximize the scaling in the aforementioned experiments, runs
were performed in a virtual node mode where each core on a node
has its own MPI process. In essence, each core is treated as a
separate node even though they technically share resources. One
consequence of the virtual node setup is that the network behavior
is expected to be more heterogeneous. Data transfers between two
virtual nodes on the same physical node are expected to be much
faster than transfers between virtual nodes on two different physical
nodes. To ensure that the conclusions we draw are not invalid for
different network configurations, the experiments are also run in a
pure distributed mode where only a single MPI process is run on
each node (and consequently only one core is used).
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The plots above compare the performance of compositing when
run on the same number of nodes in virtual node mode and pure
distributed mode when using the naive, 2-3 swap, and remainder
algorithms (in the left, center, and right plots, respectively). The
average times for the trials of each experiment are given. A similar
run for 8K UHD images was also run and gave similar results, but it
is not displayed here for lack of space.

An interesting observation is that the pure distributed mode runs
are consistently faster than the virtual node mode. This is counterin-
tuitive as many of the connections in virtual node mode are faster
than those in pure distributed mode. Most likely the slowdown is due
to the cores in virtual node mode sharing the same network interface
controller (NIC) and having to divide the bandwidth accordingly.
This measurement suggests that overall rendering throughput will be
maximized by leveraging shared-memory local rendering, of which
there are many choices [2, 6, 7, 14, 27], to reduce the number of MPI
processes on each physical node.

Apart from the consistent overhead of running in virtual node
mode, we can see that the characteristics of the behavior are similar
for both modes. Thus, we can conclude that the findings drawn
from our virtual node scaling can be applied to other job launching
patterns.

3.4 Aberrant Readings
The results presented in the previous sections have been down-
selected for clarity. For completeness, this section documents some
of the more unusual or inconsistent measurements taken.

3.4.1 Inconsistent Gather Times
The previously reported compositing times include the process up
to the point where the resulting image is divided among multiple
processes. However, in any practical system, the images must be
gathered together for display. It is known that this gathering can take
a significant portion of the compositing time [8, 13, 19, 23].
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The plots above show the time spent while using MPI Gather
and MPI Gatherv for HDTV images (left) and 8K UHD images
(right). The measurements for all trials are shown as dots drawn

on an average trend line. The cluster used for these experiments is
giving wildly different performance for the gather operations that
seems to have little to do with the compositing algorithms analyzed
in this paper, which is why these times are not incorporated into the
other times given.

These times suggest that a different mechanism for collection is
needed. Nonaka et al. [19] has success by adding padding and pro-
cess reordering to replace MPI Gatherv with MPI Gather. However,
in this case it might be better to not rely on MPI-provided collectives
at all.

3.4.2 Errors in 2-3 Swap
Several checks were run during
the experiments to ensure the
correctness of the compositing
algorithms. For most of the runs
there were no problems. How-
ever, during a few of the 2-3
swap runs bad pixels were de-
tected at the top of the images like that shown here. It appears to
be an indexing problem caused by a race condition that cannot be
easily replicated.

Although some of the images are incorrect, it seems unlikely that
the errors are causing a significant impact in the recorded timings.
Furthermore, since 2-3 swap is not one of the better performing
algorithms, there seems little reason to suffer the aggravation to fix
the problem.

3.4.3 System Slowdowns
During the experiments it was noticed that some of the runs gave
anomalously long run times. These appear to be intermittent issues
with the testing cluster. Several of these experiments were re-run
and found that the extra run time was in fact anomalous. However,
some of the less egregious anomalies are left in the results (such as
with the spikes seen in the plots of Section 3.2).

4 CONCLUSIONS

This paper presents a comprehensive comparative study of many
parallel image compositing algorithms based on binary swap. Never
before have all these algorithms been directly compared, and the
results challenge some previously accepted notions.

The clear and surprise winner of the comparison is the remainder
version of binary swap. Remainder is simple to implement (the
implementation used in these experiments has less lines of code than
even the naive algorithm) and is consistently a top performer. In
contrast, the implementation of 234 composite is over twice as long
as remainder’s (according to cloc [4]) but seldom performs better
than naive. The implementation for 2-3 swap is almost 4 times as
long as remainder, and, in the authors subjective experience, much
more difficult to implement.

Also surprisingly, the simple but effective remainder technique
does not seem to be used at all in previous literature of parallel
rendering. Ultimately, the parallel rendering research community
should stop attempting to find complex solutions to manage undesir-
able factors but rather use a simple technique to absorb the remaining
images when using factors that do not divide processes evenly.

One of the biggest contributions of this work is a collection of sort-
last image compositing algorithms with a consistent implementation
and software framework, which makes direct comparisons like those
provided in this paper possible. To encourage and enable other
researchers to make similar studies (as well as verify or dispute the
results of this paper) all the software used in this study is being made
publicly available. The software, as well as all the raw timing logs
collected during the study, are posted at

http://www.kennethmoreland.com/scalable-rendering/#LDAV2018

http://www.kennethmoreland.com/scalable-rendering/#LDAV2018
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