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ABSTRACT

In this paper, we describe an unstructured mesh volume renderer.
Our renderer is interactive and accurately integrates light intensity
an order of magnitude faster than previous methods. We employ
a projective technique that takes advantage of the expanded pro-
grammability of the latest 3D graphics hardware. We also analyze
an optical model commonly used for scientific volume rendering
and derive a new method to compute it that is very accurate but
computationally feasible in real time. We demonstrate a system
that can accurately produce a volume rendering of an unstructured
mesh with a first-order approximation to any classification method.
Furthermore, our system is capable of rendering over 300 thou-
sand tetrahedra per second yet is independent of the classification
scheme used.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism

Keywords: volume rendering

1 INTRODUCTION

Commodity graphics hardware directly supports only zero-, one-,
and two-dimensional primitives (points, lines, and polygons). The
reason is simple. An opaque solid object is visually indistinguish-
able from a hollow surface when viewed from the outside. How-
ever, a photorealistic scene may involve any number of translucent
volumetric objects such as clouds, dust, steam, or fog. In addition,
direct volume rendering is a popular technique for visualizing vol-
umetric data from sources such as scientific simulations and medi-
cal scanners. Light in a translucent volume behaves very differently
from light against a surface comprising polygons.

Interest in volumetric rendering has spawned several techniques
for utilizing 3D commodity graphics hardware. Texture-based sam-
pling [1] for rectilinear grids (i.e. 3D arrays) and projection [21] for
unstructured meshes (i.e. collections of cells with no restrictions
on cell type or connectivity) are the two most popular techniques.
Our focus is on unstructured meshes. Unstructured meshes tend
to be coarser than their rectilinear counterparts as freedom in cell
size, shape, and connectivity allow modelers to fit a mesh more ac-
curately with fewer cells. However, the irregular cell connections
make rendering more challenging and errors more noticeable com-
pared to regular data.

Color calculations for volumes are more computationally inten-
sive than those for surfaces. The calculations are so complicated
that, until now, no volume rendering system is capable of perform-
ing them interactively for even a first-order approximation of lumi-
nance and attenuation. Present interactive systems have to resort to
rough approximations or a finite set of precomputed values attached
to a simple transfer function. In this paper, we describe a means of
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performing this lighting computation that is fast enough to compute
in real time and can be implemented in a fragment program. We do
this computation by adaptively sampling the volume and perform-
ing quick, but close, approximations for lighting calculations.

This paper proceeds as follows. First, we briefly summarize
current hardware accelerated unstructured mesh volume rendering.
Second, we discuss the ray casting and ray integration, respectively,
of our volume rendering system. Third, we discuss the results we
achieved with our system and draw some conclusions.

2 PREVIOUS WORK

For optimal rendering performance, we leverage unstructured mesh
volume rendering work that takes advantage of the highly optimized
and readily available commodity graphics hardware. Shirley and
Tuchman [21] presented the projected tetrahedra algorithm for
rendering unstructured volumes over a decade ago. It has since
been a popular method for volume rendering as it is effective, easy
to implement, and applicable to any unstructured mesh (as any type
of cell can be decomposed into tetrahedra).

One variation of the projected tetrahedra algorithm [28] projects
hexahedra instead of tetrahedra. Another variation [32] modifies
the projection classes to calculate them within a vertex processor.
Weiler, Kraus, and Ertl [25] present a unique projection-based ren-
dering algorithm called view independent cell projection. Unlike
the projected tetrahedra algorithm, which renders triangular regions
with linearly varying depth, Weiler’s algorithm renders the front
faces intact. The algorithm uses the rasterizer to also interpolate
the volume properties of and distance to the other three faces of the
tetrahedron. The algorithm then chooses the correct distance and
back face intersection during fragment processing. Weiler and col-
leagues [27] modify the algorithm to compute the distance between
front and back faces in the fragment processor rather than the vertex
processor.

When using cell projection, a rendering system must also sort
the cells. There are many approaches to cell sorting, but one of the
most popular is the MPVO algorithm by Williams [29]. Over the
years, researchers have made many improvements to the algorithm
[2, 14, 22].

Weiler and colleagues [26] show that the current generation of
3D graphics cards can also perform ray casting of unstructured
meshes. However, the ray casting approach relies heavily on the
graphics card’s fragment processor. We believe that we can more
effectively balance the computation among the CPU, GPU vertex
processor, and GPU fragment processor by using cell projection
rather than ray casting.

The model we use for light transport through a volumetric cloud
is the absorption and emission model given by Max [16]. Given
a single ray of light passing through a volume parameterized such
that light enters the volume at s = 0 and exits the volume at s = D,
the intensity of light emanating from the volume is

ID = I0e−
∫D
0 τ(t)dt +

∫ D

0
L(s)τ(s)e−

∫D
s τ(t)dtds (1)

where I0 is the intensity of light as it enters the volume, τ(s), the
attenuation coefficient, describes the density of the volume, and



L(s), the luminance, describes the amount of light emitted per ob-
ject density. We refer to Equation 1 as the volume rendering inte-
gral.

Williams and Max [30] were the first to solve the volume ren-
dering integral with linearly interpolated attributes. Solving Equa-
tion 1 for L(s) = Lb(1−s/D)+L f(s/D) and τ(s) = τb(1−s/D)+
τ f(s/D), we get the following complicated equation.
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As we can see, Equation 2 has many terms and is expensive to
compute. Furthermore, Equation 2 is susceptible to numerical inac-
curacies. (Williams, Max, and Stein [31] give transformations that
increase the numerical stability.) Consequently, calculating Equa-
tion 2 for real-time or interactive systems is seldom feasible.

Shirley and Tuchman [21] use an approximation in which they
linearly interpolate the attenuation but use a constant color. The
luminance they use is the mean luminance of the segment. In this
case, the volume rendering integral reduces to

ID ≈ I0e−D 1
2 (τb+τ f) +

1
2

(Lb +L f)
(

1− e−D 1
2 (τb+τ f)

)
(3)

Max, Hanrahan, and Crawfis [17] generalize this approach for a
constant luminance and any integrable function for attenuation.
They use the mean luminance when it is not constant (again re-
sulting in Equation 3). Kniss and colleagues [12] solve the volume
rendering equation for attenuation with a normal distribution. They
also use a weighted sum to approximate the luminance with a con-
stant value.

To alleviate the high computational overhead of integrating
viewing rays through a volume, Röttger, Kraus, and Ertl [20] intro-
duce pre-integration. Pre-integration performs the classification
and ray integration through a simple texture lookup. The classi-
fication performed during pre-integration is limited to 1D transfer
functions although shading can be estimated [18].

Because the textures in pre-integration perform classification,
an application must repopulate them for every transfer function
change, which can be a serious computational overhead. Subse-
quent research accelerates transfer function construction by reduc-
ing the table size needed [7], utilizing the GPU [19], or performing
incremental computations [26].

3 CELL PROJECTION

In this section, we describe how we take a collection of cells and
determine how each viewing ray intersects each cell.

3.1 Balanced Cell Projection

Our cell projection algorithm starts with the approach from Weiler,
Kraus, and Ertl [25] called View Independent Cell Projection
(VICP). Like all other projection algorithms, VICP determines the
intersections of all viewing rays with a cell at once. Since VICP
deals exclusively with tetrahedra, which are by definition convex,
finding this intersection reduces to finding the intersection of the
viewing ray with two of the tetrahedron’s faces.

VICP finds the intersections of the viewing ray with the front
faces simply by rasterizing them. It then determines the back face
intersection on a per fragment basis. To find the back face intersec-
tion, VICP intersects the viewing ray with the plane of each face
that is not the front face. In the example shown in Figure 1, VICP
finds the viewing ray intersection of face f0 by rasterizing that face.
VICP also intersects the viewing ray with the planes of faces f1, f2,
and f3. The rear face will always be the intersection that is nearest
and behind the front face. In Figure 1, this is clearly face f1.
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Figure 1: Viewing-ray–plane intersections performed by view inde-
pendent cell projection.

At the time of the VICP algorithm’s creation, the fragment pro-
cessor was not yet powerful enough to compute the intersection of a
ray with three faces. So instead, VICP performs these intersections
at the vertices in the vertex processor and then uses the rasterizer to
interpolate the correct intersections for each viewing ray.

Weiler, Kraus, and Ertl [25] report that the transfer of data from
CPU to GPU is a major bottleneck for VICP. Consequently, they
use their cell projection with a ray integration method that is order
independent. Therefore, they do not have to sort the cells based
on the view and can keep the data stored directly on the graphics
card. Nevertheless, even when transferring data between CPU and
GPU every frame, we have found VICP to be competitive with other
hardware accelerated cell projection methods [21, 32].

Because we plan to use a ray integration method that requires
us to sort cells based on viewpoint (and therefore pass data to the
GPU at every frame), there is no penalty for us to perform some
calculations on the CPU. So rather than move operations from the
vertex processor to the fragment processor as is done in [27], we
move operations back into the CPU to minimize the amount of data
that must be transferred.

Specifically, we perform ray-face intersections on the CPU. The
ray-face intersection determines the distance from a vertex to a face
along the viewing ray and the scalar value on that face. To perform
this intersection (as [25] describes), we need the plane equation for
the face. Furthermore, we need the gradient of the scalar to com-
pute the scalar value at the ray-face intersection, totaling at least
six floating-point values. If we perform the ray-face intersection on
the CPU, we need to pass only the scalar and the distance-to-vertex
values (two floating-point values).

As Weiler, Kraus, and Ertl [25] point out, at each vertex we need
to do only one ray-face intersection. A vertex is shared by three of
the four faces of the tetrahedron. For example in Figure 1, vertex v1



(a) Volume rendering with a traditional 1D transfer func-
tion

(b) Volume rendering with opacity based on boundary es-
timation from first and second derivatives.

Figure 2: Comparison of renderings with the oxygen post data set. The surface of the post is added for context. Changing the opacity based
on the derivatives gives a clearer view of the turbulence around the post.

(a) Mesh sampled at vertices. (b) Mesh adaptively sampled.

Figure 3: The effect of aliasing when sampling a mesh. Both images have the same simple transfer function classification, which has a sharp
opacity transition to highlight an isosurface. The rendering on the left samples only at the vertices of the cells, which induces aliasing. The
rendering on the right adaptively samples the cells.

touches faces f0, f2, and f3. Therefore, the intersection of any ray
through the vertex and these three faces is trivially the vertex itself;
we need neither to perform these ray-face intersections nor pass the
resulting data to the GPU.

As prescribed by Weiler [25], when rasterizing a face, we need
to interpolate the scalar of the face, the scalars of the intersections
of the three other faces (as a three-tuple), and the distance to all
three other faces (as a three-tuple). In our implementation, we in-
terpolate the intersection values of all four faces as two four-tuples.
Obviously, the interpolation of the fourth value in these tuples is
a wasted computation, but due to the redundancy in the graphics
hardware, the added computation does not affect the execution time.

The advantage of using four-tuples for the distance and scalar
vectors is that the indexing will be consistent among the tetrahe-
dron’s faces. Therefore, rather than pass data for each vertex sepa-
rately for each face, we can pass the vertex data once per vertex and
use indexed mode to draw the triangles, reducing the total amount
of vertex data by one-third. We also need to load index data, but
these indices are consistent among all viewpoints, such that they
can be loaded just once at application startup using an OpenGL ex-
tension such as vertex buffer objects.

Ultimately, we reduced the number of floats passed per tetrahe-
dron to 28: 7 floats per vertex (3 for the position, 1 for the scalar
value, 1 for the distance to the opposite face, 1 for the scalar value
at the opposite face, and 1 identifying the opposite face) times 4
vertices. Compare our required bandwidth to the approach given
by Weiler [27] that requires 192 floats per tetrahedron: 16 floats per

vertex times 12 vertices.1

3.2 Adaptive Sampling

The original implementation of View Independent Cell Projection
[25], as well as our implementation of Balanced Cell Projection, use
pre-integration [20] to perform the ray integration. However, pre-
integration currently limits the classification to 1D transfer func-
tions with some shading. Pre-integration allows neither the opacity
to be scaled by the gradient of the scalars nor the highlighting of
scalar boundaries based on gradients [9]. Pre-integration is also in-
capable of supporting multidimensional transfer functions [11, 12],
non-photorealistic rendering effects [5, 10], or global illumination
[3, 8, 13, 33]. There is also a large body of research dedicated to
classification without transfer functions [4], and Tzeng, Lum, and
Ma [24] demonstrate how to apply a general N-dimensional clas-
sification algorithm to volume rendering. Figure 2 gives a simple
example showing the utility of one of these classification schemes.
There are many more examples in the cited literature. Conse-
quently, we move away from pre-integration.

We can overcome this limitation by simply passing the classi-
fied colors and opacities to the graphics card and performing ray
integration there. However, this introduces aliasing. Although it

1The vertex information changes per face, so you need to submit the
data of each vertex three times, once for each face to which it is connected.
Our count assumes that you send the data redundantly to facilitate the use
of vertex arrays.



is often appropriate to linearly interpolate the mesh data within the
cells, it is, in general, incorrect to apply this interpolation to post-
classification colors. As an example, consider Figure 3(a). Because
the transfer function is sampled only at cell vertices, the renderer
completely misses sharp transitions in the transfer function within
cells, leaving a blocky, blurry mess. Compare this result to the ap-
propriate transfer function sampling in Figure 3(b). The aliasing
does not occur with pre-integration because the original scalars are
being interpolated, not the final colors [6].

Williams, Max, and Stein [31] solve the aliasing problem by
splitting cells. They define their transfer functions as piecewise
linear functions. Each control point, a point where the transfer
function is nonlinear, defines an isosurface. They split the cells on
these isosurfaces, yielding a linear interpolation of colors within
the split cells. The problem with the Williams, Max, and Stein
approach is that it introduces a high overhead when the transfer
function changes.

Our approach is similar to that of Williams, Max, and Stein in
that we split cells with respect to the surfaces implied by sharp
changes in the classification. However, instead of splitting a cell
geometrically, we clip the cell on the graphics card. When render-
ing a cell, we allow it to be clipped by up to two parallel planes.
Clipped cells are rendered piece-by-piece in back-to-front order.

Ideally, we would like to use the clipping hardware of the graph-
ics card to modify the geometry. Unfortunately, the clipping hard-
ware can clip only polygons and the vertex processor cannot gen-
erate the extra vertices necessary to clip tetrahedra. Instead, we
perform the clipping on each fragment. The clipping planes are
identified by the distance from each vertex along the viewing ray to
the plane. These distances are then interpolated by the rasterizer to
get the distance from each point in the front face. These distances,
plus the already known distance between the front and back faces,
are sufficient to locate the clipping planes.

1

a b c ed f

Figure 4: Tetrahedral clipping (reduced to a 2D example). Here we
show two example triangles that we clip on a per fragment basis
between the two clipping planes. Six example viewing rays (labeled
a–f ) are given.

Figure 4 shows examples of clipped viewing-ray segments. If the
entire segment falls in between the two planes, as in ray c, then we
do not clip the segment at all. If the front part of the ray is behind the
far plane or the back part of the ray is in front of the near plane, as in
rays a and d respectively, then the segment is discarded. Otherwise,
if the front part of the segment is in front of the near plane, as in rays
e and f, we clamp the front scalar value to that of the front plane and
appropriately shorten the length of the segment. We likewise clip
the cell when the back part of the segment is behind the far plane,
as in rays b and f.

Unfortunately, our method for rendering adaptively sampled,
pre-classified volumes imposes extra load in several ways. First,
extra data must be passed to the GPU. Replacing scalars with col-
ors and passing distances to cutting planes bumps the data transfer
up to 60 floats per tetrahedron. Second, the tetrahedral clipping re-
quires extra fragment program instructions: 18 instructions for the

clipping plus any required for the ray integration. Third, clipped
cells must be rendered multiple times.

The number of extra cells rendered is dependent on both the
mesh and the classification used. For three example meshes, we
counted the number of extra cells that need to be rendered for a va-
riety of control points for a 1D transfer function. Figure 5 displays
these counts in 1D scatter plots. The number of splits required for
a randomly selected control point is on average about 2.5 percent.

delta

post

blunt

 0  0.02  0.04  0.06  0.08  0.1

Fraction of Cells Split

Figure 5: One dimensional scatter plots of the number of cells that
would be intersected by a particular isosurface. Points in the plots
are stretched into lines for easier viewing.

4 RAY INTEGRATION

As noted in Section 2, there are many solutions to the volume ren-
dering integral, although most require a piecewise constant lumi-
nance [12, 17, 21]. Williams and Max [30] solve the integral for
piecewise linear luminance (Equation 2), but their solution takes
far more computation than the others. As is demonstrated in Fig-
ure 6, a piecewise linear function is more accurate than a piecewise
constant function, even when estimating nonlinear functions. Thus,
we propose a novel method of evaluating Equation 2 that requires
far less computation than previous approaches [23, 30, 31].

x

fHxL

(a) Stair (piecewise constant)
function.

x

fHxL

(b) Piecewise linear function.

Figure 6: Comparison of normal distribution estimations. The error
of the stair function (as measured by the area between the estimation
and actual curve) is 3 times that of the piecewise linear function.

We start with the general volume rendering integral, Equation 1.
We plug in a linear form for L(s), L(s) = Lb(1− s

D )+ L f
s
D , and

then group terms containing the parameters for luminance (Lb and
L f) obtaining

ID = I0e−
∫D
0 τ(t)dt

+
∫ D

0

(
Lb

(
1− s

D

)
+L f

s
D

)
τ(s)e−

∫D
s τ(t)dtds

ID = I0e−
∫D
0 τ(t)dt +Lb

∫ D

0

(
1− s

D

)
τ(s)e−

∫D
s τ(t)dtds

+L f

∫ D

0

s
D

τ(s)e−
∫D
s τ(t)dtds



We can further resolve the integrals through integration by parts.

ID = I0e−
∫D
0 τ(t)dt

+Lb
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1− s

D
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∣∣∣∣D
0
−
∫ D

0
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0
−
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0

1
D

e−
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)
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∫D
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+Lb

(
−e−
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0 τ(t)dt +

1
D

∫ D

0
e−
∫D
s τ(t)dtds

)
+L f

(
1− 1

D

∫ D

0
e−
∫D
s τ(t)dtds

)
(4)

There is significant repetition of terms in Equation 4. We define the
following two terms, each of which appears twice.

ζD,τ(t) ≡ e−
∫D
0 τ(t)dt (5)

ΨD,τ(t) ≡
1
D

∫ D

0
e−
∫D
s τ(t)dtds (6)

Substituting Equation 5 and Equation 6 into Equation 4 results in
the following.

ID = I0ζD,τ(t) +Lb

(
ΨD,τ(t)−ζD,τ(t)

)
+L f

(
1−ΨD,τ(t)

)
(7)

Given ζD,τ(t) and ΨD,τ(t), Equation 7 is straightforward and fast
to compute. We now describe how to evaluate ζD,τ(t) and ΨD,τ(t)
with linear attenuation.

Solving for ζD,τ(t) is straightforward. Using a linear form for

τ(t), τ(t) = τb(1− t
D ) + τ f

t
D , and plugging into Equation 5, we

get the following.

ζD,τb,τ f = e−
∫D
0
(
τb
(
1− t

D
)
+τ f

t
D
)
dt

= e
−
(

τb

(
D−D

2

)
+τ f

D
2

)
= e−

D
2 (τb+τ f) (8)

Because Equation 8 resolves to such a simple expression, we
can compute it directly in the programmable fragment units (of
DirectX9-class graphics hardware [15]) with few instructions.

In contrast, using a linear form for τ(s) does not resolve ΨD,τ(s)
to a simple, easily computed form.

ΨD,τb,τ f =
1
D

∫ D

0
e−
∫D
s
(
τb
(
1− t

D
)
+τ f

t
D
)
dtds (9)

If we can reduce Ψ to few enough variables, we can store pre-
integrated values in a table. Consider what happens when we
change the limits of the integrals in Equation 9 to range between
0 and 1.

ΨD,τb,τ f =
∫ 1

0
e−D

∫ 1
s (τb(1−t)+τ ft)dtds

Next, we distribute D within the inner integral.

ΨτbD,τ fD =
∫ 1

0
e−
∫ 1
s (τbD(1−t)+τ fDt)dtds (10)

Equation 10 demonstrates that we may store Ψ in a
two-dimensional table by pre-computing Ψ for all applicable
(τbD,τ fD) pairs. Before a lookup into this table may occur, we
must compute the products τbD and τ fD. We can perform both
multiplications in a single fragment-program vector operation, and
we can reuse the products to compute ζ if we rewrite Equation 8 as

e−
1
2 (τbD+τ fD), so the multiplications are essentially free.
However, there is a problem with storing ΨτbD,τ fD in a table.

The quantities τD are not bound. Furthermore, because cell sizes
in unstructured meshes can vary by several orders of magnitude,
finding an appropriate finite domain for ΨτbD,τ fD is problematic.

We solve this problem by again changing the variables we use to
index Ψ. First, we define the variable γ as

γ ≡ τD
τD+1

(11)

We choose γ for its resemblance to ΨτbD,0. Solving Equation 11
for τD,

τD = γ/(1− γ)

and substituting into Equation 10, we get the following.

Ψγb,γ f =
∫ 1

0
e
−
∫ 1
s

(
γb

1−γb
(1−t)+ γ f

1−γ f
t
)

dt
ds (12)

The principle advantage of using γ over τD is that valid values
of γ range only over [0,1). It is therefore possible to store the entire
domain of Ψ into a single table. Figure 7 shows a plot of Ψγb,γ f
over its entire domain.
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Figure 7: Plot of Ψ against γb and γ f (Equation 12).

Because this method uses a table that holds the pre-integration
of part of the volume rendering integral, we dub this method par-
tial pre-integration. The major difference between our partial pre-
integration and the pre-integration approach introduced by [20] is
that values in our table do not rely on a transfer function. Thus, the
approach is applicable to any classification system.

The construction of the Ψ table is very compute intensive and
can take hours to perform. However, the time to compute the ta-
ble is inconsequential because the table is ubiquitous. The Ψ table
does not have to be recomputed for a transfer function change. The
Ψ table does not have to be recomputed for a change in the mesh
being rendered. The same Ψ table may be used for any number of
programs.2

Figure 8 compares our partial pre-integration method with a ray
integration method that uses constant luminance [17, 21]. Partial
pre-integration clearly gives superior accuracy.

2You can download a Ψ table for your own applications from
http://www.cs.unm.edu/˜kmorel/documents/volvis2004/.

http://www.cs.unm.edu/~kmorel/documents/volvis2004/


(a) Average color approximation. (b) Partial pre-integration.

Figure 8: A comparison of partial pre-integration to previous work. In the image on the left, you can see blue bleeding through the yellow. In
the image on the right, no such bleeding occurs. We have magnified a portion of each image.

5 RESULTS

Rendering speeds of a volume rendering system can vary with the
volume it is rendering, the classification being used, the viewing
projection, and the image size. In this chapter, we give rendering
times for several data sets taken from the NASA Advanced Super-
computing website3 and converted to tetrahedra.

The timings given in this section are for 800 by 800 pixel images
unless otherwise specified. For comparative testing purposes, we
use 1D transfer functions with 9 control points for classification.
The renderings rotate the camera around the center of the model.
The frame times given are an average of the rendering speed over
every frame through the rotation. We performed the tests on a 3.2
GHz Pentium 4 with 2 GB of RAM and a Quadro FX 3000 graphics
card. The Quadro graphics card has 256 MB of its own memory and
resides on an AGP 8X bus.

5.1 Cell Projection

Our cell projection for adaptive transfer function sampling clips
tetrahedra and renders them multiple times. Before analyzing the
rendering rate of this cell projection method, we must first under-
stand how many more tetrahedra are rendered in order to perform
the adaptive sampling. Table 1 gives, for each data set, the amount
of extra tetrahedra rendered. All the transfer functions selected re-
quire the adaptive sampling method to render about 3 to 4 percent
more tetrahedra per control point. This number is slightly higher
than our estimate in Section 3.2, possibly due to a higher density of
cells in interesting parts of the data.

Table 2 compares the cell projection methods introduced in this
paper to previously developed projection methods. Projected Tetra-
hedra, GATOR, and View Independent Cell Projection were intro-
duced by [21], [32], and [25], respectively. Balanced Cell Pro-
jection and Adaptive Sampling are the methods presented in Sec-
tions 3.1 and 3.2, respectively. To highlight the running times of
each cell projection method, we used the least computationally in-
tensive ray integration methods. For Projected Tetrahedra, GATOR,

3http://www.nas.nasa.gov/Research/Datasets/datasets.html

Table 1: Growth in data sets for adaptive sampling. This table gives
the size of the original data set, the number of tetrahedra rendered
by the adaptive sampling approach, and the growth in the number
of tetrahedra rendered.

Tetrahedra Tetrahedra
Data Set in Data Set Rendered Growth
Blunt Fin 187,395 249,278 33%
Oxygen Post 513,375 662,625 29%
Delta Wing 1,005,675 1,373,010 36%

Table 2: Running times for various volume rendering cell projection
approaches. Blue methods are previous work whereas green methods
are introduced in this paper.

Model Cell Projection Method fps tet/sec
Blunt Fin

Projected Tetrahedra 11.935 2236 K
GATOR 2.618 490 K
View Independent Cell Projection 3.051 572 K
Balanced Cell Projection 4.090 766 K
Adaptive Sampling 1.276 318 K

Oxygen Post
Projected Tetrahedra 4.872 2501 K
GATOR 0.674 346 K
View Independent Cell Projection 1.325 680 K
Balanced Cell Projection 2.090 1073 K
Adaptive Sampling 0.578 383 K

Delta Wing
Projected Tetrahedra 2.489 2503 K
GATOR 0.316 318 K
View Independent Cell Projection 0.702 706 K
Balanced Cell Projection 1.396 1404 K
Adaptive Sampling 0.408 561 K

http://www.nas.nasa.gov/Research/Datasets/datasets.html


and Adaptive Sampling, we averaged the color as prescribed by
[21]. For View Independent Cell Projection and Balanced Cell Pro-
jection, we used pre-integration [20] with a table of size 128 by 128
by 256.

The comparative running times are close to what we expect. Our
Balanced Cell Projection is a modified version of View Independent
Cell Projection, and the rendering times suggest that these changes
do indeed speed up the rendering. Adaptive Sampling is the same
as Balanced Cell Projection with the added ability to render pre-
classified and segmented cells. We expect the added overhead to
transfer full volume properties plus the added computation for clip-
ping cells to adversely impact performance, and the data shows that
it does.

However, these results also differ somewhat from what we would
expect. We would expect the improvements of the Balanced Cell
Projection over the View Independent Cell Projection to be more
dramatic. Furthermore, the penalty of the Adaptive Sampling is
worse than we would expect. Surprisingly, Projected Tetrahedra
runs faster than any of the other methods we implemented. We be-
lieve these results arise from the system being fragment-processing
bound. If the fragment processing were the bottleneck, it would di-
minish improvements in the cell projection. Furthermore, the clip-
ping performed in the Adaptive Sampling relies heavily on the frag-
ment processor.
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Figure 9: Impact of fragment processing on cell projection. All read-
ings are taken from the Blunt Fin data set.

Figure 9 shows how the rendering rate changes as the image size
(and consequently the number of fragments processed) increases.
For most of the cell projection methods, the rendering rate holds
nearly constant until the image size reaches 40 thousand pixels.
After that, the renderer becomes fragment processor bound and the
rendering rate steadily decreases as the image size increases. Only
Projected Tetrahedra and GATOR are unaffected by the increased
fragments to process. These are also the only two projection meth-
ods that require no fragment processing apart from the color com-
putation.

5.2 Ray Integration

Table 3 compares the various methods for computing the volume
rendering integral that we discuss and introduce in this paper. Note
that we perform the ray integration for all of these methods exclu-
sively in the fragment processor. In addition, recall from the previ-
ous section that the renderer is fragment-processing bound for these
tests. Therefore, the comparative rates shown in Table 3 are good
indicators of the relative performance of the different methods.

The Average Color and Luminance approach pioneered by
Shirley and Tuchman [21] and Max, Hanrahan, and Crawfis [17]
has one of the best frame rates, but, as we have shown, can have
large errors due to color averaging. The Linear Color and Lumi-
nance computation developed by Williams, Max, and Stein [31]

Table 3: Running times for various volume rendering ray integration
approaches. Blue methods are previous work whereas green methods
are introduced in this paper.

Model Ray Integration Method fps tet/sec
Blunt Fin

Average Luminance and Attenuation 1.276 318 K
Linear Luminance and Attenuation 0.094 22 K
Partial Pre-Integration 0.867 216 K

Oxygen Post
Average Luminance and Attenuation 0.578 383 K
Linear Luminance and Attenuation 0.044 29 K
Partial Pre-Integration 0.398 264 K

Delta Wing
Average Luminance and Attenuation 0.408 561 K
Linear Luminance and Attenuation 0.036 49 K
Partial Pre-Integration 0.301 414 K

has superior image quality but abysmal rendering rates. In con-
trast, the Partial Pre-Integration method (using a 512 by 512 Ψ

table) introduced in this paper has a rendering speed competitive
with the Shirley and Tuchman method yet is visually indistinguish-
able from that of the Williams, Max, and Stein method. In fact, the
Partial Pre-Integration method is an order of magnitude faster than
the Williams, Max, and Stein method.

6 CONCLUSIONS

In this paper, we present partial pre-integration. Partial pre-
integration is a volume ray integration implementation that neither
exhibits the artifacts generated by the constant luminance approx-
imation [17, 21] nor incurs the heavy computational overhead of
calculating the volume rendering integral directly [23, 30, 31].

Our improvements on the cell projection algorithm are success-
ful. We transfer far less data to the GPU per tetrahedron than pre-
vious methods of on card projected tetrahedra [25, 32] allowing
more efficient streaming of cells to the graphics card than before.
However, these improvements are mitigated by slow fragment pro-
cessing.

Our implementation of tetrahedron clipping on the GPU is some-
what disappointing. We overestimated the speed of our fragment
processor and consequently our per fragment clipping contributed
to a bottleneck. This bottleneck causes our system to be slower
than other current systems. However, as the computation happens
entirely on the GPU, we have cycles remaining on the CPU that
we can reclaim for cell visibility sorting, which itself is a compu-
tationally intensive problem. Furthermore, we expect the fragment
processing power of 3D graphics cards to improve significantly in
future generations.

Although the vertex and fragment programs on the GPU per-
form calculations with 32-bit floating-point precision, we place the
results in an 8-bit buffer so that we may take advantage of the
color blending hardware. Using an 8-bit color buffer does intro-
duce quantization error. We assume that the next generation of 3D
graphics cards is capable of performing blending for higher preci-
sion color buffers such that we may greatly reduce this quantization
error.

Ultimately, as we are fragment processor bound, our method is
slower than that of pre-integration [20], which requires little more
than a texture lookup. However, unlike pre-integration, our sys-
tem supports the rendering of data with any classification algo-
rithm. Thus, we are capable of supporting gradient shading, gra-
dient opacity, boundary highlights, silhouettes, multidimensional
transfer functions, and any other classification scheme not yet de-



veloped or exploited by the volume rendering community.
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