
CCR Summer Proceedings 2017 135

ISOSURFACE VISUALIZATION MINIAPPLICATION

DANIEL BOURGEOIS ∗, MICHAEL WOLF † , AND KENNETH MORELAND ‡

Abstract. Scientific simulations often make use of increasinly massive, heterogeneous high performance
computers. Often, the output from such simulations are too large to fit in main memory. To cope, data
visualization experts have had to write parallel algorithms on top of complex, large-scale libraries. The
purpose of this paper is to introduce miniIsosurface, a miniapplication that is part of the Mantevo suite
of miniapplications that implements two isocontouring algorithms: Marching Cubes and Flying Edges.
Miniapplications are small applications that are still complex enough to study larger performance trends.
miniIsosurface was explicitly designed to provide software developers and data visualization experts an
avenue to explore performance characteristics before full-scale development takes place. Implementations
inside of miniIsosurface take advantage of MPI, OpenMP and GPU.

1 Introduction The current era of computing, characterized by increased data and
massive heterogeneous parallelism, has brought new challenges to developers of scientific
applications. Traditionally, developing scalable applications has focused on the core compu-
tational kernel while ignoring the performance of the front and back ends of the simulation
pipeline. For applications with smaller output than is now common, scientists could archive
simulation results for later interpretation. For extreme-scale applications, however, the
output often contains too much data to store in main memory or is limited by IO band-
width. Hence, there is now a need to develop extreme-scale scientific applications within an
ecosystem that includes modeling, simulation, analysis and visualization.

Developing real-world applications that simultaneously integrate the whole scientific
simulation pipeline and are scalable remains technically difficult. The increase of heteroge-
neous, massively parallel architectures has made achieving scalability and portability harder.
Scientific computing applications have traditionally relied on OpenMP [14] and MPI [5].
But requiring software implementers to explicitly manage memory hierarchies and limit data
movement is becoming more burdensome and less portable. In turn, developing applications
that solely rely on OpenMP and MPI for parallelism is becoming less cost-effective. The new
status quo is being reflected in the proliferation of tools available to the developer. Many
libraries have been developed with the goal of providing developers with the ability to easily
and efficiently write performance portable scientific applications. For example, Kokkos [4]
has been designed to target complex node architectures with N-level memory hierarchies and
multiple types of execution resources. The Thrust [8] library provides a flexible, high-level
interface for GPU programming while the same code can utilize OpenMP or Intel Thread
Building Blocks [15]. Other parallel programming libraries include HPX [9] and charm [10].
In the realm of visualization, VTK-m [13] “serves as a container for algorithms, provides
flexible data representation, and simplifies the design of visualization algorithms on new and
future computer architecture.”

Even with new tools, algorithms may not still scale in heterogeneous environments
or in different parallel paradigms. Understanding the effects that tool choice will have
on performance in real-world applications prior to full-scale development is necessary to
developing performance portable applications.

An effort towards understanding performance effects in large-scale applications is the
Mantevo Project [7], an open-source effort “for the analysis, prediction and improvement of
high performance computing applications” through the use of proxy applications. Mantevo is
itself a suite of small applications, miniapps or miniapplications, that are meant to “capture

∗Louisiana State University, dbour27@lsu.edu
†Sandia National Laboratories, mmwolf@sandia.gov
‡Sandia National Laboratories, kmorel@sandia.gov



136 Isosurface Visualization Miniapplication

key performance issues that can be exposed in comparatively small, easy to execute, easy to
modify code” [2]. Miniapps do not, in general, serve as replacements to real applications but
they do provide considerably more information than benchmarks. The miniapp discussed
in this paper, miniIsosurface, provides a collection of algorithmic approaches to solving a
common visualization task. Having multiple implementations in the same place provides an
oppurtunity to not only test comparative performance of the algorithms, but to serve as a
baseline for further research into iterative improvements to an algorithm. Another use of
miniapps is in the stage before an application is fully developed, developers can explore the
suite of miniapps to determine which tools are best suited for the project at hand. To save
time and reduce costs, developers can also turn to a miniapp to quickly predict how certain
modifications may alter the performance characteristics of a full size application.

How new architectures should be best adapted to is still an open design problem. As
is the best way to integrate visualization. To better study the performance behavior of
visualization on numerous workflows and numerous systems, this paper examines a miniapp,
miniIsosurface. The miniapp was developed to characterize the behavior of isocontouring,
a widely used visualization technique.

2 Isocontouring Algorithms Isocontouring algorithms extract a polygonal mesh
from a 3D scalar field that is used to approximate the surface at a specified isovalue. For
rendering, gradients at the vertices of the polygonal mesh are also computed. These field
gradients by isocontour definition give the direction perpendicular to the surface, which is
information required by the rendering algorithm to compute how light is reflected. The two
algorithms considered here, Marching Cubes and Flying Edges both produce a triangular
mesh as well as gradients at the vertex of each triangle.

2.1 Marching Cubes Marching Cubes (MC) is the original isocontouring algorithm,
published in 1987 by Lorenson and Cline [12] for the visualization of medical images.

Conceptually, the MC algorithm divides a 3D scalar field into a three-dimensional grid
of imaginary cubes, where only the scalar values at the vertices of the cubes are considered.
The algorithm determines how the mesh intersects each cube and approximates the mesh
going through that cube by a set of zero or more triangles. For output, each triangle
consists of the locations and approximate gradient of the three vertices. The final output is
all triangles over the entire grid of imaginary cubes.

The insight provided by Lorenson and Cline was how they characterized the part of the
mesh passing through each cube. Each vertex of every cube is given a 1 if its value is greater
than or equal to the isovalue corresponding to the isosurface and a 0 otherwise. Thus each
cube can be given an 8-bit identification. A preconfigured lookup table is created that maps
the 256 cube identification numbers to the set of triangles that most matches the isosurface
going through cubes with the corresponding identification number. Each vertex of each
triangle is located on one of the edges of the cube that has been cut. The precise location
for the vertex is calculated by linearly interpolating the ends of the cut edge to the point of
intersection. The gradient is calculated in a similar manner, except using the derivative of
the scalar field at the ends of the cut edge instead. At the isosurface, the gradient is equal
to the derivative of the scalar field. All derivatives are calculated using central differences
along the three coordinate axes of the imaginary grid of cubes.

2.2 Flying Edges The Flying Edges (FE) algorithm [17] was designed from the MC
algorithm to perform better on multicore processors, to have better cache performance, and
to reduce the time to find connections between triangles generated. See Section 3 for a
description of how each algorithm was parallelized.

Similarly to MC, FE works on a three-dimensional grid of imaginary cubes and uses a



D. Bourgeois, M. Wolf and K. Moreland 137

preconfigured lookup table from which to determine the triangle configuration of each cube.
The location and gradient of the vertices are computed in the same way as MC.

The difference between the two algorithms lies in how the input data is processed.
Whereas MC makes one pass through all cubes, finishing with a list of triangles and asso-
ciated data, FE uses multiple preprocessing steps.

The first and second preprocessing steps determine which edges are cut. The first
preproccesing step determines all edges that are cut along one dimension of the image by
accesing the isocontour values stored in the image. Choosing the correct image dimension
to work along will maximize cache performance.

Similar to the first preprocessing step, the second step determines which edges along
the other two dimensions are cut. However, instead of using the scalar values of the image,
the second preprocessing step uses additional information gained in the first preprocessing
step to determine which of the remaining edges are cut. By not going back to the image
and directly using information in the first preprocessing step, cache performance is again
being maximized. In these two steps, additional information is calculated. For a detailed
description, see [17].

After the first two preprocessing steps, the number of triangles and cut edges are known.
From that information, the size of the output is easily calculated. The third of the prepro-
cessing steps allocates memory to contain the triangles and points. In addition, a prefix
sum is calculated so that the location in the output of each point and triangle is known.

After the three preprocessing steps, Flying Edges calculates the intersection point corre-
sponding to each cut edge and populates the polygonal mesh the those points, the triangles
and if desired, the gradients.

3 miniIsosurface The purpose of miniIsosurface is to provide a platform for scientific
application developers to test performance of isocontouring algorithms on a wide variety of
architectures and programming models. The specific use case that application developers
will have is unknown and unknowable, so miniIsosurface must be extensible. But at the same
time, miniIsosurface must provide points of comparison. To handle this, miniIsosurface has
control implementations that are analogous to control treatments in a scientific study. The
control implementations serve as the baseline to different and novel implementations that
could be introduced by an application developer working on a larger project. To ease the
burden of creating new implementations, the control implementations of miniIsosurface are
heavily commented and use standard C++ idioms and containers.

As it is impossible to create an implementation of MC and FE with every parallel
programming model, for the purpose of this work miniIsosurface focuses on a few canonical
control implementations, namely implementations without parallelization and in OpenMP
and MPI. Marching Cubes was implemented in serial, with OpenMP and with MPI. Flying
Edges was implemented in serial, with OpenMP and on GPU using Thrust. In addition,
miniIsosurface implements a wrapper to call VTK [16] which can be specified to use either
Marching Cubes or Flying Edges. Researchers are encouraged to add implementations using
different algorithms or different programming models for further comparison.

For reference, the rest of this section details how parallelism was achieved in the control
implementations and the relative benefits and advantages.

3.1 Parallel Marching Cubes Marching Cubes was implemented in parallel by
dividing the 3D scalar image into rectangular sections. Input parameters control the size of
each section along the x, y and z dimension. Each section is then processed independently.
The output data from each section is then merged into one array.

For OpenMP, see Listing 1 for the parallelization scheme. The MPI implementation
is similar in form. Each OpenMP thread fills out local output variables points, normals



138 Isosurface Visualization Miniapplication

Listing 1: Parallelization of Marching Cubes using OpenMP

// declare points, normals, triangles

#pragma omp parallel

{

// declare threadPoints, threadNormals, threadTriangles

// declare threadPointMap

#pragma omp for nowait

for(int i = 0; i < nSections, ++i)

{

// process section i of marching cubes

}

#pragma omp critical

{

// add threadPoints to points,

// threadNormals to normals,

// threadTriangles to triangles

}

}

// output mesh

and triangles. points and normals each contain a vector of points of the mesh. triangles
contains a vector of a triplet of indices where the indices refer to values in points and
normals. Each thread processes the sections that OpenMP assigns to it. Once all sections
are processed, the local output needs to be merged into the global output. For readability,
a simple, yet performant, way to do this was chosen. As each thread finishes filling out local
output, that output is added to the global points, normals and triangles where only one
thread at a time is permitted to add to the global output.

In Listing 1, each thread owns a threadPointMap. threadPointMap maps global edge
indices of the lattice formed by the imaginary grid of cubes to an index in threadPoints.
This is used to make sure that no duplicate points occur in the local output. However, after
merging results from different threads, points that occur along the shared boundary of sec-
tions will appear multiple times. An OpenMP implementation was created in miniIsosurface
to remove duplicate values points and normals.

Marching Cubes was not designed for the explicit purpose of parallelism and there
are a few flaws inhibiting scalability. With MC the the output size is not predetermined
so output formed in parallel must be merged, causing a parallel bottleneck and creating
duplicate points. Furthermore, output arrays cannot be correctly preallocated and may
require dynamic memory allocation.

3.2 Parallel Flying Edges Unlike Marching Cubes, Flying Edges was designed with
parallelism in mind. The four steps of FE, the three preprocessing steps and calculating the
output mesh, are each run in parallel where each step starts when the previous step finishes.
Only the third preprocessing step, which calculates a prefix sum, is not trivially parallelized
with a parallel for loop.

The GPU version took advantage of the Thrust library [8] instead of using raw CUDA.



D. Bourgeois, M. Wolf and K. Moreland 139

Using Thrust put a layer of abstraction between the GPU and the application, which eased
the implementation and readability.

A few modifictations were made to the FE algorithm to implement the GPU version. In
the GPU implementation a finer grain of parallelism was used. Insead of parallelizing over
each row of cubes indepentently as the other implementations did, the GPU implementation
parallelized over each cube. In addition, the GPU version did not calculate trim limits
(see [17]).

4 Performance Results All tests were run on Dual socket E5-2698V3 Intel Xeon
Processors with 16 cores. GPU tests were run using a single NVIDIA Tesla K80m GPU.
To compile, GCC version 4.9.3 was used, Cuda version 7.5.7, OpenMPI version 1.10.0. The
datasets [3, 1, 6, 11] are freely available.

Table 4.1: List of data sets used in tests.

Dataset x-Dim y-Dim z-Dim Isovalue
Supernova [3] 432 432 432 0.07
CT-Angio [1] 512 512 321 100
Stag beetle [6] 832 832 494 1
Christmas Tree [11] 512 499 512 1

Fig. 4.1: Marching Cubes with OpenMP speedup. The ideal line is perfect speedup.

Figures 4.1 and 4.2 show the speedup of Marching Cubes with the four datasets using
OpenMP and MPI, respectively. The idealized line shows the line of a perfect speedup. It
is evident that the MPI code scales better than the OpenMP code. Like the OpenMP code,
the MPI tests were run on one compute node. As each code works on separate sections of
the overall image in parallel in the same way, it is expected that the performance results
are similar. Indeed, for one processor, performance results are similar, as seen in Table 4.2.
However, after reading in the image data, the MPI code copies image section data to each
processor. This is a quick operation on one compute node that may have later add benefits



140 Isosurface Visualization Miniapplication

Fig. 4.2: Marching Cubes with MPI speedup. The ideal line is perfect speedup. One
compute node was used.

because storing the data in smaller data structures may increase the likelihood of cache-hits.
Increased cache hits may then be a potential source of the improved scalability in the MPI
code.

Table 4.2: Serial, OpenMP, MPI and GPU times in seconds. S stands for serial, O stands
for OpenMP, M stands for MPI and G stands for GPU. Results for OpenMP and MPI in
this table are with 32 processors.

Dataset MC S MC O MC M FE S FE O FE G
Supernova 3.36 0.810 0.390 1.18 0.248 0.409
CT-Angio 2.74 0.876 0.262 1.08 0.258 0.362
Stag beetle 3.56 0.856 0.331 1.44 0.482 0.987
Christmas Tree 2.34 0.630 0.234 1.52 0.313 0.411

Figure 4.3 shows the speedup of Flying Edges with the four datasets using
OpenMP. At 64 cores, roughly 3x speedup is achieved on the CT-Angio dataset. For the
GPU, Flying Edges achieved a similar 3x speedup on the CT-Angio dataset.

Figure 4.4 compares the three algorithms on the Stag Beetle dataset. Marching Cubes
OpenMP is clearly outperformed by both Marching Cubes MPI and Flying Edges OpenMP.
Even though Flying Edges OpenMP is faster on one process than Marching Cubes MPI,
they perform similarly with more processors.

The miniIsosurface miniapp also contains a wrapper that can call VTK. The results of
calling VTK with the wrapper are shown in Table 4.3. The version of VTK used was 8.0.0.
It should be stressed that the comparisons between the wrapper to VTK and miniIsosurface
may not be fair because VTK contains overhead to pipe data from input to output.



D. Bourgeois, M. Wolf and K. Moreland 141

Table 4.3: Time in seconds using the VTK wrapper in miniIsosurface. These times are not
a direct comparison to miniIsosurface implementations.

Dataset VTK MC VTK FE
Supernova 21.1 10.1
CT-Angio 14.9 10.3
Stag beetle 11.8 6.60
Christmas Tree 9.20 8.71

Fig. 4.3: Flying Edges with OpenMP speedup. The ideal line is perfect speedup.

Fig. 4.4: A time comparison of Marching Cubes and Flying Edges parallel implementations.



142 Isosurface Visualization Miniapplication

5 Conclusions As a miniapp, miniIsosurface is designed to bridge the gap from
toy code to application code, from easily extendable to reasonably scalable. As a tool,
miniIsosurface should be used to adapt and test more complex codes to new architectures.

It has been shown that miniIsosurface does indeed scale. At the same time, the code base
is designed so that C++ programmers can understand how the algorithms are parallelized in
the various implementations. Not every possible parallel framework was used, but providing
implementations in OpenMP, MPI and GPU should pave the way to porting either of the
algorithms to other parallel frameworks.

REFERENCES

[1] 3d slicer sample data: Ct-cardio.
[2] D. Barnette, M. Bettencourt, and M. Hoemmen, Using miniapplications in a Mantevo frame-

work for optimizing Sandia’s SPARC CFD code on multi–core, many–core, and GPU–accelerated
compute platforms, in 51st AIAA aerospace sciences meeting including the new horizons forum
and aerospace exposition, 2012, p. 1126.

[3] J. Blondin, Supernova modeling.
[4] H. C. Edwards, C. R. Trott, and D. Sunderland, Kokkos: Enabling many–core performance porta-

bility through polymorphic memory access patterns, Journal of Parallel and Distributed Comput-
ing, 74 (2014), pp. 3202–3216.

[5] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, et al., Open MPI: Goals, concept, and design of
a next generation MPI implementation, in European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting, Springer, 2004, pp. 97–104.

[6] M. E. Groller, G. Glaeser, and J. Kastner, Stag beetle, 2005.
[7] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards, A. Williams,

M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich, Improving performance via
mini-applications, Sandia National Laboratories, Tech. Rep. SAND2009-5574, 3 (2009).

[8] J. Hoberock and N. Bell, Thrust: A parallel template library, 2010.
[9] H. Kaiser, B. A. L. aka wash, T. Heller, A. Berg, J. Biddiscombe, A. Bikineev, G. Mercer,

A. Schfer, atrantan, A. Serio, J. Habraken, M. Anderson, S. R. Brandt, M. Stumpf,
D. Bourgeois, M. Copik, K. Huck, V. Amatya, L. Viklund, Z. Khatami, D. Bacharwar,
S. Yang, E. Schnetter, Bcorde5, M. Brodowicz, L. Troska, B. Wagle, S. Upadhyay, Z. By-
erly, and H. Brakmic, STEllAR-GROUP/hpx: HPX V1.0: The C++ Standards Library for
Parallelism and Concurrency, Apr. 2017.

[10] L. V. Kale and S. Krishnan, Charm++: a portable concurrent object oriented system based on
C++, in ACM Sigplan Notices, vol. 28, ACM, 1993, pp. 91–108.

[11] A. Kanitsar, Christmas tree, 2002.
[12] W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3d surface construction algo-

rithm, in ACM siggraph computer graphics, vol. 21, ACM, 1987, pp. 163–169.
[13] K. Moreland, C. Sewell, W. Usher, L.-t. Lo, J. Meredith, D. Pugmire, J. Kress, H. Schroots,

K.-L. Ma, H. Childs, et al., Vtk-m: Accelerating the visualization toolkit for massively threaded
architectures, IEEE computer graphics and applications, 36 (2016), pp. 48–58.

[14] OpenMP Architecture Review Board, OpenMP application program interface version 4.5, 2011.
[15] J. Reinders, Intel threading building blocks: outfitting C++ for multi-core processor parallelism, ”

O’Reilly Media, Inc.”, 2007.
[16] W. Schroeder, K. Martin, and B. Lorensen, The visualization toolkit 4th edition, 2006.
[17] W. Schroeder, R. Maynard, and B. Geveci, Flying edges: A high-performance scalable isocontour-

ing algorithm, in Large Data Analysis and Visualization (LDAV), 2015 IEEE 5th Symposium on,
IEEE, 2015, pp. 33–40.


