
Article

The International Journal of High
Performance Computing Applications
1–17
! The Author(s) 2017
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342017704893
journals.sagepub.com/home/hpc

The future of scientific workflows

Ewa Deelman1, Tom Peterka2, Ilkay Altintas3,
Christopher D Carothers4, Kerstin Kleese van Dam5,
Kenneth Moreland6, Manish Parashar7, Lavanya Ramakrishnan8,
Michela Taufer9 and Jeffrey Vetter10

Abstract
Today’s computational, experimental, and observational sciences rely on computations that involve many related tasks.
The success of a scientific mission often hinges on the computer automation of these workflows. In April 2015, the US
Department of Energy (DOE) invited a diverse group of domain and computer scientists from national laboratories sup-
ported by the Office of Science, the National Nuclear Security Administration, from industry, and from academia to
review the workflow requirements of DOE’s science and national security missions, to assess the current state of the
art in science workflows, to understand the impact of emerging extreme-scale computing systems on those workflows,
and to develop requirements for automated workflow management in future and existing environments. This article is a
summary of the opinions of over 50 leading researchers attending this workshop. We highlight use cases, computing sys-
tems, workflow needs and conclude by summarizing the remaining challenges this community sees that inhibit large-scale
scientific workflows from becoming a mainstream tool for extreme-scale science.

Keywords
Scientific workflows, extreme-scale computing, distributed computing, in situ computing, workflow models

1. Introduction

All science campaigns of sufficient complexity consist
of numerous interconnected computational tasks. A
workflow in this context is the composition of several
such computing tasks. A workflow management system
(WMS) aids in the automation of those operations,
namely, managing the execution of constituent tasks
and the information exchanged between them. We
define an in situ workflow as one whose tasks are
coupled by exchanging information over the memory/
storage hierarchy and network of a high-performance
computing (HPC) supercomputing system such as cur-
rent leadership-class US Department of Energy (DOE)
facilities and future extreme-scale machines. A distribu-
ted workflow is one whose tasks are more loosely
coupled, for example, through files, and that execute
on geographically distributed clusters, clouds, and
grids, or multiple computational facilities and/or scien-
tific instruments at user facilities.

The main drivers for workflows, whether in situ or
distributed, are the application requirements of scien-
tists and the computing systems on which they generate
and/or process data. Examples are computational simu-
lations and data analysis and visualization software

(LANL et al., 2016). An instantiation of a workflow
represents both the operations and the data products
associated with a particular scientific problem. It is
assumed that individual tasks and data products in a
workflow are developed independently, potentially by
different scientists or communities.

1University of Southern California, Information Sciences Institute, Marina
del Rey, CA, USA

2Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, IL, USA

3UCSD, San Diego Supercomputing Center, San Diego, CA, USA
4Computer Science Department, Rensselaer Polytechnic Institute, New
York, NY, USA

5Brookhaven National Laboratory, New York, NY, USA
6Sandia National Laboratories, USA
7Computer Science Department, Rutgers University, New Brunswick, NJ,
USA

8Lawrence Berkeley National Laboratory, Berkeley, CA, USA
9Computer Science Department, University of Delaware, Newark, DE,
USA

10Oak Ridge National Laboratory, Oak Ridge, USA

Corresponding author:
Ewa Deelman, University of Southern California, Information Sciences
Institute, 4676 Admiralty Way, Suite 1001, Marina del Rey, CA 90292,
USA.
Email: deelman@isi.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.dox.org/10.1177/1094342017704893
journals.sagepub.com/home/hpc


Against the backdrop of application use cases and
extreme-scale computing architectures, a forum of over
50 leading domain and computer scientists met under
the auspices of the DOE Office of Science to identify
future challenges facing the broad adoption of work-
flow systems in the DOE and the broader science com-
munity. The community identified four main research
areas for future workflow development. The first is the
design of task coupling and data movement between
workflow tasks. The key factors studied were scalable
and robust control and data flow and the need for effi-
cient and portable migration of heterogeneous data
models across tasks. The second area is programming
and usability. The participants found that lack of sup-
port for workflows on HPC platforms impedes adop-
tion of workflow technologies and that programming
models, design patterns, the user interface, task com-
munication, and portability are potential areas for
improvement. Monitoring is important for scientists to
understand how their workflows are progressing and
for anomaly detection algorithms to detect any prob-
lems with workflow execution. The workflow manage-
ment system needs to be efficient, scalable, and reliable.
When errors occur, it needs to be able to gracefully
recover from them, potentially re-trying tasks or re-
scheduling them to different resources. The fourth key
is validation of results. The validation of a workflow
execution enables being able to reproduce the workflow
on the same or another computing environment and
involves comparing the workflow execution against per-
formance models, comparing with provenance captured
during the execution, and comparing the science results
with expectations. The WMS is the natural place to
capture much provenance data. Relevant topics include
the content and format of provenance data, capture
mechanisms, communication of metadata across system
software levels, short-term storage and long-term archi-
val, and data mining of provenance information.

An investigation into the workflow research areas
above resulted in the following high-level findings. The
remainder of this article presents a detailed explanation
of these findings, including state of the art, research
challenges, and specific recommendations of research
and development activities.

1. As the complexity and heterogeneity of scientific
workflows increase, there is a need to characterize
and study the processes surrounding simulations,
instruments (experiments and observations), and
collaborations in order to be able to design WMSs
that facilitate those processes.

2. Research is needed to understand extreme-scale
architectures and their impact on the design of
WMSs. Research is also needed to characterize
and predict the needs of future scientific workflows

and how they will influence the design of future
architectures.

3. Workflow systems interact with system software,
and as the demand for data awareness in workflow
and system software grows, the interactions
between the workflow system and operating system
(OS) will become more complex. Thus, research is
needed to define the relationship between the WMS
and the OS/runtime (OS/R) and how the WMS fits
into the software ecosystem of HPC platforms.
Resource management, scheduling, and provenance
capture are potential areas where the WMS and
other software systems share responsibilities.

4. The design of control and data flows, data models,
and programming interfaces needs further research
in the general area of WMS design.

5. During and after the workflow execution, the cap-
ture of provenance information and its use to vali-
date performance and correctness and to support
data reuse and reproducibility are areas where
much research is needed.

6. Benchmarks and community data sets are needed
to drive workflow research.

2. Background

The dynamics of complex workflows can range from a
simple bag of tasks (e.g. MG-RAST and DOCK
(Moustakas et al., 2006) in bioinformatics) and sets of
distributed applications with intermediate key-value pairs
(e.g. data histograms for high-energy physics (Ekanayake
et al., 2008) and object ordering (Brin and Page, 1998)),
to more sophisticated iterative chains of MapReduce
jobs (e.g. graph mining (Malewicz et al., 2010)). Sets of
distributed applications can have multiple stages using
files for intermediate data (e.g. astronomy: Montage
(Jacob et al., 2010), bioinformatics: BLAST (Mathog,
2003), and earthquake science: CyberShake (Maechling
et al., 2006)), and iterative applications may have varying
sets of tasks that must be run to completion in each itera-
tion (e.g. Kalman filtering (Sorenson, 1985)).

Workflows may have both in situ HPC and
distributed-area computing components. We use the
term in situ to describe data processing, triage, filtering,
analysis, or visualization that occurs while the simula-
tion is running prior to moving data off the supercom-
puter for further post hoc analysis done in a distributed
fashion. For example, Figure 1 shows a science work-
flow that integrates simulations with experiments
through data analytics.1 The entire process consists of
three (sub)workflows: the measurement and reconstruc-
tion of experimental images, the modeling and in situ
analysis of simulation data, and the comparison of the
two.

2 The International Journal of High Performance Computing Applications 00(0)



No widely adopted general-purpose workflow tools
are available that work seamlessly across both in situ
and distributed settings. However, specific applications
have been designed to work in both domains.
CyberShake, a seismic hazard model from the
Southern California Earthquake Center (Graves et al.,
2011), combines components that use HPC and high-
throughput computing. The advanced photon source
coordinates HPC with detector hardware and other
processing systems (Khan et al., 2013). Likewise, the
National Synchrotron Light Source II has initial
processing in situ, and the results are then sent to
remote users. The Hardware/Hybrid Accelerated
Cosmology Code cosmology simulation can interface
its HPC with analysis codes on other systems through
the CosmoTools analysis framework (Habib et al.,
2014). KBase, the DOE systems biology knowledge
base, contains in situ modeling and reconstruction tools
as well as offloading to cloud-based distributed-area
systems (Benedict et al., 2014).

One motivation for in situ workflows is to minimize
the cost of data movement by exploiting data locality,
operating on data in place. A second reason is to sup-
port human-in-the-loop interactive analysis. The third

driver for in situ HPC workflows is the need to capture
provenance for interactive data analysis and visualiza-
tion, as well as any computational steering that results.
In situ workflows, especially workflows designed
for current- and next-generation leadership-scale HPC
environments, face particular challenges. These chal-
lenges include power, performance, resilience, and pro-
ductivity: Heterogeneous computing cores, increasingly
complex hierarchical memory systems, and small or no
growth in bandwidth to external storage systems are
some of the main hurdles for HPC in situ workflows at
scale.

Large-scale science facilities—supercomputing cen-
ters, high-energy light sources, particle accelerators,
telescope installations—all need larger scale workflow
capability than are currently available. Whether in situ
or distributed, scalability of workflows is being driven
to the extreme. Many other challenges obstruct the
deployment of production workflows at extreme scale.
One is performance: In the past, distributed WMSs
were designed for reliability first and performance sec-
ond and they are mostly unaware of optimizing execu-
tion on HPC systems. Research into in situ WMSs is
still in its infancy, and performance is untested.

Figure 1. Science workflow for the comparison of a molecular dynamics simulation with a high-energy X-ray microscopy of the
same material system includes three interrelated computational and experimental workflows.

Deelman et al. 3



Another is usability. Today, scientists use Python or
shell scripts to specify workflows, or they integrate the
workflow directly into their simulation code. The over-
lap between ‘‘big data’’ programming models and scien-
tific data programming models adds complexity to the
scientific workflow space (BDEC Committee, 2016).
Other challenges involve the interaction between the
WMS and the OS/R, which should cooperate in the
workflow execution. Still others arise from multiple
intermediate representations of data, which may be
augmented with provenance information, which is
important for validation of results. In light of these and
other challenges, the community found that the WMS
must manage the following aspects as part of extreme-
scale workflows.

2.1. Data movement between and within workflow
components

The WMS needs to provide efficient, scalable, parallel,
and resilient communication through flexible coupling
of components with different data and resource needs
and utilize extreme-scale architectural characteristics
such as deep memory/storage hierarchy and high core
count. Memory management systems that support
scratch pad and nonvolatile memory (NVM) are needed
for workflows. Increasing the number of computing
tasks in the same memory will increase the likelihood
that workflows will need to extend memory to NVM.
Moreover, the potential for more complicated analyses
that manage more state (e.g. several time steps of data)
offered by workflows will further require the extended
footprint offered by NVM.

2.2. Programming models for workflows and their
components

Workflows must manage various and possibly hetero-
geneous software stacks, expressing tasks and their rela-
tionships productively and portably and defining data
models and their semantics. The WMS needs to negoti-
ate with the OS/R through a well-defined interface on
behalf of the entire application workflow. The OS/R
must provide the WMS with the interfaces to provision
resources, schedule, and coordinate various tasks (such
as the simulation and data analysis codes) and capture
the provenance that scientists need to support validat-
ing and publishing scientific results, including capturing
any changes from the initial workflow that result from
human-in-the-loop interactive analysis and steering.

2.3. Resource selection and provisioning

Allocation of various types of resources for the genera-
tion, movement, analysis, and retention of data in a
workflow, with particular attention to heterogeneity

(nodes vs. cores, virtualization, memory hierarchy),
power and time costs of moving data, and centralized
and distributed systems for storage and staging data, is
needed. The WMS needs the OS/R to move from its
traditional role of managing single tasks to managing
global (i.e. internode, distributed) services. A super-
computer usually runs more than one application at a
time, and those jobs are managed at some level of glo-
bal system software. Today, however, user-space jobs
are isolated from the others by design, and even OS
instances are isolated, with each job booting a new
image of the OS (micro)kernel. Research is needed to
develop services and expose them to higher levels of the
software stack so that the WMS and users can access
them. Such global management may be through a hier-
archy of resource groupings (enclaves), with heteroge-
neous programming models/runtimes managing the
resources within a given enclave or task.

2.4. Execution and scheduling

Task launching and data transfer over all of the above
resources during the staging and execution of a work-
flow must be coordinated by the WMS. To address the
challenges of experimental and observational work-
flows, the WMS must coordinate the end-to-end work-
flow life cycle, including real-time scheduling and
execution of measurement instruments and analytic
platforms, which may include supercomputers.
Efficient low-overhead scheduling of multiple coopera-
tive tasks, various forms of communication (messages,
interrupts, publish–subscribe) between independent
tasks, and provisioning of shared resources (e.g. shared
storage) among tasks are needed from the OS/R to sup-
port the WMS. Reliability of the execution is also an
important concern, not only in wide area but also
increasingly in HPC environments.

2.5. Provenance tracking, monitoring, and validation

The WMS needs to capture the high volume, velocity,
and variety of provenance data, enable querying, min-
ing, and analyzing these data to validate accuracy of
results, compare with expected performance, and
ensure reproducibility. Monitoring the infrastructure
and applications, understanding workflow behavior
(modeling, anomaly detection, and diagnosis), detect-
ing, isolating, recovering from hard and soft errors,
and maintaining security are also needed.

3. Toward extreme-scale workflow
systems

Extreme-scale workflow systems need to provide the
following capabilities: programming and usability, the

4 The International Journal of High Performance Computing Applications 00(0)



efficient coupling and execution of tasks, robust execu-
tion and monitoring, and validating outcomes.

3.1. Programming and usability

Programming and usability are key factors determining
the extent of adoption of workflow methods at extreme
scale. The relationship between programming models
for the workflow and those used for individual tasks in
the workflow is one aspect of programmability. The
definition of workflow graphs can be aided by reusing
workflow design patterns or templates. The nature of
the WMS user interface, whether textual or graphical,
also affects usability.

DOE applications have a diverse set of workflow
needs. Research to identify common needs and expres-
sion patterns (akin to design patterns in software engi-
neering) in workflows with respect to a number of
properties including data management, error control,
reproducibility, programmability, and mapping to
physical resources are needed. Research is needed to
determine appropriate levels of abstraction to define
the user interface for workflow systems and their com-
ponent modules, including an interface for the human-
in-the-loop in interactive workflows.

3.1.1. Programming models. Although many HPC work-
flows are hand constructed through shell scripts, batch
scheduling, and human intervention, there exist pro-
grammable tools such as Swift (Wilde et al., 2011),
Tigres (Ramakrishnan et al.,2014), Kepler (Altintas,
et al., 2004), Trident (Barga et al., 2008), Weaver (Bui
et al.,2010), Triana (Churches et al., 2006), Pegasus
(Deelman et al., 2015), Galaxy (Goecks et al.,2010),
and Taverna (Oinn et al., 2006) to better manage com-
plex workflows. Programming models for cloud, web
service, and other big data applications are abundant.
The programming model for MapReduce (Dean and
Ghemawat, 2004) is probably the most well known,
but many others exist (Fox et al., 2014; Jha et al., 2014;
Qui et al., 2014). Many of these models may be lever-
aged for use in HPC.

Most workflow management tools use a scripting
language to define tasks and dependencies and to man-
age execution (Altintas et al., 2004; Barga et al., 2008;
Bui et al., 2010; Churches et al., 2006; Deelman et al.,
2015; Goecks et al., 2010; Oinn et al., 2006;
Ramakrishnan et al., 2014; Wilde et al., 2011). Within
the scripting language is an application programming
interface (API) that scripts use to define and execute a
workflow. There also exist examples of workflow build-
ing tools that use a graphical interface (Bavoil et al.,
2005; Parker and Johnson, 1995). Such interfaces pro-
vide a trade-off between simplicity and expressiveness.
The appropriate level of abstraction for workflows is
unclear. Having different levels of abstractions for new

and advanced users could also be advantageous.
Studying how business workflow models and tech-
niques (Weerawarana et al., 2005) can be helpful in this
regard.

As leadership-class machines and the workflows
executing on them increase in complexity, the division
between the workflow and the task programming
model becomes blurred. The workflow system’s repre-
sentation of a mix of coarse data- and task-parallelism
mirrors the finer-grained task-parallel programming
models emerging for programming individual tasks.
Because both workflows and programming models
address high concurrency, dynamic application execu-
tion, dynamic resource availability, architectural diver-
sity, and in-system storage, integration and coordination
become fruitful and perhaps necessary.

3.1.2. Design patterns. Workflow management tools such
as Swift (Wilde et al., 2011) and Tigres (Ramakrishnan
et al., 2014) build Directed-Acyclic Graph (DAGs) and
internally manage parallel execution and dependencies
within them. Other tools such as AVS (Upson et al.,
1989), SCIRun (Parker and Johson, 1995), and
VisTrails (Bavoil et al., 2005) allow users to build and
view workflow DAGs visually with a graphical repre-
sentation and user interface. Wings (Bergmann and
Gil, 2014) uses the concept of templates to represent
the overall workflow structure and then automatically
fills out the template based on user needs.

Many scientists build workflows by example; they
iteratively construct one workflow using a previous one
as a template. This iterative modification of existing
workflows shortens the development time and can also
be integrated in software design to accelerate workflow
tool development (Maheshwari et al., 2013). Some recent
tools use pattern-like structures as part of the creation
and execution of workflows. For example, Tigres has a
collection of templates that can be applied when building
workflow structures (Balderrama et al., 2014). VisTrails
can collect the provenance of many previously built
workflows to find common patterns that can automati-
cally assist users in other endeavors (Silva et al., 2007).

It is important to understand and classify various
workflows and workflow needs through user studies.
Identifying common patterns for next-generation in
situ and distributed workflows is needed to address
programmability and usability concerns. Workflows
need to correctly and more formally handle task depen-
dency loops. Part of this effort requires workflows to
understand and manage time and data that change over
time, as demonstrated in the similar Visualization
Toolkit (VTK) dataflow network (Biddiscombe et al.,
2007). Research is needed into ways to help users easily
develop high-level templates and to instantiate them
for concrete problems. Scientists often use ensemble
workflows, and research in ensemble management is

Deelman et al. 5



also needed to support the end-to-end computational
methods.

3.1.3. Portability. Sometimes the same conceptual work-
flow is run in situ (within a single system) and other
times as distributed processes where tasks are coordi-
nated across multiple independent systems that may be
physically distant from each other. Workflows that
need to run in both modes should not be implemented
twice. For example, the same code may need to point
to data in memory, read data from a file, output data
to memory or a file, run in serial or parallel, compute a
small- or large-scale job, process data in core or out of
core, and be built as a library or as an executable. All
of this should be uniform so that data and control can
seamlessly flow between environments.

Portability is difficult on complex, heterogeneous
systems. Workflows can help match tasks to the archi-
tecture best suited to run them; this situation is more
common in distributed workflows, but it is still an area
of research for HPC. Containers are a possible solution
for some distributed area and in situ workflow solu-
tions. In general, WMSs that operate with good perfor-
mance across heterogeneous platforms are needed.
Understanding the role of containers, virtualization,
and security—features found in distributed
computing—is needed in HPC. Understanding the
effect of disruptive HPC architectures such as deep
memory hierarchies and NVM is needed as well.

Researchers are asking the following portability
questions. How can we build WMSs and common
application components that operate with good perfor-
mance both in situ and distributed? What is the role of
containers and other virtualization technologies in
workflows? What are security requirements for in situ
and distributed workflows? Can workflows manage
deep memory hierarchies? As HPC and workflows
become more complex, what should be the interaction
between human and system? The human interaction
can become even more complex as we mix in situ and
distributed components in the same workflow.

3.2. System design and execution

The design of WMSs for extreme-scale distributed and
in situ workflows presents multiple challenges; some are
unique to each class of workflows, while others are
common to both. The two types of WMSs also typically
implement different design trade-offs. While concur-
rency, locality, system topology awareness, and mini-
mizing data movement are common to both distributed
and in situ workflows (Bennett et al., 2012; Zheng et al.,
2011), distributed workflows additionally address issues
related to security, crossing administrative domains,
and so forth that do not exist in HPC. Monitoring the
execution progress of in situ workflows and adapting

the execution also tends to be harder, largely because of
restrictions from the system. A related concern is deal-
ing with failures. Although being able to detect and
handle unreliable resources and failures has been an
integral part of distributed WMSs, the in situ WMSs
have only recently started to address failures (Cappello,
2009; Gamell et al., 2014).

WMSs may have different optimization considera-
tions. For example, analytics may be scheduled in situ
or on a different system depending on the relative costs
of the latencies associated with data movement and the
loss in performance due to the repurposing of some
compute nodes for analytics. Several research efforts
are already exploring such a convergence. For example,
Wide-Area-Staging (Aktas et al., 2014) is extending
data staging abstractions to distributed environments,
and DataSpaces-as-a-Service is exploring persistent sta-
ging and service-oriented architecture (SOA) models on
extreme-scale systems.

3.2.1. Resource provisioning and scheduling. Because of the
increased complexity of the workflows and the execu-
tion environments, we need more sophisticated WMSs
that can dynamically provision (potentially distributed)
resources as the workflow (or set of workflows) are
executing and that can manage the execution of work-
flow tasks on these resources in an efficient manner.
Provisioning and management should also include stor-
age and network resources.

3.2.2. Workflow resilience and fault detection. As system
scales increase and the mean time between failures
(MTBF) becomes smaller, process and node failures
becomes important. Recovery from these failures often
involves terminating the job and restarting from the
last checkpoint available in stable storage. However, it
is unclear whether this approach will work when the
MTBF approaches the time needed to execute the
checkpoint. Online, application-aware, and local recov-
ery mechanisms are possible alternatives. In addition to
addressing system and process failures, there is also an
increasing need for data validation mechanisms. Data
corruption, whether occurring as a result of bugs,
attacks, or background radiation, will be more likely in
workflows running on increasingly complex hardware
and software systems than in past.

3.3. Coupling tasks

Coupling control and data flow between heterogeneous
components requires research in dataflows that can
buffer, prefetch, aggregate, and distribute data, and
research is needed to solve challenges in the transport,
layout, attributes, and provenance of these data.
Workflow tasks that are developed independently
invariably operate on different data models. The

6 The International Journal of High Performance Computing Applications 00(0)



transfer of data models across tasks requires defining
the data model by the programmer in a way that the
WMS can efficiently transfer parts of the model
between the tasks that need it, with a minimum of data
copying, while retaining the semantic validity of the
data. Complicating coupling is the fact that tasks have
varying amounts of concurrency—processes or threads—
and data must be redistributed between these tasks effi-
ciently (in parallel) and safely (retaining semantics).

3.3.1. Task coupling. Tasks are coupled according to a
workflow graph, which can be cyclic and which can
include both in situ and distributed components.
Figure 2 shows one such example graph.

There may be decoupled dataflows (Dorier et al., 2015)
between pairs of producer–consumer tasks in the graph.
These dataflows are a hybrid of tight and loose couplings.
The dataflow resources can be disjoint from the producer
and consumer tasks, or they may overlap either or both
tasks, enabling time- and space-division coupling of tasks
from the same logical graph topology (Figure 3).

Efficient design patterns for parallel data communi-
cation are needed based on either higher level messa-
ging libraries such as Message Passing Interface (MPI)
or lower level network protocols such as Transmission
Control Protocol/Internet Protocol.

Such standard design patterns are needed in order to
compose different workflow abstractions from hetero-
geneous WMSs. For example, tasks may be defined in
different in situ and distributed WMSs, and a common
coupling library may provide a standardized data
model redistribution and a parallel message communi-
cation for the entire ensemble. Runtimes are message-
driven, executing tasks when all messages have been
received and enabling cyclic executions anywhere in the
workflow graph.

3.3.2. Control and data flow. Distributed systems have
largely relied on files for control and data flow (Altintas
et al., 2004; Deelman et al., 2015), while in situ systems
have explored in-memory staging and Remote direct
memory access (Dayal et al., 2014; Docan et al., 2010).
While distributed WMSs support more dynamic and
service-oriented compositions, recent research in HPC
is exploring how SOA-type compositions can be sup-
ported on extreme-scale systems (Abbasi et al., 2009).

Another important development is dedicating
resources to the links that connect the tasks of the work-
flow. For example, link components can be used for buf-
fering, prefetching, and aggregating data but may also be
used for transforming and redistributing data so that it is
more compatible with the needs of the downstream task.
Staging-based approaches for specifying these links and
their semantics have been explored by recent projects
(Docan et al., 2011; Zheng et al., 2010). Lofstead et al.
(2008) propose the use of ‘‘glue components’’ that encap-
sulate such link semantics and can be defined as part of a
workflow. Because the link resource requirements can be
dynamic and not known a priori, adaptive runtime
resource allocation and management become critical.
Furthermore, this resource management must effectively
address technical issues such as failures and adaptivity
(Bhat, 2008; Dayal et al., 2013).

As distributed and in situ workflows are integrated
into end-to-end science applications, new abstractions
and mechanisms can help support control and data
flow requirements in a consistent and scalable manner.

Figure 2. A typical workflow includes both in situ and
distributed area subworkflows and may include cycles.

Figure 3. Time- and space-division coupling of a producer and consumer task.

Deelman et al. 7



Ways to augment the coupling between tasks with
meaningful semantics and to effectively manage these
components in an adaptive and autonomic runtime are
needed. A catalog of data/control flow (link) semantics
can meet the needs of emerging application workflows,
and the efficient implementation of such components
can enable workflow scalability. Further research into
automatic placement and allocation of intermediate
link resources and managing the flow control over
them is also needed.

3.3.3. Data models. Traditionally, workflows used files to
transmit data, requiring programs to understand each
other’s file format. Many HPC file formats are ‘‘self-
describing’’ in that arrays are organized using names,
attributes, and hierarchies (Lofstead et al., 2008; Prabhat
and Koziol, 2014), prompting a storage API to be used
even when data are coupled in memory or through the
network. Similar organization is present in array data-
bases (Stonebraker et al., 2011) and NoSQL databases
(Cattell, 2011), where conventions (Eaton et al., 2011)
and schemas (Clarke and Mark, 2007; Shasharina et al.,
2010; Tchoua et al., 2010) are often applied. Much work
has focused on providing a unified interface to a variety
of storage implementations. For example, ADIOS can
support numerous input/output (I/O) backends and
switch between them at runtime (Lofstead et al., 2008).
Tools such as Google Dremel (Melnik et al., 2010) and
Apache Drill (Apache Drill—Schema-free SQL for
Hadoop, NoSQL, and Cloud Storage) provide a unified
interface to multiple data backends as well.

Nonetheless, today’s workflow systems have limited
support for data models not derived from files, data-
bases, or N-dimensional regular arrays. As workflows
integrate ever-varying tasks, it becomes more challen-
ging to communicate data between software that uses
heterogeneous and unstructured data models. One solu-
tion (Dreher and Peterka, 2016) is to annotate a data
model with enough information to preserve the seman-
tic integrity of the data during redistribution.

The community needs to continue developing appro-
priate infrastructure that allows seamless integration of
various data sources including streaming, data manage-
ment across the memory-storage hierarchy of next-
generation systems, and data semantics in workflows.
Greater understanding is needed in how data can be
communicated among tasks that are developed inde-
pendently and have different data models. The mechan-
ism for connecting data sources and the ability to
identify, convert, and verify data models must be well
established.

3.4. Monitoring and provenance

WMSs offer a unique monitoring opportunity because
they encapsulate the entire process of solving a

computational problem. They are the managers of
many different operations and, at the same time, inter-
act closely with many other relevant components and
resources related to the execution of the workflow.
However, the number of components, the complexity
of their connections, and the rate of execution compli-
cate monitoring of workflows. As a result, the monitor-
ing system needs to provide the right level of
abstraction for the task at hand: evaluating workflow
progress, understanding causes of failure, and under-
standing the results.

The real-time status of the workflow needs to be
accessible to users. A human-in-the-loop is needed in
many different types of workflows including explora-
tion and failure recovery. For example, a human may
be required to determine whether missing telescope
data are a result of a cloudy night or failures in the
hardware or software. Similarly, light source experi-
ments can benefit from real-time feedback to improve
the quality of experimental decisions. Today, only lim-
ited support is provided to integrate the human in
workflows and to automatically track the provenance
from such activities.

3.4.1. Provenance models. Monitoring the performance
and correctness of workflows depends on capturing
provenance data: system statistics such as timing and
memory footprint as well as science results. Such prove-
nance data allow validation of workflow performance,
traceability of workflow execution, and workflow
reproducibility and reuse. We need new provenance
models suitable to support these usage models and that
integrate provenance from multiple sources. Mining of
provenance data has emerged as a key challenge in a
number of applications. Today, provenance usually
represents a simple directed graph, describing one level
of abstraction of an environment or process (e.g. a sin-
gle workflow representation (Kleese van Dam et al.,
2015; Muniswamy-Reddy et al., 2009)). Some systems
such as Pegasus provide details about the environment
in which the workflow is executed. To enable greater
interoperability between provenance models, a working
group for the World Wide Web Consortium defined
the core specification for an open provenance model
(OPM) (Moreau et al., 2011) in 2011. Subsequently, a
range of OPM-compliant workflow provenance models
have been developed, such as OPMW (Garijo and Gil,
2012), D-OPM (Cuevas-Vicenttı́n et al., 2012), and the
work of Lim et al. (2011). All these models focus exclu-
sively on the description of the workflow, usually in
graph form, describing its components and the data uti-
lized (Giardine et al., 2005; Goecks et al., 2010;
Scheidegger et al., 2008; Wolstencroft et al., 2013). All
models treat workflow tasks as black boxes, with few
details attached, and none of them captures details of
the execution environment or human interactions.

8 The International Journal of High Performance Computing Applications 00(0)



Existing workflow provenance solutions are only
effective for low-volume capture. Research is needed in
high-velocity capture mechanisms in extreme-scale
environments. None of the systems available today can
communicate provenance across system layers. Indeed,
the majority of the systems were implemented with post
hoc forensic analysis in mind (storage in log files or
databases); thus, they do not include provisions for
real-time exchange, negotiation, and analysis. We need
to study, characterize, and model the types of processes
that are usefully supported by such an approach; what
information needs to be captured, when, and to whom
it needs to be communicated. Effective capture and
communication mechanisms, in situ triage, and analysis
are other areas of research and development.

3.5. Validation and reproducibility

The increasing complexity of both workflows and their
computational environments makes it critical to pro-
vide the HPC community with the approaches, meth-
ods, and tools to ensure that workflows are executed
with sufficient reproducibility (Stodden et al., 2016).
Extreme-scale systems, with higher degrees of concur-
rency and in situ data analysis that is triggered by spe-
cific events in very large-scale modeling and simulation
applications, will further accentuate the community’s
need for validation and reproducibility (Top Ten
Exascale Research Challenges, 2014).

3.5.1. Performance validation and predictability. Although
there is a rich portfolio of tools for performance analy-
sis, modeling, and prediction for single applications in
homogeneous computing environments (Thakur, 2015),
relatively few workflow performance studies were con-
ducted, usually focused on a specific workflow or
WMS (Burtscher et al., 2010; De Oliveira et al., 2012;
Juve et al., 2013; Samak et al., 2011; Talukder et al.,
2009; Truong et al., 2007). Attempts to address the situ-
ation include skeletons for performance prediction
(Logan et al., 2012; Meyer et al., 2013; Zhang and
Katz, 2014) and targeted distributed computing middle-
ware such as Pegasus (Deelman et al., 2015, 2004, 2005)
and Swift (Wilde et al., 2011, 2009; Zhao et al., 2007).
Validation goes hand in hand with predictability. For
extreme-scale workflows, however, the meaning of per-
formance prediction and result reproducibility needs to
be reviewed. Communities other than HPC can provide
hints for addressing these issues, for example, service-
level agreements in cloud computing.

Performance goals can be expressed and measured
either for the entire facility or for the specific workflow,
and how to best express performance goals and assess
their achievement for a facility versus for a specific
workflow is an open challenge. As the complexity of
applications increases, the workflow must play a major

role in application performance prediction. The ques-
tion is how can scientists keep track of aspects of the
workflow execution at extreme scale, especially when
competing for resources with other workflows and
when frequent unexpected events such as silent errors
or node failures occur. Intelligent schedulers should use
the knowledge of events’ occurrences to optimize the
performance according to defined goals, despite the
challenges introduced by new extreme-scale architec-
tures, execution environments, geographical distribu-
tion, and scientific instruments. Runtime use of
acquired knowledge can be used to continually improve
performance and optimize resource use at the scheduler
level—for example, by simultaneously running storage-
and compute-intensive jobs.

The following steps are needed to validate perfor-
mance. We need to identify and quantify sources of
workflow performance variability as they relate to dif-
ferent performance goals, taking into account the work-
flow tasks, the WMS, the execution environments, and
system architectures. The community needs to investi-
gate the impact of system, scientific data, and user
events on workflow performance. In order to have a
systematic approach to the problem, workflow bench-
marks, execution traces, and performance data are
needed. Suitable performance analysis and modeling
tools are lacking. Given models and benchmarks, the
community can then be used to investigate runtime
optimization strategies and methodologies, including
suitable interactions between the WMS and the system
software stack including resource provision, runtime
system, storage and I/O, and software-defined
networking.

3.5.2. Fault tolerance and recovery. The increasing scale
and complexity of computing systems make fault toler-
ance and recovery key challenges for workflows. Many
existing WMSs handle task and system failures and
incorporate fault-tolerant mechanisms (e.g. task
re-execution or rollback from checkpoints). Research
efforts are addressing these issues by extending existing
programming systems to support fault tolerance.
Emerging task DAG-based programming models also
include resilience features (Wilke et al., 2014).

In addition to addressing system and process fail-
ures, there is an increasing need to protect against data
corruption. Data corruption, whether the result of
bugs, attacks, or background radiation, will be more
likely in workflows running on increasingly complex
hardware and software systems than in past. For exam-
ple, if the provenance archival system includes unreli-
able resources (e.g. interim storage in network devices
or exascale memory), resilience measures, and their per-
formance and energy costs need to be considered.
Recent research is exploring online mechanisms for

Deelman et al. 9



resilience (e.g. Gamell et al., 2014; Teranishi and
Heroux, 2014).

Research is required into developing automatic,
online, and possibly local recovery mechanisms that
can handle the scales, complexities, and failure rates of
emerging systems. Exploring application-aware
mechanisms will be critical. Programming and runtime
support for cross-layered power and resilience manage-
ment are needed so that application programmers can
choose the minimum level of resilience required in each
code segment, as well as to balance trade-offs and meet
power budgets. The community needs to develop a gen-
eric method that provides efficient error detection cap-
abilities for both systematic and nonsystematic errors.
Research in new adaptive and resilient WMSs can
allow mitigating error propagation and failure recovery
across software layers in a way that enables users to
understand application and system behavior and make
online recovery possible.

3.5.3. Accuracy and scientific reproducibility. Reproducibility
refers to ‘‘closeness of agreement among repeated simu-
lation results under the same initial conditions over
time,’’ and accuracy refers to ‘‘conformity of a resulted
value to an accepted standard (or scientific laws)’’
(Considine and Considine, 1999). The definitions of
conformity and agreement often depend on the com-
munity or even the individual scientist’s point of view.
They may range from stringent bitwise reproducibility
to overall agreement of scientific conclusions.

The inability to exactly reproduce data at the appli-
cation level can be the result of arithmetic and algorithm
factors (Balaji and Kimpe, 2013; Chiang et al., 2013). In
response to these challenges, mathematical techniques
can be applied to mitigate the degree to which aggre-
gated results exhibit sensitivity to operation order. Such
techniques can range from simple fixed-reduction orders
(Yelick, 2012) to interval arithmetic (Revol and
Theveny, 2014) and to extended precisions (Bailey,
2005). Compensated summation algorithms (Kahan,
1965), composite precision (Chapp et al., 2015; Taufer
et al., 2010; Thall, 2006), and prerounded algorithms
(Arteaga et al., 2014; Demmel and Nguyen, 2015) show
promising results but require some level of code modifi-
cation and performance tuning (Gustafson, 2015).

Reproducibility, enabled by provenance, is a funda-
mental requirement for the validation of complex work-
flows. Automatic annotations embedded in multilayer
and modular workflows are desired, where workflows
provide documentation of paths taken and resources
used, with the aim of making workflows reproducible.
While applications must continue to be responsible for
providing results of acceptable accuracy; in many
instances, the workflow is the right place to validate
and propagate performance and accuracy expectations
and achievements.

By establishing the required accuracy of components
a priori, workflow systems can monitor specific vari-
ables to see whether the workflow is progressing as
intended. The use of data mining, machine learning,
and statistical methods can identify deviations and pos-
sibly correct them. Open questions include to what
degree the scientist can be added in the loop and what
role can she play in determining accuracy (i.e. what
deviation is acceptable) and in deciding on suitable
actions. The more that workflows can document the
paths taken and check that the overall simulation is
behaving correctly, the better they will be able support
the scientist in validating and reproducing science data.

4. Conclusions

In the context of scientific computing, a workflow is
the orchestration of multiple computing tasks over the
course of a science campaign. Examples are computa-
tional simulations, experimental observations, and data
analysis and visualization software working in concert
to test a hypothesis and arrive at a conclusion. A large-
scale science campaign consists of numerous such codes
working together.

Workflows and workflow systems are common in
distributed cloud and grid computing but relatively
obscure in HPC that features batch jobs consisting of
single codes. One of the objectives of the Workshop on
the Future of Scientific Workflows (2015) was to bring
these two communities together to share their expertise.
The mission of the workshop was to develop require-
ments for workflow methods and tools in a combined
HPC and distributed work environment to enable sci-
ence applications to better manage their end-to-end
data flow.

This article described the findings of the scientific
workflow community as represented in that meeting
(Ewa Deelman et al., 2016). The highest priority find-
ings in the areas of application requirements, hardware
systems, software systems, WMS design and execution,
programming and usability, provenance capture, and
validation are listed below.

4.1. Application requirements

Workflows for both computational and experimental
sciences need investigation, as do workflows to support
scientific collaboration. Sharing workflows, migrating
workflows between different computing environments,
accommodating different user roles, and combining dif-
ferent languages and software tools used by various
users all require further research.

4.2. Hardware systems

Extreme-scale hardware challenges for workflows—
power, performance, resilience, and productivity—

10 The International Journal of High Performance Computing Applications 00(0)



require significant planning and investment in system
software, programming environments, applications,
and WMSs. Heterogeneous nodes, new memory sys-
tems including NVM, and little growth in bandwidth
to external storage systems or networks dictate new use
patterns for WMS that leverage in situ analytics and
heterogeneous programming models for individual
workflow tasks.

4.3. System software

Supercomputers today are intended to run single-
program batch jobs. Workflows, in contrast, are collec-
tions of multiple programs whose execution must be
coordinated. Workflows require resource allocators to
treat storage, I/O, and network capacity as first-class
resources to be allocated, managed, and measured to
the same degree as computing capacity is today.
Scheduling HPC and distributed resources over several
systems will require cooperative schedulers that can
coordinate with the WMS.

4.4. Programming and usability

Major challenges include lack of standardization
between numerous programming models for tasks and
workflows, the interconnection between the program-
ming of individual tasks and entire workflows, and the
portability of both code and data across different loca-
tions in a potentially heterogeneous workflow that
spans both HPC and distributed resources. Human
interaction with the workflow (e.g. to steer a computa-
tion in one program based on a result in another) is
another challenge.

4.5. WMS design and execution

WMSs need to expand to deal with data management
challenges in the transport, layout, attributes, and pro-
venance of data. To provide efficient execution, one
needs to examine the interplay of resource provisioning
and workflow management. Then, based on the avail-
able resources and the needs of the workflow tasks, one
needs to develop mapping and scheduling strategies
that can handle distributed HPC resources in a consis-
tent and integrated manner and can optimize execution
across these resources. Research is required into devel-
oping automatic, online, and possibly local recovery
mechanisms that can handle the scales, complexities,
and failures rates of emerging systems. Exploring
application-aware mechanisms will be critical. WMSs
also need to be resilient to failures and provide mechan-
isms for error detection and failure information
propagation.

4.6. Task coupling

The efficient management of distributed and HPC
workflows present challenges at multiple levels of soft-
ware. At the base layer, coupling control and data flow
between heterogeneous components requires expanding
workflow links into data flows that can buffer, pre-
fetch, aggregate, and distribute data. At a higher level
of abstraction, managing the workflow must address
concurrency, locality, and system topology if data
movement is to be optimized at extreme scale.

4.7. Monitoring

WMSs offer a unique opportunity for provenance cap-
ture, because they encapsulate the process of solving a
computational problem. The increasing scale and com-
plexity of hardware and software systems, however,
coupled with the composition of multiple tasks by
workflows, complicates provenance capture. The velo-
city of provenance data generated at extreme scale
requires new methods to compress, mine, analyze,
store, and share it.

4.8. Validation and reproducibility

The increasing complexity of workflows and their com-
putational environments makes it critical to provide
the approaches, methods, and tools to ensure that
workflows are executed with sufficient reproducibility
in terms of performance and accuracy. Validation of
expected performance is a complex high-dimensional
space of metrics over a heterogeneous computing archi-
tecture. Needed research directions include extending
single-application performance validation tools to
workflows of applications and developing methods to
learn what levels of differences in science results are sta-
tistically significant.

Acknowledgments

The authors would like to thank all workshop participants
for their contributions: Greg Abram, Gagan Agrawal, James
Ahrens, Pavan Balaji, Ilya Baldin, James Belak, Amber
Boehnlein, Shreyas Cholia, Alok Choudhary, Constantinos
Evangelinos, Ian Foster, Geoffrey Fox, Foss Friedman-Hill,
Jonathan Gallmeier, Al Geist, Berk Geveci, Gary Grider,
Mary Hall, Ming Jiang, Elizabeth Jurrus, Gideon Juve, Larry
Kaplan, Dimitri Katramatos, Dan Katz, Darren Kerbyson,
Scott Klasky, Jim Kowalkowski, Dan Laney, Miron Livny,
Allen Malony, Anirban Mandal, Folker Meyer, David
Montoya, Peter Nugent, Valerio Pascucci, Wilfred Pinfold,
Thomas Proffen, Rob Ross, Erich Strohmaier, Christine
Sweeney, Douglas Thain, Craig Tull, Tom Uram, Dean
Williams, Matt Wolf, John Wright, John Wu, Frank
Wuerthwein, and Dantong Yu. The authors also thank Lucy
Nowell and Richard Carlson for sponsoring the workshop on
scientific workflows.

Deelman et al. 11



Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: Argonne National Laboratory is managed by
UChicago Argonne, LLC, for the U.S. Department of Energy
Office of Science under contract DE-AC02-06CH11357.
Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000. This
work was funded in part by the US Department of Energy
under Contract #DESC0012636, ‘‘Panorama -Predictive
Modeling and Diagnostic Monitoring of Extreme Science
Workflows’’.

Note

1. http://tpeterka.github.io/maui-project/

References

Abbasi H, Wolf M, Eisenhauer G, et al. (2009) DataStager:
scalable data staging services for petascale applications.
In: 18th ACM international symposium on high performance
distributed computing, 2009, pp. 39–48. DOI:10.1007/s10
586-010-0135-6.

Altintas I, Berkley C, Jaeger E, et al. (2004) Kepler: an exten-
sible system for design and execution of scientific work-
flows. In: 16th international conference on scientific and
statistical database management, Santorini Island, Greece,
21–23 June 2004.

Aktas MF, Haldeman G and Parashar M (2014) Flexible
scheduling and control of bandwidth and in-transit ser-
vices for end-to-end application workflows. In: Fourth
international workshop on network-aware data manage-
ment, New Orleans, Louisiana, USA, 16 November 2014,
pp. 28–31.

Apache Drill – Schema-free SQL for Hadoop, NoSQL and
Cloud Storage [Online]. Available at: https://drill.apache
.org/ (accessed November 2016).

Arteaga A, Fuhrer O and Hoefler T (2014) Designing bit-
reproducible portable high-performance applications. In:
IEEE 28th international parallel and distributed processing
symposium, Phoenix, Arizona, USA, 19–23 May 2014, pp.
1235–1244.

Bavoil L, Callahan SP, Crossno PJ, et al. (2005) VisTrails:
enabling interactive multiple-view visualizations. In: In
IEEE visualization 2005, pp. 135–142. DOI:10.1109/
VISUAL.2005.1532788.

Bergmann R and Gil Y (2014) Similarity assessment and effi-
cient retrieval of semantic workflows. Information Systems
40: 115–127.

Balderrama JR, Simonin M, Ramakrishnan L, et al. (2014)
Combining workflow templates with a shared space-based

execution model. In: Johan M and Ian JT (eds.) Proceed-
ings of the 9th workshop on workflows in support of large-
scale science, New Orleans, LA, USA, 16–21 November
2014, pp. 50–58.

Biddiscombe J, Geveci B, Martin K, et al. (2007) Time depen-
dent processing in a parallel pipeline architecture. IEEE
Transactions on Visualization and Computer Graphics
13(6): 1376–1383.

Benedict MN, Mundy MB, Henry CS, et al., (2014) Likeli-
hood-based gene annotations for gap filling and quality
assessment in genome-scale metabolic models. PLoS Com-
putational Biology 10(10): e1003882.

BDEC Committee (2016) The BDEC ‘Pathways to Conver-
gence’ Report. Available at: http://www.exascale.org/
bdec/sites/www.exascale.org.bdec/files/whitepapers/bdec
2017pathways_v2.pdf.

Brin S and Page L (1998) The anatomy of a large-scale hyper-
textual web search engine. Computer networks and ISDN
systems 30(1–7): 107–117.

Balaji P and Kimpe D (2013) On the reproducibility of MPI
reduction operations. In: Erol G, Guojun W and Qingping
Z (eds.) 10th IEEE international conference on high perfor-
mance computing and communications & 2013 IEEE inter-
national conference on embedded and ubiquitous computing,
Zhangjiajie, China, 13–15 November 2013, pp. 407–414.

Barga R, Jackson J, Araujo N, et al. (2008) The trident scien-
tific workflow workbench. In: Geoffrey F (ed.) Proceedings
of the 2008 fourth ieee international conference on eScience,
Indianapolis, IN, USA, 10–12 December 2008, pp. 317–
318.

Bui P, Yu L and Thain D (2010) Weaver: integrating distribu-
ted computing abstractions into scientific workflows using
python. In: Salim H and Kate K (eds.) Proceedings of the
19th ACM international symposium on high performance
distributed computing, Chicago, IL, USA, 21–25 June 2010,
pp. 636–643.

Bhat VN (2008) Autonomic Management of Data Streaming
and In-Transit Processing for Data Intensive Scientific
Workflows. PhD thesis, The State University of New Jer-
sey, Rutgers.

Bennett JC, Abbasi H, Bremer PT, et al. (2012) Combining
in-situ and in-transit processing to enable extreme-scale
scientific analysis. In: Jeffrey KH (ed.) Proceedings of the
international conference on high performance computing,
networking, storage and analysis, Los Alamitos, CA, USA,
10–16 November 2012, pp. 491–499. IEEE Computer Soci-
ety Press.

Bailey DH (2005) High-precision floating-point arithmetic in
scientific computation. Computer Science Engineering 7(3):
54–61.

Burtscher M, Kim BD, Diamond J, et al. (2010) PerfExpert:
an easy-to-use performance diagnosis tool for HPC appli-
cations. In: Barry VH (ed.) Proceedings of the 2010 ACM/
IEEE international conference for high performance com-
puting, networking, storage and analysis, New Orleans, LA,
USA, 13–19 November 2010, pp. 1–11. IEEE Computer
Society.

Cappello F (2009) Fault tolerance in petascale/exascale sys-
tems: current knowledge, challenges and research opportu-
nities. International Journal of High Performance
Computing Applications 23(3): 212–226.

12 The International Journal of High Performance Computing Applications 00(0)



Chapp D, Johnston T and Taufer M (2015) On the need for
reproducible numerical accuracy through intelligent run-
time selection of reduction algorithms at the extreme
scale. In: Pavan B and Michela T (eds.) Presented at the
IEEE cluster conference, Chicago, IL, USA, 8–11
September.

Chiang WF, Gopalakrishnan G, Rakamaric Z, et al. (2013)
Determinism and reproducibility in large-scale HPC sys-
tems. In: Workshop determinism correctness parallel pro-
gramming (WoDet), Houston, TX, USA, 16–20 March
2013.

Churches D, Gombas G, Harrison A, et al. (2006) Program-
ming scientific and distributed workflow with Triana ser-
vices: research articles. Concurrency and Computation:
Practice and Experience 18(10): 1021–1037.

Cattell R (2011) Scalable SQL and NoSQL data stores. ACM
Sigmod Record 39(4): 12–27.

Cuevas-Vicenttı́n V, Dey S, Wang ML, et al. (2012) Modeling
and querying scientific workflow provenance in the
D-OPM. In: Jeffrey KH (ed.) High performance comput-
ing, networking storage and analysis, Los Alamitos, CA,
USA, 10–16 November 2012, pp. 119–128. IEEE Com-
puter Society Press.

Clarke JA and Mark ER (2007) Enhancements to the eXten-
sible data model and format (XDMF). In: DoD high per-
formance computing modernization program users group
conference, 18–21 June 2007, pp. 322–327. Washington,
DC: IEEE Computer Society.

Considine DM and Considine GD (1999) Van Nostrand’s
Scientific Encyclopedia, 5th ed. New York: Wiley
Producer.

Deelman E, Vahi K, Juve G, et al. (2015) Pegasus, a workflow
management system for science automation. Future Gener-
ation Computer Systems 46: 17–35.

Demmel J and Nguyen HD (2015) Parallel reproducible sum-
mation. IEEE Transactions on Computers 64(7):
2060–2070.

Dean J and Ghemawat S (2004) MapReduce: simplified data
processing on large clusters. In: Proceedings of the 6th
conference on symposium on operating systems design &
implementation – Volume 6, San Francisco, CA, 6–8
December 2004, pp. 10–10. USENIX Association Berkeley.

De Oliveira D, Ocaña KACS, Baião F, et al. (2012) A
provenance-based adaptive scheduling heuristic for paral-
lel scientific workflows in clouds. Journal of Grid Comput-
ing 10(3): 521–552.

Docan C, Parashar M, Cummings J, et al. (2011) Moving the
code to the data – dynamic code deployment using active
spaces. In: Sussman A (ed) IEEE international parallel &
distributed processing symposium, Anchorage, Alaska,
USA, 16–20 May 2011, pp. 758–769.

Dorier M, Dreher M, Peterka T, et al. (2015) Lessons learned
from building in situ coupling frameworks. In: Bethel EW,
Vishwanath V, Weber GH and Wolf M (eds) First work-
shop on in situ infrastructures for enabling extreme-scale
analysis and visualization, Austin, TX, 16 November 2015,
pp. 19–24.

Docan C, Parashar M and Klasky S (2010) DataSpaces: an
interaction and coordination framework for coupled

simulation workflows. In: Hariri S and Keahey K (eds)
Proceedings of the 19th ACM international symposium on
high performance distributed computing, New York, NY,
USA, 2010, pp. 25–36. New York: ACM.

Dayal J, Bratcher D, Eisenhauer G, et al. (2014) Flexpath:
type-based publish/subscribe system for large-scale
science analytics. In: Raicu I (ed) 2014 14th IEEE/ACM
international symposium on cluster, cloud and grid
computing, Chicago, IL, USA, 26–29 May 2014, pp.
246–255.

Deelman E, Blythe J, Gil Y, et al. (2004) Pegasus: mapping
scientific workflows onto the grid. In: de Compostela S
(ed) Across grid conference. Spain, 13–14 February, Ber-
lin, New York: Springer.

Deelman E, Singh G, Su MH, et al. (2005) Pegasus: a
framework for mapping complex scientific workflows
onto distributed systems. Scientific Programming. 13(3):
219–237.

Dreher M and Peterka T (2016) Bredala: semantic data redis-
tribution for in situ applications. In: Dongarra J, Mat-
suoka S and King C-T (eds) 2016 IEEE international
conference on cluster computing (CLUSTER) Taipei, Tai-
wan, 13–15 September 2015, pp. 279–288.

Dayal J, Cao J, Eisenhauer G, et al. (2013) I/O Containers:
managing the data analytics and visualization pipelines of
high end codes. In: Bougé L and Hong B (eds) IEEE 27th
international symposium on parallel and distributed process-
ing workshops and PhD forum, Boston, Massachusetts,
USA, 20–24 May 2013, pp. 2015–2024.

Eaton B, Gregory J, Drach B, et al. (2011) NetCDF Climate
and Forecast (CF) Metadata Conventions, Version 1.6, 5
December. Available at: http://cfconventions.org

Ewa Deelman, et al. (2016) The Future of Scientific Work-
flows Report of the DOE NGNS/CS Scientific Workflows
Workshop. U.S. Department of Energy, Office of Science,
20–21 April 2015.

Ekanayake J, Pallickara S and Fox G (2008) MapReduce for
data intensive scientific analyses. In: Fox G (ed) Proceed-
ings of the 2008 fourth IEEE international conference on
eScience, Indianapolis, IN, USA, 10–12 December 2008,
pp. 277–284.

Fox G, Qiu J and Jha S (2014) High Performance High Func-
tionality Big Data Software Stack. Available at: http://
www.exascale.org/bdec/sites/www.exascale.org.bdec/files/
whitepapers/fox.pdf

Gamell M, Katz DS, Kolla H, et al (2014) Exploring auto-
matic, online failure recovery for scientific applications at
extreme scales. In: New Orleans, LA, USA, 16–21 Novem-
ber 2014, International conference for high performance
computing, networking, storage and analysis, pp. 895–906.
Piscataway, NJ: IEEE Press.

Garijo D and Gil Y (2012) Towards Open Publication of Reu-
sable Scientific Workflows: Abstractions, Standards, and
Linked Data. Pennsylvania: Citeseer.

Giardine B, Riemer C, Hardison RC, et al. (2005) Galaxy: a
platform for interactive large-scale genome analysis. Gen-
ome Research 15(10): 1451–1455.

Goecks J, Nekrutenko A, Taylor J, et al. (2010) Galaxy: a
comprehensive approach for supporting accessible,

Deelman et al. 13



reproducible, and transparent computational research in
the life sciences. Genome biology 11(8): R86.

Graves R, Jordan TH, Callaghan S, et al. (2011) CyberShake:
a physics-based seismic hazard model for southern califor-
nia. Pure Applied Geophysics 168(3): 367–381.

Gustafson JL (2015) The End of Error: Unum Computing.
Boca Raton: CRC Press.

Habib S, Pope A, Finkel H, et al. (2016, January)HACC:
Simulating sky surveys on state-of-the-art supercomputing
architectures, New Astronomy 42: 49–65. Available at:
http://dx.doi.org/10.1016/j.newast.2015.06.003

Jacob JC, Katz DS, Berriman GB, et al. (2010) Montage: a
grid portal and software toolkit for science-grade astro-
nomical image mosaicking. Computing Research
Repository

Juve G, Chervenak A, Deelman E, et al. (2013) Characterizing
and profiling scientific workflows. Future Generation Com-
puter Systems 29(3): 682–692.

Jha S, Qiu J, Luckow A, et al. (2014) A tale of two data-
intensive paradigms: applications, abstractions, and archi-
tectures. In: Hofmann P, Ming-Chien Shan M-C and
Chou W (eds) 2014 IEEE international congress on big
data, Anchorage, AK, USA, 27 June–2 July 2014, pp.
645–652. IEEE Computer Society Press.

Khan F, Hammonds J, Narayanan S, et al. (2013) Effective
end-to-end management of data acquisition and analysis
for X-ray photon correlation spectroscopy. In: Marshall
C, Fisher J and Schaa VRW (eds) Presented at the ICA-
LEPCS. Available at: http://accelconf.web.cern. ch/Accel-
Conf/ICALEPCS2013/

Kleese van Dam K, Stephan EG, Raju B, et al. (2015)
Enabling Structured Exploration of Workflow Performance
Variability in Extreme-Scale Environments. In: No. PNNL-
SA-120941. Pacific Northwest National Laboratory
(PNNL), Richland, WA, US.

Kahan W (1965) Pracniques: further remarks on reducing
truncation errors. Communications of the ACM 8(1): 40.

LANL, NERSC and SNL (2016, July) APEX workflows.
Available at: http://www.nersc.gov/assets/apex-workflows-
v2.pdf, SAND2016-2371 O, LA-UR-15-29113

Lofstead JF, Klasky S, Schwan K, et al. (2008) Flexible IO
and integration for scientific codes through the adaptable
IO system (ADIOS). In: Kim Y and Li XA (eds) Pro-
ceedings of the 6th international workshop on challenges of
large applications in distributed environments, Boston, MA,
USA, 23–27 June 2008, pp. 15–24. New York, NY, USA:
ACM.

Logan J, Klasky S, Abbasi H, et al. (2012) Understanding I/O
performance using I/O skeletal applications. In: Kaklama-
nis C, Papatheodorou T and Spirakis PG (eds) Euro-Par
2012 parallel processing 7484, Berlin, Heidelberg, 2012,
pp. 77–88. Berlin: Springer

Lim C, Lu S, Chebotko A, et al. (2011) Storing, reasoning,
and querying OPM-compliant scientific workflow prove-
nance using relational databases. Future Generation Com-
puter Systems 27(6): 781–789.

Lofstead JF, Klasky S, Schwan K, et al. (2008) Flexible IO
and integration for scientific codes through the adaptable
IO system (ADIOS). In: Kim Y and Li XA (eds) 6th inter-
national workshop on challenges of large applications in

distributed environments, Boston, MA, USA, 23–27 June
2008, pp. 15–24. New York, NY, USA: ACM.

Moustakas D, Lang PT, Pegg S, et al. (2006) Development
and validation of a modular, extensible docking program:
DOCK 5. Journal of Computer-Aided Molecular Design
20(10–11): 601–619.

Moreau L, Clifford B, Freire J, et al. (2011) The open prove-
nance model core specification (v1.1). Future Generation
Computer Systems 27(6): 743–756.

Melnik S, Gubarev A, Long JJ, et al. (2010) Dremel: interac-
tive analysis of web-scale datasets. Proceedings of the
VLDB Endowment 3(1–2): 330–339.

Muniswamy-Reddy KK, Braun U, Holland DA, et al. (2009)
Layering in provenance systems. In: Voelker GM
and Wolman A (eds) Proceedings of the 2009 conference
on USENIX annual technical conference, San Diego, CA,
14–19 June 2009, pp. 10–10.

Malewicz G, Austern MH, Bik AJ, et al (2010) Pregel: a sys-
tem for large-scale graph processing. In: Elmagarmid A
and Agrawal D (eds) Proceedings of the 2010 ACM SIG-
MOD international conference on management of data,
Indianapolis, IN, USA, 6–11 June 2010, pp. 135–146. New
York, NY, USA: ACM.

Mathog DR (2003) Parallel BLAST on split databases. Bioin-
formatics 19(14): 1865–1866.

Maechling P, Deelman E, Zhao L, et al. (2006) SCEC Cyber-
Shake workflows—automating probabilistic seismic
hazard analysis calculations. In: Workflows for e-Science
(eds I Taylor,
E Deelman, D Gannon and M Shields) Berlin: Springer,
pp. 143–163.

Meyer L, Mattoso M, Wilde M, et al. (2013) WGL: A Work-
flow Generator Language and Utility, Technical Report,
University of Chicago.

Maheshwari K, Kelly D, Krieder SJ, et al. (2013) Reusability
in science: from initial user engagement to dissemination
of results. In: 3rd workshop on sustainable software for
science: Practice and experiences (WSSSPE3), 28–29 Sep-
tember 2015, Boulder, CO.

Oinn T, Greenwood M, Addis M, et al. (2006) Taverna: les-
sons in creating a workflow environment for the life
sciences: research articles. Concurrency and Computation:
Practice and Experience 18(10): 1067–1100.

Parker SG and Johnson CR (1995) SCIRun: a scientific pro-
gramming environment for computational steering. In:
Karin S (ed) Supercomputing, 1995. Proceedings of the
IEEE/ACM SC95 conference, San Diego, CA, USA, 4–8
December 1995, pp. 52–52. New York, NY: ACM.

Prabhat and Koziol Q. (2014) High Performance Parallel I/O.
Chapman & Hall/CRC Computational Science. CRC Press.
Available at: http://dl.acm.org/citation.cfm?id=27 00549

Qui J, Jha S, Luckow A, et al. (2014) Towards HPC-ABDS:
an initial high-performance big data stack. Presented at the
Building Robust Big Data Ecosystem ISO/IEC JTC 1 Study
Group on Big Data, SDSC.

Ramakrishnan L, Poon S, Hendrix V, et al. (2014) Experi-
ences with user-centered design for the Tigres workflow
API. In: 10th IEEE international conference on e-Science,
Guarujá, SP, Brazil, 20–24 October 2014, pp. 290–297.
IEEE Computer Society Press.

14 The International Journal of High Performance Computing Applications 00(0)



Revol N and Theveny P (2014) Numerical reproducibility of
high-performance computations using floating-point or
interval arithmetic. Presented at the Challenges in 21st Cen-
tury Experimental Mathematical Computation, Brown Uni-
versity, 21 July 2014.

Silva T, Freire J and Callahan SP (2007) Provenance for
visualizations: reproducibility and beyond. Computing in
Science & Engineering 9(5): 82–89.

Samak T, Gunter D, Goode M, et al. (2011) Failure prediction
and localization in large scientific workflows. In: Taylor IJ
and Montagnat J (eds) Proceedings of the 6th Workshop
on workflows in support of large-scale science, Seattle, WA,
USA, 12–18 November 2011, pp. 107–116. New York,
NY, USA: ACM.

Scheidegger CE, Vo HT, Koop D, et al. (2008) Querying and
re-using workflows with VsTrails. In: Lakshmanan LVS,
Ng RT and Shasha D (eds) ACM SIGMOD international
conference on management of data, Vancouver, Canada,
9–12 June 2008, pp. 1251–1254. New York, NY, USA:
ACM.

Shasharina S, Cary J, Durant M, et al. (2010) VizSchema – a
unified visualization of computational accelerator physics
data. In: Noda A, Petit-Jean-Genaz C, Schaa VRW, et al.
(eds) 1st international particle accelerator conference
(IPAC 2010), Kyoto, Japan, 23–28 May 2010, p.
TUPEC069. Geneva, Switzland: inPIRE.

Stodden V, McNutt M, Bailey DH, et al. (2016) Enhancing
reproducibility for computational methods. Science
354(6317): 1240–1241.

Sorenson H (1985) Kalman Filter: Theory and Applications.
Vol. 38. New York: IEEE Press.

Stonebraker M, Brown P, Poliakov A, et al. (2011) The archi-
tecture of SciDB. In: Cushing JB, French J and Shawn B
(eds) Proceedings of the 23rd international conference on sci-
entific and statistical database management, Portland, OR,
USA, 20–22 July 2011, pp. 1–16. Berlin: Springer.

Tchoua R, Choi J, Klasky S, et al. (2010) ADIOS visualiza-
tion schema: a first step towards improving interdisciplin-
ary collaboration in high performance computing. In:
IEEE 9th international conference on e-Science, Beijing,
China, 22–25 October 2013, pp. 27–34. IEEE Press. DOI:
0.1109/eScience.2013.24.

Thakur R. Parallel I/O Benchmarks, Applications, Traces.
May 2015. [Online]. Available at: http://www.mcs.anl.gov/
;thakur/pio-benchmarks.html (accessed July 2016)

Talukder KA, Kirley M and Buyya R (2009) Multiobjective
differential evolution for scheduling workflow applications
on global Grids. Concurrency and Computation: Practice
and Experience 21(13): 1742–1756.

Truong HL, Dustdar S and Fahringer T (2007) Performance
metrics and ontologies for grid workflows. Future Genera-
tion Computer Systems 23(6): 760–772.

Teranishi K and Heroux MA (2014) Toward local
failure local recovery resilience model using MPI-ULFM.
In: Dongarra J, Ishikawa Y and Hori A (eds) Proceedings
of the 21st European MPI users’ group meeting, Kyoto,
Japan, 9–12 September 2014, pp. 5151–5156. New York,
NY, USA: ACM.

Thall A (2006) Extended-precision floating-point numbers for
GPU computation. In: Finnegan J and McGrath M (eds)

ACM SIGGRAPH 2006 research posters, Boston, MA,
USA, 30 July–3 August 2006, New York, NY, USA:
ACM.

Taufer M, Padron O, Saponaro P, et al. (2010) Improving
numerical reproducibility and stability in large-scale
numerical simulations on GPUs. In: IEEE International
symposium on parallel distributed processing (IPDPS),
Atlanta, GA, USA, 19–23 April 2010, pp. 1–9. IEEE
Computer Society Press.

Top Ten Exascale Research Challenges (2014) DOE ASCAC
Subcommittee Report, Feb. Available at: https://science.
energy.gov/;/media/ascr/ascac/pdf/meetings/20140210/Top
10reportFEB14.pdf

Upson C, Faulhaber TA, Kamins D, et al. (1989) The appli-
cation visualization system: a computational environment
for scientific visualization. IEEE Computer Graphics and
Applications 9(4): 30–42.

Wilde M, Hategan M, Wozniak JM, et al. (2011) Swift: a lan-
guage for distributed parallel scripting. Parallel Computing
37(9): 633–652.

Weerawarana S, Curbera F, Leymann F, et al. (2005) Web
Services Platform Architecture: SOAP, WSDL, WS-Pol-
icy, WS-Addressing, WS-BPEL, WS-Reliable Messaging
and More. Upper Saddle River: Prentice Hall PTR.

Wilke J, Bennett J, Kolla H, et al. (2014) Extreme-scale viabi-
lity of collective communication for resilient task schedul-
ing and work stealing. In: Blough D (ed) 44th annual
IEEE/IFIP international conference on dependable systems
and networks, 23–26 June 2014, pp. 756–761. IEEE Com-
puter Society

Wolstencroft K, Haines R, Fellows D, et al. (2013) The
Taverna workflow suite: designing and executing work-
flows of web services on the desktop, web or in the cloud.
Nucleic Acids Research 41: W557–W561.

Wilde M, Foster I, Iskra K, et al. (2009) Parallel scripting for
applications at the petascale and beyond. Computer 42(11):
50–60.

Workshop on the Future of Scientific Workflows (2015).
[Online]. Available at: http://extremescaleresearch.labworks.
org/events/workshop-future-scientific-workflows. (accessed
September 2016).

Yelick K (2012) Algorithmic challenges of exascale comput-
ing. Presented at the Synchronization-reducing and Commu-
nication-reducing Algorithms and Programming Models for
Large-scale Simulations Workshop, Brown University, Jan-
uary 2012.

Zheng F, Abbasi H, Cao J, et al. (2011) In-situ I/O process-
ing: a case for location flexibility. In: Maltzahn C and Bent
J (eds) Proceedings of the sixth workshop on parallel data
storage, Seattle, WA, USA, 12–18 November 2011, pp.
37–42. ACM: New York, NY, USA

Zhao Y, Hategan M, Clifford B, et al. (2007) Swift: fast, reli-
able, loosely coupled parallel computation. In: Zhang LJ,
Yang J and Hung PCK (eds) IEEE congress on services,
Salt Lake City, Utah, USA, 9–13 July 2007, IEEE Com-
puter Society.

Zheng F, Abbasi H, Docan C, et al. (2010) PreDatA – pre-
paratory data analytics on peta-scale machines. In: Phillips
C (ed) IPDPS’10, 19–23 April 2010, pp. 1–12. IEEE Com-
puter Society.

Deelman et al. 15



Zhang Z and Katz DS (2014) Using application skeletons to
improve eScience infrastructure. In: Cesar RM Jr. and Oli-
veira MCF (eds) 10th IEEE international conference on e-
Science, eScience 2014, Sao Paulo, Brazil, 20–24 October
2014, pp. 111–118. IEEE Computer Society.

Author biographies

Ewa Deelman is a research professor at the USC com-
puter science department and the director of science
automation technologies at the USC Information
Sciences Institute. Dr. Deelman’s research interests
include the design and exploration of collaborative, dis-
tributed scientific environments, with particular
emphasis on workflow management as well as the man-
agement of large amounts of data and metadata. In
2007, Dr. Deelman edited a book, Workflows in e-
Science: Scientific Workflows for Grids, published by
Springer. She is also the founder of the annual
Workshop on Workflows in Support of Large-Scale
Science, which is held in conjunction with the Super
Computing conference. In 1997, Dr. Deelman received
her PhD in computer science from the Rensselaer
Polytechnic Institute.

Tom Peterka is a computer scientist at Argonne
National Laboratory, fellow at the Computation
Institute of the University of Chicago, adjunct assistant
professor at the University of Illinois at Chicago, and
fellow at the Northwestern Argonne Institute for
Science and Engineering. His research interests are in
large-scale parallelism for in situ analysis of scientific
data. His work has led to three best paper awards and
publications in ACM SIGGRAPH, IEEE VR, IEEE
TVCG, and ACM/IEEE SC, among others. Peterka
received his PhD in computer science from the
University of Illinois at Chicago, and he currently works
actively in several DOE- and NSF-funded projects.

Ilkay Altintas is the chief data science officer at SDSC,
UC San Diego, where she is also the founder and direc-
tor for the Workflows for Data Science Center of
Excellence. Since joining SDSC in 2001, she has
worked on different aspects of scientific workflows as a
principal investigator across a wide range of cross-
disciplinary NSF, DOE, NIH, and Moore Foundation
projects. She is a co-initiator of the popular open-
source Kepler Scientific Workflow System and the
coauthor of publications related to computational data
science and e-Sciences at the intersection of scientific
workflows, provenance, distributed computing, bioin-
formatics, observatory systems, conceptual data query-
ing, and software modeling. Ilkay is the recipient of the
first SDSC Pi Person of the Year in 2014, and the
IEEE TCSC Award for Excellence in Scalable
Computing for Early Career Researchers in 2015. Ilkay
Altintas received her PhD degree from the University

of Amsterdam in the Netherlands with an emphasis on
provenance of workflow-driven collaborative science
and she is currently an assistant research scientist at
UC San Diego.

Christopher D Carothers is a faculty member in the
computer science department at Rensselaer Polytechnic
Institute. He received the PhD from Georgia Institute of
Technology in 1997. Prior to joining RPI in 1998, he
was a research scientist at the Georgia Institute of
Technology. His research interests are focused on mas-
sively parallel computing which involves the creation of
high-fidelity models of extreme-scale networks and com-
puter systems. These models have executed using nearly
2,000,000 processing cores on the largest leadership-class
supercomputers in the world. Professor Carothers serves
as the director for the Rensselaer Center for
Computational Innovations (CCI). The center provides
computation and storage resources to diverse network of
researchers, faculty, and students from Rensselaer, gov-
ernment laboratories, and companies across a number of
science and engineering disciplines. The flagship super-
computer is a 1 petaFLOP IBM Blue Gene/Q system
with 80 terabytes of memory, 81,920 processing cores
and over 2 petabytes of disk storage.

Kerstin Kleese van Dam is the director of the
Brookhaven National Laboratory (BNL)
Computational Science Initiative (CSI) that focuses in
its core on data science-specific research at the extreme
scale. Her research interests include large-scale data
management, streaming data analysis, provenance, and
reproducibility. She is currently involved in research
projects in workflow performance analysis (ASCR
IPPD) and exascale in situ data reduction and analysis
workflows (ASCR ECP CODAR).

Kenneth Moreland is a principal member of the techni-
cal staff at Sandia National Laboratories. His research
interests include in situ visualization and large-scale,
finely threaded scientific visualization algorithms. Dr.
Moreland has a PhD in computer science from the
University of New Mexico.

Manish Parashar is distinguished professor of com-
puter science at Rutgers University, and founding
director of the Rutgers Discovery Informatics Institute
(RDI2). He is also founding chair of the IEEE
Technical Consortium on High Performance
Computing (TCHPC). His research interests are in the
broad areas of Parallel and Distributed Computing
and Computational and Data-Enabled Science and
Engineering. Manish is fellow of AAAS, fellow of
IEEE/IEEE Computer Society, and ACM distin-
guished scientist. For more information, please visit
http://parashar.rutgers.edu/.

16 The International Journal of High Performance Computing Applications 00(0)



Lavanya Ramakrishnan is a staff scientist at Lawrence
Berkeley National Lab. Her research interests are in
software tools for computational and data-intensive
science. Ramakrishnan has previously worked as a
research staff member at Renaissance Computing
Institute and MCNC in North Carolina. She has mas-
ters and doctoral degrees in computer science from
Indiana University and a bachelor degree in computer
engineering from VJTI, University of Mumbai. She
joined LBL as an Alvarez postdoctoral fellow in 2009.

Michela Taufer is a JPMorgan Chase scholar in the
department of computer and information sciences and
an associate professor in the same department at the
University of Delaware. She earned her doctoral degree
in computer science from the Swiss Federal Institute of
Technology (Switzerland). In 2003–2004, she was a La
Jolla Interfaces in Science Training Program
Postdoctoral Fellow at the University of California
San Diego and The Scripps Research Institute, where
she worked on interdisciplinary projects in computer
systems and computational chemistry. Taufer’s
research focuses on high-performance computing
(HPC) including scientific applications; performance
analysis, modeling, and optimization of multi-scale

applications on heterogeneous computing, cloud
computing, and volunteer computing; numerical repro-
ducibility and stability of large-scale simulations on
multi-core platforms; data analytics and MapReduce.

Jeffrey Vetter, is a distinguished R&D staff member at
Oak Ridge National Laboratory (ORNL). At ORNL,
Vetter is the founding group leader of the Future
Technologies Group in the Computer Science and
Mathematics Division. Vetter also holds joint appoint-
ments at the Georgia Institute of Technology and the
University of Tennessee-Knoxville. Vetter earned his
PhD in computer science from the Georgia Institute of
Technology. Vetter is a fellow of the IEEE and a dis-
tinguished scientist member of the ACM. In 2010,
Vetter, as part of an interdisciplinary team, was
awarded the ACM Gordon Bell Prize. Also, his work
has won awards at major conferences including Best
Paper Awards at IPDPS and EuroPar, and Best
Presentation at EASC 2015. Vetter served as the SC15
Technical Program Chair. His recent books, entitled
Contemporary High Performance Computing: From
Petascale toward Exascale (Vols. 1 and 2), survey the
international landscape of HPC. For more informa-
tion, see his website http://ft.ornl.gov/;vetter/.

Deelman et al. 17


