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Abstract. As in situ analysis goes mainstream, ease of development,
deployment, and maintenance becomes essential, perhaps more so than
raw capabilities. In this paper, we present the design and implementa-
tion of Catalyst, an API for in situ analysis using ParaView, which we
refactored with these objectives in mind. Our implementation combines
design ideas from in situ frameworks and HPC tools, like Ascent and
MPICH.
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1 Introduction

Since the first release of ParaView Catalyst [4,6], the in situ data analysis land-
scape has evolved considerably. A wide array of libraries and frameworks are
now available, each targeting different use-cases or environments [1, 5, 11, 18].
Leveraging these in situ frameworks for data analysis typically involves mod-
ifying the simulation code to pass and convert the simulation data structures
to something that the in situ data analysis frameworks can interpret and then
request processing. This development step is called instrumentation. With Para-
View Catalyst, this instrumentation process has involved developing an adaptor
that converts simulation data structures to VTK data objects. The VTK data
model defines various ways of representing computation meshes and variables.
The VTK data objects are then passed to the ParaView Catalyst engine for
processing using the provided API. Except for a few Python-based simulations,
i.e., simulations that use Python as the primary programming language or those
that use Python to pass data (and control) to ParaView Catalyst, this adaptor
is invariably a C++ codebase that requires a ParaView software-development-
kit (SDK) to build. The simulation build and deployment workflow thus involves
building the adaptor with a ParaView SDK and linking that with the simulation.
This workflow, which seemed fairly reasonable in the early years, exposed signif-
icant maintenance challenges as the simulation codes and ParaView progressed
through multiple versions.
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Challenges developing the adaptor: Writing a new adaptor requires an in-
timate understanding of the VTK data model. The choice of the type of data
object often has implications on both memory overhead and performance. Fur-
thermore, VTK data APIs often support multiple ways of initialization. We ex-
pect developers to be aware of which APIs result in deep-copies and which ones
do not. It is not uncommon for developers to pick an incorrect variant with-
out realizing that it results in deep copies. The VTK data model itself keeps
evolving. Since the first release of ParaView Catalyst, there have been changes
to array layouts (array-of-structures and structure-of-arrays) [17], ghost-cell def-
initions [14], unstructured grid cell connectivity layout, and even addition of
new data types for better representing composite datasets and AMR datasets.
Several of these changes were motivated by the need to support various stan-
dard simulation memory layouts to avoid deep copies. Leveraging these changes,
however, requires updating the adaptors to use the new APIs. This update adds
another burden on the adaptor developers – to stay up-to-date with such data
model changes and then update the adaptor to leverage them.

Challenges with build and deployment: For Fortran, C, and C++ simu-
lators, the standard adaptor is written in C++ and uses ParaView and VTK
C++ APIs. This process requires the adaptor is built using a ParaView sotware-
development-kit (SDK). The SDK provides all the necessary ParaView headers
and libraries needed to compile the adaptor. These are not available in standard
ParaView package. Thus, developers have to build ParaView and all its depen-
dencies from source and cannot use readily available binary distributions. The
large set of dependencies and the diversity of supported compilers and platforms
make providing a redistributable universal SDK challenging. Building ParaView
and all its dependencies from source can be quite challenging, too.

There are several ways to build ParaView and its dependencies, including
superbuild [16] and Spack [8]; however, with each release, there are inevitable
new issues since the platforms, the dependencies, and the ParaView codebase
are continually changing. Furthermore, the adaptor’s build-system often needs
to be updated to reflect changes to ParaView’s build system. Over the years,
ParaView library names have changed as have the ways of linking against them.
These changes require that in addition to keeping abreast with the API changes,
adaptor maintainers need to update the build system with each ParaView re-
lease. Since the adaptor links with the simulation executable, the simulation has
a transitive dependency on the ParaView build. Thus, for every new release of
ParaView, the maintainer needs to update and build the adaptor and rebuild
the simulation. Each simulation build is tightly coupled with a specific ParaView
build. Short of having multiple builds, it is not easy to switch between different
adaptor or ParaView versions. Consequently, if there is a regression in a newer
version of ParaView, the users cannot quickly test with an older version without
having a separate complete build for the simulation.

These challenges apply to all of the in situ frameworks mentioned earlier to
varying degrees, primarily based on the complexity, capability, and flexibility of
the codebase and its dependencies.
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In this paper, we propose an approach to the in situ API design that alleviates
these maintenance difficulties for production in situ analysis and visualization.
Our proposal defines a stable API that we call the Catalyst API and the mech-
anisms to provide ABI-compatible API implementation. ParaView-Catalyst is
simply implementation of the Catalyst API that uses ParaView for data pro-
cessing and visualization and is ABI-compatible with any other Catalyst API
implementations. ABI-compatibility implies that a simulation built using any
Catalyst API implementation can swap the implementation at runtime without
rebuilding the simulation code.

2 Design

Our design takes a multi-pronged approach to address the challenges we encoun-
tered as we started using ParaView for in situ data analysis and visualization
in production workflows. We liberally leverage design ideas and implementation
from other in situ frameworks and HPC tools during the design process whenever
possible.

2.1 Simplifying the adaptor

One of the challenges with the original Catalyst adaptor design is that it requires
the developer to have a reasonable understanding of the VTK data model. Our
original thinking was that it would be VTK and ParaView developers who would
be the ones developing such adaptors – which, it turns out, does not reflect the
reality. More often than not, it is the members of the simulation development
community taking on the adaptor’s development. This development requires a
deep understanding of the VTK data model to make critical design choices when
mapping simulation data structures to the VTK data model. The requirement is
unreasonable and burdensome, impeding adoption and potentially resulting in
implementations that leave room for memory and performance improvements.

Strawman [10], which later evolved into Ascent [12], presents an unique solu-
tion to this challenge. Instead of making the adaptor developers do the mapping
to the target data model, it provides an API for describing and passing arrays
of data. This API is called Conduit [10], which allows simulation developers
to describe the simulation data, such as computational meshes and fields. By
standardizing one (or several) schemas that support a diverse collection of com-
putational meshes and field arrays encountered, we can provide standard imple-
mentations for converting a Conduit mesh description to an appropriate VTK
data object. These converter implementations can be part of the ParaView dis-
tribution and hence evolve as the ParaView/VTK APIs evolve to represent the
data optimally without requiring any effort on the part of simulation developers.
Thus, the adaptor no longer requires converting simulation data structures to
VTK data structures, but rather simply describes what they are using Conduit.
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2.2 Simplifying build and deployment

Our design takes inspiration from the MPICH ABI compatibility initiative [15] to
simplify the build and deployment process. The initiative aims to enable develop-
ers to build their code using any compatible MPI implementation and swap with
another compatible implementation at runtime. This makes it easier to distribute
executables (or libraries) without binding to a specific MPI implementation. We
extend this concept for in situ APIs. We explicitly define functions that form
the in situ API, which includes the API to describe simulation data structures
(Section 2.1) and a few other function calls to initialize, update and finalize the
in situ analysis. This API specification is what we now refer to as Catalyst. By
enabling implementations of this API that are runtime compatible with one an-
other, simulations can be compiled with one implementation and executed with
a different implementation. This decoupling has several advantages.

First, developers no longer need a ParaView SDK to compile instrumented
simulation codes. They can use any Catalyst API implementation, including the
stub implementation that we provide. This stub implementation is lightweight,
minimal-capability, easy-to-build, and has insignificant overhead at runtime. De-
velopers can use this implementation during the compilation stage to compile
the adaptor. At execution time, they can easily swap the Catalyst implementa-
tion using environment modules or other platform-specific loader configuration
mechanisms. The ParaView distribution includes an implementation of the Cat-
alyst API that we now refer to as ParaView-Catalyst. Thus, ParaView-Catalyst
is simply one specific implementation of the Catalyst API that uses ParaView
for data processing.

Second, switching between multiple versions of Catalyst API implementa-
tions does not require any recompilation. The Catalyst API version and the
ParaView versions are independent. Thus, several versions of ParaView can pro-
vide Catalyst implementations that are runtime compatible with each other.

Third, if, in the future, non-backward compatible API changes are introduced
to the Catalyst API causing its version number to change, implementations can
continue to support earlier versions. Thus, ParaView distributions can continue
to provide multiple versions of the ParaView-Catalyst library, each compatible
with a particular version of the Catalyst API.

3 Implementation

The Catalyst API, together with the stub implementation, is now a separate
project [7]. The project intentionally does not have any external dependencies.
This separation keeps the project simple to build and easy to deploy on any
platform with a C++ compiler and standard build tools. Simulation developers
can use this stub implementation of the API when instrumenting simulations
and do not need a full ParaView SDK.

Figure 1 shows the directory structure and relevant files in a Catalyst in-
stall on a Linux-based system. The Catalyst API’s current version number is



Catalyst Revised 5

# Catalyst install directory contents
..[install prefix]/
|-- include/
| |-- catalyst-2.0/
| |-- catalyst.h
| |-- (other headers)
| |-- lib/
| |-- libcatalyst.so -> libcatalyst.so.2
| |-- libcatalyst.so.2
| |-- ...

Fig. 1. Contents of a Catalyst install

2.0 to help distinguish it from the earlier implementation of ParaView Catalyst.
catalyst.h is the header with all function declarations that are part of the
public API. It internally includes other headers installed under the include/ di-
rectory. The libcatalyst.so, which is a symbolic link to libcatalyst.so.2, is
the single shared library for the stub implementation. The library name includes
the Catalyst API version number. Whenever the API changes in a non-ABI
compatible fashion, the number will be incremented. libcatalyst.so does not
have any runtime dependencies except C and C++ language runtimes.

The Catalyst API comprises C functions and data-structures alone. We do
not expose any C++ interface as part of this public API to avoid ABI com-
patibility issues when using different C++ compilers for compiling the simu-
lation and the Catalyst implementation. Using C also makes interfacing with
other languages such as Python and FORTRAN trivial. The API comprises four
catalyst .. functions that act as entry points to the Catalyst framework (Fig-
ure 2) and several conduit ... functions that are part of the Conduit C API
used to communicate data and other parameters.

1 /** initialize catalyst */
2 void catalyst_initialize(const conduit_node* params);
3

4 /** execute catalyst per cycle */
5 void catalyst_execute(const conduit_node* params);
6

7 /** finalize catalyst **/
8 void catalyst_finalize(const conduit_node* params);
9

10 /** query information about catalyst implementation and capabilities **/
11 void catalyst_about(conduit_node* params);

Fig. 2. Catalyst API

The conduit node object provides a JSON-inspired hierarchical description
of parameters and in-core data, which communicates both the control parameters
to configure the Catalyst implementation and the simulation meshes. A Cata-
lyst implementation is free to define an arbitrary schema for exchanging data
and control parameters with the simulation through this API. Simulations tar-
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geting a particular implementation use the appropriate schema when generating
the hierarchical description. ParaView-Catalyst, which is now a ParaView-based
implementation of the Catalyst API, supports the schema described in Figure 3.
The schema borrows heavily from the schema supported by Ascent [12] with
simple extensions to support ParaView-Catalyst concepts such as channels and
scripts.

1

2 { /* schema for ’catalyst_initialize ’ */
3 "catalyst": {
4 // all catalyst params/data are under this root
5 "scripts": {
6 // collection of Python scripts for analysis pipelines
7 "name0": "path/scriptname.py",
8 ...
9 }

10 }
11 }
12

13 { /* schema for ’catalyst_execute ’ */
14 "catalyst": {
15 "state": {
16 "cycle": [integer] /* cycle/timestep number */,
17 "time" : [number] /* time */
18 },
19 "channels": {
20 // named data channels.
21 "channel -name0" : {
22 "type": [string] /* type of the channel data */
23 "data": {} /* data description node based on chosen ’type’ */
24 }
25 }
26 }
27 }

Fig. 3. Schema supported by ParaView-Catalyst

The channels can be used to pass multiple meshes for in situ analysis. The
“type” attribute selects the mesh schema. Currently, ParaView-Catalyst sup-
ports the Conduit Mesh Blueprint [13], which covers a wide range of computa-
tion meshes and memory layouts. The “type” attribute lets us support additional
mesh description schema in future releases.

Instrumenting a simulation involves populating the conduit node object
with appropriate values based on the schema and invoking the catalyst ...

functions at appropriate times. There is no explicit mapping of simulation data
structures to VTK data objects anymore. Instead, developers simply provide
the data description. Converting that to VTK data objects is handled by the
ParaView-Catalyst library itself. The following snippet highlights modifications
necessary to a typical simulation to use Catalyst.

1 // this header is needed for all the conduit_ and catalyst_ functions
2 #include <catalyst.h>
3
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4 // ** initialize catalyst **
5 conduit_node* catalyst_init_params = conduit_node_create ();
6 // pass initialization parameters e.g. scripts to load.
7 conduit_node_set_path_char8_str(catalyst_init_params ,
8 "catalyst/scripts/script0", ".../ script0.py");
9 ...

10 catalyst_initialize(catalyst_init_params);
11 conduit_node_destroy(catalyst_init_params);
12

13 ...
14 for (cycle =0; ..., ++cycle) // simulation loop
15 {
16 // ..... advance simulation ...
17

18 // ** execute catalyst per timestep/cycle **
19 conduit_node* catalyst_exec_params = conduit_node_create ();
20 // ’state’ is used to pass time/cycle information.
21 conduit_node_set_path_int64(catalyst_exec_params , "catalyst/state/cycle",

cycle);
22 conduit_node_set_path_float64(catalyst_exec_params , "catalyst/state/time",

time);
23

24 // the data must be provided on a named channel. the name is determined by
the

25 // simulation. for this one , we’re calling it "grid".
26

27 // declare the type of the channel; we’re using Conduit Mesh Blueprint
28 // to describe the mesh and fields , chosen using the type "mesh"; in future
29 // other types can be supported.
30 conduit_node_set_path_char8_str(catalyst_exec_params ,
31 "catalyst/channels/grid/type", "mesh");
32

33 // now , create the mesh;
34 conduit_node* mesh = conduit_node_create ();
35

36 // The ’mesh’ node is populated as per Conduit Mesh Blueprint applicable
37 // for the specific simulation. For example. a uniform grid is defined as

follows
38 conduit_node_set_path_char8_str(mesh , "coordsets/coords/type", "uniform");
39 conduit_node_set_path_int64(mesh , "coordsets/coords/dims/i", i_dim);
40 conduit_node_set_path_int64(mesh , "coordsets/coords/dims/j", j_dim);
41 conduit_node_set_path_int64(mesh , "coordsets/coords/dims/k", k_dim);
42 // .. and so on. Refer to Conduit Mesh Blueprint for details.
43

44 ...
45 // the mesh is passed on the named channel as "../ data"
46 conduit_node_set_path_external_node(catalyst_exec_params ,
47 "catalyst/channels/grid/data", mesh);
48 catalyst_execute(catalyst_exec_params);
49 conduit_node_destroy(catalyst_exec_params);
50 conduit_node_destroy(mesh);
51 }
52 ...
53

54 // ** finalize catalyst **
55 conduit_node* catalyst_fini_params = conduit_node_create ();
56 catalyst_finalize(catalyst_fini_params);
57 conduit_node_destroy(catalyst_fini_params);

The instrumented simulation can be compiled with any implementation of
the Catalyst API. The stub implementation is preferred since it is easy to build
and has no dependencies. To compile this adaptor, one only needs to add the
path to the catalyst.h header to the include path and link with the single
catalyst shared library. With gcc, for example, this can be done as follows:
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1 $ gcc -I<catalyst -install -prefix >/ include/catalyst -2.0
2 -L<catalyst -install -prefix >/lib
3 -lcatalyst
4 [source files] -o [output]

At execution time, the operating system loader will look to load the library
libcatalyst.so.2. Since all Catalyst implementations for a specific version are
compatible with one another, the end-user can make the loader load a different
Catalyst implementation than the one compiled using standard mechanisms. On
Linux systems, one can set the LD LIBRARY PATH environment variable to point to
the libcatalyst.so.2 in a ParaView binary distribution to use that ParaView-
Catalyst implementation. Switching to another version solely requires changing
the environment and re-executing, no need to recompile or require a ParaView
SDK. On most HPC systems, this can be easily handled by environment modules.

4 Evaluation

To evaluate the design, we instrumented LULESH [9] – a mini-application (mini-
app) that represents a typical hydrodynamics code, like ALE3D – to use the Cat-
alyst API. Incidentally, LULESH was previously instrumented with the legacy
ParaView/Catalyst framework [2], which allowed us to compare and contrast
the two implementations.
Build system: LULESH uses a simple Makefile to build the code. The first
thing that the legacy adaptor implementation did was convert the build-system
to use CMake instead because adding a build dependency to the legacy Par-
aView/Catalyst implementation was much easier in a CMake-based system; the
library dependency chain can be quite long and cumbersome to resolve outside
of CMake. The new implementation [3] did not require us to perform similar
work. We simply extended the Makefile to define two new variables, CATALYST -

CXXFLAGS and CATALYST LDFLAGS, and subsequently add them to the compile
and link lines, respectively.

1 # for Catalyst
2 CATALYST_ROOT =...
3 CATALYST_CXXFLAGS = -DVIZ_CATALYST =1 -I$(CATALYST_ROOT)/include/catalyst -2.0/
4 CATALYST_LDFLAGS = -L$(CATALYST_ROOT)/lib -lcatalyst
5

6 .cc.o: lulesh.h
7 @echo "Building $<"
8 $(CXX) -c $(CXXFLAGS) $(CATALYST_CXXFLAGS) -o $@ $<
9

10 lulesh2 .0: $(OBJECTS2 .0)
11 @echo "Linking"
12 $(CXX) $(OBJECTS2 .0) $(LDFLAGS) $(CATALYST_LDFLAGS) -lm -o $@

Adaptor complexity: The legacy adaptor included approximately 13 header
files. While this by itself is not necessarily a detriment, it is a good indication of
the number of different classes the adaptor used and the different building blocks
that the developer had to be aware of when developing the adaptor. In contrast,
the new adaptor code only includes one header, catalyst.h. The bulk of the
new adaptor code is simply populating the conduit node object according to the
schema described in Section 3. When deciding on the VTK dataset type to use,
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the legacy adaptor implementation for LULESH used a vtkUnstructuredGrid.
While that is acceptable, in retrospect, that is not the best choice in this case
since it requires that the cell connectivity is explicitly specified when the grid
is actually topologically regular. Not only does that result in memory overhead,
but it also impacts the performance of in situ analysis pipelines. This poor design
choice underscores one of the primary motivations for this effort to revise the
API. Without in-depth knowledge of the VTK data model, it was not easy to
make the best choice of which VTK dataset type to use, and the choice often
has a significant impact on the performance of the processing pipelines. The new
Catalyst API does not suffer from the same issue since the VTK dataset choice
is deferred to the Catalyst implementation, specifically, ParaView-Catalyst.
Code changes: Comparing the code changes between the two implementations
of the Catalyst Adaptor using git, we get the following:

1 # legacy version
2 git diff --stat master .. catalyst_adaptor
3 CMakeLists.txt | 38
4 lulesh -catalyst.cc | 209
5 lulesh -catalyst.h | 17
6 lulesh -util.cc | 13
7 lulesh.cc | 18
8 lulesh.h | 33
9 6 files changed , 325 insertions (+), 3 deletions (-)

10

11 # new version
12 git diff --compact -summary master ..catalyst -2.0
13 Makefile | 13
14 lulesh -catalyst.cc (new) | 52
15 lulesh -init.cc | 56
16 lulesh -util.cc | 10
17 lulesh.cc | 5
18 lulesh.h | 22
19 6 files changed , 155 insertions (+), 3 deletions (-)

As expected, the new code is more compact with only 155 lines of imple-
mentation compared to 325 lines of implementation with the legacy API. This
reduction is mainly due to not including any code to create VTK datasets.

4.1 Debugging and Regression Testing

To make it easier to develop and debug, the Catalyst stub implementation
supports generating binary data dumps for the conduit nodes passed to each
catalyst call. For each API call, it can write the conduit node argument out
to disk. Using another executable, catalyst replay, these dumps can be read
back in and each API call invoked again in the same order. This avoids the need
for rerunning the simulation for debugging. To generate the data dumps, one uses
the stub implementation with an environment variable CATALYST DATA DUMP -

DIRECTORY set to point a directory where the node data for each API invocation
should be saved. catalyst replay can then be used to read these data dumps
while using any Catalyst implementation.

Besides assisting in development and debugging, this also helps avoid re-
gressions. Data dumps can be generated for validation and verification setups
for codes of interest and then used by Catalyst implementations for regression
testing to ensure newer versions continue to work for supported codes.
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5 Conclusion and Future Work

As in situ analysis and visualization become widely adopted in production, ease
of development, deployment, and maintenance become just as important as the
framework capabilities.

The Catalyst API enables the development of implementations that use dif-
ferent libraries underneath for the actual in situ data processing instead of Para-
View. It is conceivable that frameworks like SENSEI [1] and Ascent themselves
can be provided as implementations of the Catalyst API. Thus, a simulation,
once instrumented, can switch between any framework at runtime by merely
switching runtime modules.

Our current design relies on shared libraries for runtime swapping of im-
plementations. There may be cases where a fully static build is required. Our
ongoing work is to ensure that such cases can be supported, albeit with limited
runtime flexibility.

Our implementation currently only supports C/C++ codes. Fortran compat-
ibility and Python simulation support is pending development.
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