
Dax: Data Analysis at Extreme

Kenneth Moreland1, Utkarsh Ayachit2, Berk Geveci2, Kwan-Liu Ma3

1 Sandia National Laboratories, Albuquerque, NM 87185, USA
2 Kitware, Inc., Clifton Park, NY 12065, USA
3 Department of Computer Science, University of California at Davis, Davis, CA 95616, USA

E-mail: kmorel@sandia.gov

Abstract. Experts agree that the exascale machine will comprise processors that contain
many cores, which in turn will necessitate a much higher degree of concurrency. Software will
require a minimum of a 1,000 times more concurrency. Most parallel analysis and visualization
algorithms today work by partitioning data and running mostly serial algorithms concurrently
on each data partition. Although this approach lends itself well to the concurrency of current
high-performance computing, it does not exhibit the appropriate pervasive parallelism required
for exascale computing. The data partitions are too small and the overhead of the threads is too
large to make effective use of all the cores in an extreme-scale machine. This paper introduces a
new design philosophy for a visualization framework with the intention of encouraging the design
of algorithms that exhibit the pervasive parallelism necessary for extreme scale machines. We
outline our design plans for Dax, a new visualization framework based on these design principles.

1. Introduction
Most of today’s visualization libraries and applications are based off of what is known as the
visualization pipeline [8,10]. The visualization pipeline is the key metaphor in many visualization
development systems and is also the internal mechanism or external interface for many end-user
visualization applications.

Although the visualization pipeline lends itself well to the concurrency of current high
performance computing [5, 11, 14, 15, 17], its structure prohibits the necessary extreme
concurrency required for exascale computers. Large scale concurrency today is achieved by
replicating the pipeline and partitioning the input data among processes [1]. However, extreme
scale computers would require the data to be broken into billions of partitions. The overhead
of capturing the connectivity information between these partitions, as well as the overhead of
executing these large computation units on such small partitions of data, is too great to make
such an approach practical.

To understand why, consider the sobering comparison between the Jaguar XT5 partition,
a current petascale machine, and the projections for an exascale machine given in Table 1.
These estimates are the envelope of those given by the International Exascale Software Project
RoadMap [7] and the DOE Exascale Initiative Roadmap [2]. Because processor clock rates are
not increasing, an exascale computer requires a thousandfold increase in the number of cores.
Furthermore, trends in processor design suggest that these cores must be hyperthreaded in order
to keep them executing at full efficiency. In all, to drive a complete exascale machine will require
between 1 and 10 billion concurrently running threads.



Table 1. Comparison of characteristics between petascale and projected exascale machines.

Jaguar – XT5 Exascale Increase

Cores 224,256 100 million – 1 billion 400 – 5,000×
Threads 224,256 way 1 – 10 billion way 4,000 – 50,000×
Memory 300 Terabytes 10 – 128 Petabytes 30 – 500×

The overhead of partitioning a mesh at this fine a level and executing independent
visualization pipelines on so many threads imposes too high an overhead to be practical. Even
if we somehow avoid the problem of running on the largest exascale machines, the problem
of a fundamental change in processor architecture persists. The parallel visualization pipeline
simply does not conform well to multicore processors and many-core accelerators. In response
several researchers are pursing the idea of a hybrid parallel pipeline [3,4,9]. This pipeline breaks
the problem into two hierarchical levels. The first level partitions the data among distributed-
memory nodes in the same way as does the current parallel pipeline. In the second level we run
a threaded, shared-memory algorithm to take advantage of a multi- or many-core processor.

Although the current visualization pipeline does a good job of providing this first level of
distributed memory concurrency, it provides no facilities whatsoever for this second layer of
multi-threaded concurrency. This places the onus on each visualization pipeline filter developer.
That is, each filter must be independently and painstakingly designed to exploit concurrency
and optimized for whatever architecture is used. Even if this undertaking were to be performed,
the concurrency would ultimately be undermined at the connections of filters where execution
threads must be synchronized and data combined.

This paper proposes an alternative framework to the visualization pipeline to perform data
analysis at extreme scales. This proposed alternative framework provides the foundation for
the development of the Dax toolkit. Dax provides an infrastructure for developing visualization
algorithms with pervasive parallelism. It does so by promoting best practices and encapsulating
the management of threads, communication, and data management. Dax will provide a
simplified development environment for GPU-based accelerator computing and pave the way
for exascale computing architectures.

2. The Worklet as the Computational Building Block
The computational unit of our proposed Dax framework is a worklet, a single operation on a
small piece of data. A worklet is simply a function that accepts as an argument a single element
of a data set and returns some computation based on that element. Because worklets are
lightweight, lack state, and are limited to small data accesses, their execution can be scheduled
on the massive amount of concurrent threads required by exascale computers and associated
multi- and many-core processors.

The Dax unit called an executive applies worklets to a mesh by mapping the worklet to all
elements in the mesh. The executive encapsulates the complexity of scheduling threads and
communicating among them. It also encapsulates the idiosyncrasies of the underlying parallel
hardware. At a high level, the basic concept is similar to that of MapReduce [6], except that
Dax is designed specifically for scientific data rather than database queries. This distinction
allows Dax to provide better metaphors for the data to ease development and also allows Dax
to exploit the known topological connectivity of the data to more efficiently collect related data
entries.



Executive 

Worklet 1 

foreach element 

Filter 1 
foreach element 

Worklet 2 
Filter 2 

foreach element 

Dax Pipeline Traditional Pipeline 

Like filters in a traditional visualization pipeline
(such as the one implemented in VTK [16]), worklets
have inputs and outputs and can be chained together.
The figure at the right compares the workflow of each
system. Although similar in nature, the Dax pipeline
affords several advantages.

First, the Dax framework better hides the complex-
ity of parallel programming. The iteration over the
elements, which must be executed concurrently, is en-
capsulated in the executive. The same executive may
be applied to an indefinite number of worklets. In
contrast, in the traditional visualization pipeline this
iteration mechanism is embedded and entangled in the
visualization algorithm. For every new filter created,
the parallel scheduling must be redesigned, reimple-
mented, and redebugged.

Second, the Dax framework simplifies the adaption
of an algorithm implementation for multiple computing architectures by changing the executive
implementation. For example, a special debugging executive could schedule worklets on a single
thread so that they may be run in a debugger without having to worry about thread management.
Because worklets are constrained to using local memory provided by the executive, a worklet
executing correctly in a serial debugging executive will also be correct when executed in parallel.
Also, so long as the worklet implementation can be ported to C compiler variants for CPU,
GPU, or cell architectures, different executives can run the same implementation on each.
Because the traditional visualization pipeline provides no such encapsulation for iteration, a
new implementation is required to adapt a filter to new architectures.

Third, when chained together worklets provide better memory access than do their filter
counterparts. When a chain of worklets is executed, the executive can read a single element
worth of data from memory and execute every worklet on that data before having to write
anything back out to memory. This execution flow maximizes the execution-to-memory fetch
ratio. Such optimization is becoming increasingly important on today’s architectures where
execution rates outstrip memory fetch rates and will be vital at exascale where power constraints
limit the amount of memory accesses that may be done. In contrast, each filter in the traditional
visualization pipeline must independently read every element from memory, process them, and
write all the results back to memory before the execution of subsequent filters can start.

3. Modes of Execution
The obvious drawback of defining computation as an operation on a single element is that we
lose the ability to express how these operations get applied to a mesh and how the results are
interpreted and connected. To recover this expressiveness, the executive must support multiple
modes of execution that determine how worklets are applied to a mesh. We can immediately
identify several necessary modes of execution.

Field Map is a basic mapping of a worklet onto field values. A simple example is finding the
magnitude of a vector field.

Cell Connectivity Map applies a worklet to each cell but also provides access to the cell’s
topology and interpolated fields (such as those defined on points). A gradient estimator
worklet could use a cell connectivity map to derive the gradient of an interpolated field.

Topological Reduce applies a worklet to each point but also provides access to field data in
adjacent cells. An averaging worklet could convert the previously mentioned cell gradients



to an interpolated gradient field.

Generate Geometry applies a worklet to a cell much like a cell connectivity map except
that the results are interpreted as new geometry. After executing the worklet, the
generate geometry execution must identify coincident points and reconstruct the topological
connections among geometry created by independent worklet threads. A marching cubes
worklet would require a generate geometry execution mode.

This list is doubtlessly incomplete. To ensure flexibility, Dax must also allow developers to
create new modes of execution for algorithms with new or unique communication needs.

4. Division of Control and Execution
In Dax, worklets must run in isolation. They cannot communicate with each other, and they
cannot directly access any part of the working memory not explicitly passed through arguments.
These constraints are necessary to ensure that a worklet cannot fail because of concurrent
execution (by, for example, creating a deadlock or race condition). Worklets may also be
scheduled to execute on a completely different computing architecture from the rest of program.

Control
Environment

Execution
Environment

Executive Worklet

Worklet

Worklet

Consequently, the Dax toolkit is divided into two
programming environments. Each environment has a different
API and slightly different language semantics. The first
environment is the execution environment, the environment in
which worklets execute. The execution environment contains
the API to define worklets and manipulate elements. This API
uses a simple set of C functionality so that it is easily ported
to compilers for multiple parallel architectures. The second
environment is the control environment, which provides data
and instantiates execution. This is the C++ API that
is designed for users who want to use the Dax toolkit to
analyze and visualize their data. These two environments are
analogous to the device and host environments, respectively, of GPU programming languages
like CUDA [13] and OpenCL [12]. The executive resides in between these two environments to
manage communication and control flow between them as shown in the figure shown here.

5. Achieving Efficiency through Constraints
One of the major design goals of the Dax toolkit is to encourage efficient algorithms by
constraining the resources of the developer. Worklets are constrained in multiple ways: they can
neither access data outside a limited range nor directly communicate with other worklets. Part of
the motivation for these constraints is safety. With these constraints in place, race conditions and
deadlocks are not possible, thus greatly simplifying the design and implementation of algorithms.
Another part of the motivation is efficiency. These constraints naturally enforce coding design
that best utilize multiple threads and memory hierarchies.

Not every visualization algorithm can be adequately expressed with these constraints. They
require communication patterns and execution scheduling not well characterized by a per element
execution. Consequently, some algorithms necessitate creating new execution modes. But by
their nature execution modes are more difficult to design and more error prone to implement
than are worklets.

Developers will naturally prefer implementing worklets, which inherently run more efficiently
than code requiring communication. When new execution modes are necessary, they will be
designed to be as small and as simple as possible for ease of implementation and support. Since
complicated communication tends to run less efficiently with high concurrency, the tendency to
develop limited execution modes also contributes to more efficient code.



6. Challenges Ahead
Implementing the Dax toolkit poses several development challenges. Algorithms that manipulate
fields by mapping worklets to elements are relatively straightforward (and in fact we already
have some introductory code to do this).

Algorithms that build new topological features, such as clipping, slicing, and contouring,
provide several challenges. Most such algorithms cannot determine the number of resulting
elements a priori, so memory management is a concern. Another challenge is connecting elements
independently generated by separate worklet instances. We plan to mitigate the problem
by requiring worklets to define geometry based on features of the input. Thus, topological
connections of the output can be inferred by the known connections of the input.

Acknowledgments
This work was supported in full by the DOE Office of Science, Advanced Scientific Computing
Research, under award number 10-014707, program manager Lucy Nowell. Part of this work was
performed by Sandia National Laboratories. Sandia National Laboratories is a multi-program
laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration.

References
[1] Ahrens J, Law C, Schroeder W, Martin K and Papka M 2000 A parallel approach for efficiently visualizing

extremely large, time-varying datasets Tech. Rep. #LAUR-00-1620 Los Alamos National Laboratory
[2] Ashby S et al. 2010 The opportunities and challenges of exascale computing Summary Report of the Advanced

Scientific Computing Advisory Committee (ASCAC) Subcommittee
[3] Camp D, Garth C, Childs H, Pugmire D and Joy K 2010 Streamline integration using mpi-hybrid

parallelism on large multi-core architecture IEEE Transactions on Visualization and Computer Graphics
DOI=10.1109/TVCG.2010.259

[4] Chen L and Fujishiro I 2008 Optimization strategies using hybrid MPI+OpenMP parallelization for large-
scale data visualization on earth simulator A Practical Programming Model for the Multi-Core Era vol
4935 pp 112–124 DOI=10.1007/978-3-540-69303-1 10

[5] Childs H, Pugmire D, Ahern S, Whitlock B, Howison M, Prabhat, Weber G H and Bethel E W 2010
Extreme scaling of production visualization software on diverse architectures IEEE Computer Graphics
and Applications 30 22–31

[6] Dean J and Ghemawat S 2008 MapReduce: Simplified data processing on large clusters Communications of
the ACM 51 107–113

[7] Dongarra J, Beechman P et al. 2010 The international exascale software project roadmap Tech. Rep. ut-cs-
10-652 University of Tennessee

[8] Haeberli P E 1988 ConMan: A visual programming language for interactive graphics ACM SIGGRAPH
Computer Graphics 22 103–111

[9] Howison M, Bethel E W and Childs H 2011 Hybrid parallelism for volume rendering on
large, multi- and many-core systems IEEE Transactions on Visualization and Computer Graphics
DOI=10.1109/TVCG.2011.24

[10] Lucas B, Abram G D, Collins N S, Epstein D A, Gresh D L and McAuliffe K P 1992 An architecture for a
scientific visualization system IEEE Visualization pp 107–114

[11] Moreland K, Rogers D, Greenfield J, Geveci B, Marion P, Neundorf A and Eschenberg K 2008 Large scale
visualization on the Cray XT3 using paraview Cray User Group

[12] Munshi A 2010 The OpenCL Specification Khronos OpenCL Working Group Version 1.1, Revision 36
[13] NVIDIA 2009 NVIDIA CUDA Programming Guide, Version 2.3.1
[14] Patchett J, Ahrens J, Ahern S and Pugmire D 2009 Parallel visualization and analysis with ParaView on a

Cray Xt4 Cray User Group
[15] Pugmire D, Childs H and Ahern S 2008 Parallel analysis and visualization on cray compute node linux Cray

User Group
[16] Schroeder W, Martin K and Lorensen B 2004 The Visualization Toolkit: An Object Oriented Approach to

3D Graphics 4th ed (Kitware Inc.) ISBN 1-930934-19-X
[17] White D 2005 Red storm capability visualization level II ASC milestone #1313 final report Tech. Rep.

SAND2005-5989P Sandia National Laboratories


