
Performance of communication patterns for

extreme-scale analysis and visualization

T Peterka,1 W Kendall,2 D Goodell,1 B Nouanesengsey, 3 H-W
Shen,3 J Huang, 2 K Moreland,4 R Thakur,1 R B Ross1

1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL
60439, USA
2Department of Electrical Engineering and Computer Science, University of Tennessee at
Knoxville, Knoxville, TN 37996, USA
3Department of Computer Science and Engineering, The Ohio State University, Columbus,
OH 43210, USA
4Sandia National Laboratories, Albuquerque, NM 87185, USA

E-mail: tpeterka@mcs.anl.gov

Abstract. Efficient data movement is essential for extreme-scale parallel visualization and
analysis algorithms. In this research, we benchmark and optimize the performance of collective
and point-to-point communication patterns for data-parallel visualization of scalar and vector
data. Two such communication patterns are global reduction and local nearest-neighbor
communication. We implement scalable algorithms at tens of thousands of processes, in some
cases to the full scale of leadership computing facilities, and benchmark performance using
large-scale scientific data.

1. Introduction
Through funding initiatives such as SciDAC, the U.S. Department of Energy’s Office of Science
has embarked on a historic path in computational and computer science. At tera- and petascale
today, and certainly at exascale in the future, data analysis and visualization will continue to be
pivotal components in the success of this endeavor [1]. Efficient data movement, whether storage
access or network communication, is essential for the success of parallel analysis algorithms at
extreme scale.

This paper summarizes the performance of two network communication patterns for parallel
analysis and visualization: global reduction and local nearest-neighbor communication. Global
reduction is collective communication whereby all processes participate in merging their results
into one solution. Local nearest-neighbor is an assortment of sparse collective neighborhoods,
and each process communicates with only those processes in its immediate vicinity. Case
studies of the scalability of the Radix-k algorithm for parallel image compositing and of parallel
particle tracing are presented as examples of each communication model. The two case studies
represent high impact long-standing scalability challenges with the potential to impede progress
in extreme-scale visualization; one is a critical bottleneck in rendering while the other is a first
step in many flow visualization and feature extraction algorithms.



2. Algorithms and Data Structures for Communication in Visualization

Figure 1. Illustration of the Radix-k parallel image
compositing algorithm on 12 processes. Any factorization
of the total number of processes is a valid configuration;
in this example, two rounds of [4, 3] are used. Groups of
4 are formed in the first round (left), and groups of 3 are
formed in the second round (right). Within each group, a
local direct-send pattern is executed.

Sort-last parallel visualization algo-
rithms are data-parallel approaches
that partition the data space among
processes and execute the same visu-
alization task concurrently on each
process. Upon completion of this
step, each process owns an output
image that must be merged with all
the other processes’ images to form
a single result. Image composition
is the name given to this stage, and
it relies on an efficient global reduc-
tion communication pattern. Pre-
viously, direct-send [2] and binary
swap [3] were the accepted best prac-
tices for performing image composi-
tion, although recently Radix-k [4,5]
has demonstrated significant perfor-
mance gains on a variety of machine
architectures.

Radix-k enables the amount of
communication concurrency to be
tuned to the architecture by factoring the number of processes into a number of rounds and
a number of communicating partners in a group in each round (see Figure 1). By configuring
the k-values (group size in each round) appropriately, the available network bisection bandwidth
can be approached without exceeding it and generating contention for messages. With Radix-k,
direct-send and binary swap simply become two of the numerous valid configurations possible
for a given number of processes. Radix-k also overlaps the communication of messages with the
reduction computation as much as possible, further improving performance.

Some analysis and visualization applications require a local message exchange among
neighbors instead of global reduction. This is the case when particles are advected by a flow
field for computing streamlines or pathlines. As each particle crosses block boundaries, it is
relayed to the process that owns the neighboring block. Or, as Pugmire et al. [6] demonstrated,
a new data block can be loaded by the same process as an alternative to handing the particle
to another process. In our algorithm, the message sizes involved in communicating particles are
smaller than the data movement required to load another data block from storage. Thus, we
use a static block distribution and focus our efforts instead on efficient communication.

Figure 2 shows the basic block structure used in our nearest-neighbor communication. The
dataset consists of multiple time-steps, one per file, containing 3D velocity vectors; and because
we accommodate time-varying datasets and unsteady flow fields, all particles and blocks are 4D
entities. A neighborhood consists of a central block surrounded by 80 other neighbors, for a
total neighborhood size of 81 blocks. That is, the neighborhood is a 3x3x3x3 region comprising
the central block and any other block adjacent in space and time. These neighborhoods are
partially overlapping; hence, the neighbor relation is reflexive and symmetric but not transitive.
A particle is transferred from one block to another within a neighborhood whenever one or more
particle coordinates (x, y, z, t) exceed the block boundary in any of the four dimensions.



3. Performance Results

Figure 2. The data structures for nearest-neighbor com-
munication of 4D particles are overlapping neighborhoods
of 81 4D blocks. Each block consists of voxels and has ex-
tents in the (x, y, z, t) dimensions. In the example above,
eight time-steps are grouped into either one, two, or four
blocks in the time dimension.

We tested Radix-k image composit-
ing and parallel particle tracing on
some of the largest supercomput-
ers in the world and present se-
lected results below. The Argonne
Leadership Computing Facility has
the IBM Blue Gene/P (BG/P) In-
trepid system while the Oak Ridge
National Center for Computational
Sciences maintains the Cray XT5
Jaguar system. Intrepid has 160 K
cores while Jaguar has 219 K cores;
Jaguar is currently the fastest super-
computer in the world according to
the June 2010 Top 500 listing, while
Intrepid is currently ranked ninth.

Figure 3 shows the results of test-
ing Radix-k in a volume render-
ing application applied to a core-
collapse supernova dataset on both
Intrepid and Jaguar. In this re-
search, bounding box and run-
length encoding optimizations were
implemented in Radix-k, and the
compositing algorithm was inserted in our parallel volume rendering code [7].

Bounding box and run-length encoding optimizations permitted the use of higher k-values
than would otherwise be possible. The combination of accelerations with higher k-values allowed
us to scale to 32,768 processes, as shown in the center panel of Figure 3. Tests were conducted at
three zoom levels with the camera facing down the z-axis. The image size for these tests was 64
megapixels, a wall-size image with the same resolution as 32 HD TVs. At 32,768 processes, such

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

Strong Scaling, Intrepid and Jaguar at Various Zoom Levels

Number of Processes

T
im

e 
(s

)

8 16 32 64 128 256 512 2048 8192 32768

●

●
●

●

●
●

●

●

●
●

●

●

●

● Jaguar, 3.0 zoom
Intrepid, 3.0 zoom
Jaguar, 1.5 zoom
Intrepid, 1.5 zoom
Jaguar, 0.5 zoom
Intrepid, 0.5 zoom

1
2

3
4

5
6

Speedup over Binary Swap

Number of Processes

S
pe

ed
up

 F
ac

to
r

●

●

●

●
●

●

●

●

●
●

●
●

●

8 16 32 64 128 256 512 2048 8192 32768

●

Intrepid, 1.5 zoom
Intrepid, 0.5 zoom
Intrepid, 3.0 zoom
Jaguar, 1.5 zoom
Jaguar, 3.0 zoom
Jaguar, 0.5 zoom

Figure 3. When optimizations such as bounding boxes and run-length encoding are
implemented in Radix-k for the volume rendering of core-collapse supernovae (left), the
compositing time (center) scales on both Intrepid and Jaguar out to 32 K processes, plotted in
log-log scale. Speedup of Radix-k over binary swap is shown at the right.



●

●

●

●
●

●

●

●

●

5
10

20
50

10
0

Time for 10 Rounds, 512^3 Data Size, 8K Particles

Number of Processes

T
im

e 
(s

)

16 32 64 128 256 512 1024 2048 4096

● bp = 1
bp = 2
bp = 4
bp = 8
bp = 16

Figure 4. The scalability of parallel nearest-neighbor communication for particle tracing of
thermal hydraulics data is plotted in log-log scale. The left panel shows 400 particles tracing
streamlines in this flow field. The center panel shows time for 8 K particles and a data size
of 5123. Five curves are shown for different partitioning strategies: one block per process and
round-robin partitioning with 2, 4, 8, and 16 blocks per process. In the right panel, 128 K
particles are traced in three data sizes: 5123 (134 million cells), 10243 (1 billion cells), and 20483

(8 billion cells). End-to-end scaling efficiency includes I/O (reading the vector dataset from
storage and writing the output particle traces.)

an image can be composited in 0.08 seconds, or at 12.5 frames per second. The right panel of
Figure 3 shows the speedup of Radix-k over binary swap in the same application, with identical
optimizations applied. Up to five times faster performance resulted in some instances, and at
least three times shorter compositing time was reported in most cases on Intrepid. On Jaguar,
Radix-k is approximately 1.5 times faster than binary swap.

Figure 4 shows initial results of our parallel particle tracing algorithm on a dataset of the
mixing behavior of warm and cold water in a confined region. The data have been resampled from
their original topology onto a regular grid. Particle tracing consists of a number of iterations;
one iteration involves numerically integrating the particle along the flow field until it reaches the
boundary of its current block and then passing the particle to the neighboring block. Our tests
ran for 10 iterations; the left panel of Figure 4 shows the result for a small number of particles,
400 in total. A single time-step of data is used here to model static flow.

The center panel shows strong scaling up to 4,096 processes. The data size is 5123, and
this time 8,192 total particles are used. Currently a simple round-robin distribution scheme
is used to balance the computational load among processes; a process contains one or more
data blocks distributed in the volume. The center panel shows distributions ranging from one
block per process to 16 blocks per process. In almost all cases, the performance improves as
the number of blocks per process increases; load is more likely to be distributed evenly and
the overhead of managing multiple blocks remains small. Obviously, there is a limit to the
effectiveness of a process having many small blocks: the cost of aggregating their particles into
one message increases; moreover, the ratio of their surface area to volume grows, resulting in
more communicating and less computing.

We recognize that round-robin distribution does not always produce acceptable load
balancing. In our case, randomly seeding a dense set of particles throughout the domain works
in our favor, but this need not be the case, as demonstrated by Pugmire et al. [6]. We are
investigating load-balanced partitioning under less ideal conditions.

Continuing with this example, the right panel shows the scalability of larger data size and
number of particles. Here, 131,072 seeds are randomly placed in the domain. Three sizes of the



same thermal hydraulics data are tested: 5123, 10243, and 20483; the larger sizes were generated
by upsampling the original size. As in the center panel, all of the data points represent end-to-
end time including I/O. Tracing 131,072 particles in the smallest data size can be accomplished
in 13 seconds; the medium data size in 19 seconds, and the largest data size in about 1-1/2
minutes (approximately 50% of this time is I/O). End-to-end scaling efficiency is also plotted
for the three curves; in order from smallest to largest data size, these efficiencies are 63%, 24%,
and 19%, respectively.

4. Summary
Data movement is a critical part of analysis operations at scale. Any nontrivial parallel
decomposition of analysis tasks requires communication among processes that can amount to a
significant portion of the total analysis run time. We investigated and optimized communication
motifs for two commonly used operations: global reduction and nearest-neighbor communication.

Image composition in data-parallel rendering is the motivation for exploring new global
reduction algorithms. With Radix-k, we reduced compositing time by up to a factor of five
compared to binary swap and composed wall-size images at nearly interactive rates. We are
currently implementing the Radix-k algorithm in the IceT compositing library [8], which will
enable its use in production visualization tools.

Parallel particle tracing motivated our work in nearest-neighbor communication. We
successfully scaled our parallel particle tracing code to 16,384 processes on data sizes up to
8 billion grid points, or 96 GB. We are actively researching load-balancing and data-partitioning
algorithms, benchmarking time-varying results, and testing our code on adaptive mesh grids as
well.

Acknowledgments
We thank John Blondin, Tony Mezzacappa, Paul Fischer, and Aleks Obabko, the Argonne
Leadership Computing Facility, and the National Center for Computational Sciences at Oak
Ridge National Laboratory. This work was supported by the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357. Work is also supported by DOE with agreement No. DE-FC02-06ER25777.

References
[1] Dongarra J 2009 International exascale software project roadmap draft report Tech. rep. www.exascale.org
[2] Hsu W M 1993 Proc. 1993 Parallel Rendering Symposium Segmented Ray Casting for Data Parallel Volume

Rendering (San Jose, CA) pp 7–14
[3] Ma K L, Painter J S, Hansen C D and Krogh M F 1994 IEEE Computer Graphics and Applications Parallel

Volume Rendering Using Binary-Swap Compositing 14 pp 59–68
[4] Peterka T, Goodell D, Ross R, Shen H W and Thakur R 2009 SC 09: Proceedings of the Conference on

High Performance Computing Networking, Storage and Analysis A Configurable Algorithm for Parallel
Image-Compositing Applications (New York, NY, USA: ACM) pp 1–10

[5] Kendall W, Peterka T, Huang J, Shen H W and Ross R 2010 Proceedings of Eurographics Symposium
on Parallel Graphics and Visualization EG PGV’10 Accelerating and Benchmarking Radix-k Image
Compositing at Large Scale (Norrkoping, Sweden)

[6] Pugmire D, Childs H, Garth C, Ahern S and Weber G H 2009 SC ’09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis Scalable Computation of Streamlines on Very
Large Datasets (New York, NY, USA: ACM) pp 1–12

[7] Peterka T, Yu H, Ross R, Ma K L and Latham R 2009 ICPP 09: Proceedings of the 2009 International
Conference on Parallel Processing End-to-End Study of Parallel Volume Rendering on the IBM Blue Gene/P
(Washington, DC, USA: IEEE) pp 566–573

[8] Moreland K, Wylie B and Pavlakos C 2001 PVG ’01: Proceedings of the IEEE 2001 Symposium on Parallel
and Large-Data Visualization and Graphics Sort-last Parallel Rendering for Viewing Extremely Large Data
Sets on Tile Displays (Piscataway, NJ, USA: IEEE Press) pp 85–92


