
Remote rendering for ultrascale data

Kenneth Moreland1, Daniel Lepage2, David Koller2 and Greg
Humphreys2

1Sandia National Laboratories, P.O. Box 5800 MS 1323, Albuquerque, NM 87185-1323
2University of Virginia, 151 Engineer’s Way, P.O. Box 400740, Charlottesville, VA 22904-4740

E-mail: kmorel@sandia.gov

Abstract. The mission of the SciDAC Institute for Ultrascale Visualization is to address
the upcoming petascale visualization challenges. As we move to petascale computation, we are
seeing a trend not only in the growth but also in the consolidation of computing resources. As the
distances between user and petascale visualization resources grow, the expected performance of
the network degrades, especially with respect to latency. In this paper we will explore a technique
for remote visualization that leverages unstructured lumigraph rendering. This technique will
provide an interactive rendering experience regardless of the network performance to the remote
visualization resource. The unstructured lumigraph rendering can also replace many of the other
level-of-detail techniques currently used that have problems that are exasperated by petascale
data.

1. Introduction
As visualization and simulation platforms continue to grow and change, so to do the challenges
and bottlenecks. Although image rendering was once the limiting factor in visualization,
rendering speed is now often a secondary concern. In fact, it is now common to perform
interactive visualization on clusters without specialized rendering hardware. The new focus
on visualization is in loading, managing, and processing data. One consequence of this is the
practice of co-locating a visualization resource with the supercomputer for faster access to the
simulation output [1, 2].

Most of us are not fortunate enough to have a supercomputer or associated visualization
resource located in our office, yet we still require access to these resources. A remote visualization
capability allows us to provide the widest access to our resources; anyone with network
capabilities can perform large scale visualization from their desktop using remote visualization.

The distance between scientist and computing/visualization resources, as a trend, is growing.
The US Office of Science, through programs like SciDAC, is encouraging scientists from different
disciplines and different organizations to collaborate; the US Department of Defense and
Department of Energy are consolidating resources like supercomputers; universities are reaching
out to researchers around the world. As the distance between user and visualization resource
becomes larger, remote visualization becomes more important and more challenging. One of the
goals of the SciDAC Institute for Ultrascale Visualization is to ensure that remote visualization
remains an interactive experience, even when accessing petascale data on the far side of the
world.



2. Remote Rendering
Unlike most large-scale parallel processing, visualization tends to be an interactive process by
nature. The parallel visualization must be controlled remotely to make its use convenient
and, in some cases, possible. Thus, most large-scale turn-key visualization systems, such as
ParaView, VisIt, and EnSight, provide some way to access the parallel visualization remotely.
The architecture of these systems varies, but all comprise a client, run on a local desktop
or laptop, that connects, via a socket, to one or more servers running on a remote parallel
machine. For large scale problems, it is critical that all processing, including rendering, occurs
on the server. The parallel rendering usually employ one of the “sort-last” algorithms for their
scalability with respect to the geometry size [?, 3, 4].

Given enough computational resources, a sort-last parallel rendering algorithm should be
able to render ultrascale data in a fraction of a second. However, there are times when this
is not possible either because the physical resources are strained or because the constant
overheads of the parallel rendering algorithm are too high. For these circumstances, some
scalable visualization tools provide a special “interactive” render mode in which quality can
be sacrificed for speed (although a high-quality “still” render mode is always available). For
example, ParaView [5] provides geometric decimation [6], image decimation, and lossy image
compression to achieve interactive rates.

When the client and server are connected over a wide area network, the latency of the network
may make interative rendering from the server impossible. When rendering locally on the client,
the visualization tool has a delicate balance between quality of the rendering and how much
geometry it can store. Too often, the local client renderings either under-represent the data or
require too much data to be pulled from the server.

We are investigating a new technique for approximate interactive rendering in remote
visualization using image based techniques. As shown in Figure 1, high-quality still images
generated by the server are cached on the client. This cache of images is used to synthesize
images from new viewpoints during interactive rendering.

Client Server

Image-Based
Render

Image
Cache

Parallel
Render

Camera Coordinates

Image

Interaction

Updated GUI
User

Approximate Interactive Render Full Quality Still Render

Figure 1. Update cycles for remote rendering with a local image-based approximate interactive
rendering in the client.

Using images rendered from the server to synthesize other approximate images has two
distinct advantages. First, it is scalable with respect to the size of the geometry being
represented. Like the sort-last parallel rendering employed on the server, the overhead of the
technique is independent of geometry size. Second, the image base rendering can leverage the
rendering already being done on the server. Lengthy preprocessing of the data is not necessary,
as is the case with geometric decimation.

3. Unstructured Lumigraph Rendering
We perform the client-side image-based rendering by extending the Unstructured Lumigraph
Rendering technique [7]. This method constructs a blending field across the image plane



representing how the set of previously rendered input images will be combined. The color
at each pixel of the new image is determined by projecting the input images onto a geometric
proxy and merging the resulting images according to the blending weights.

3.1. The Proxy
We use a 3D triangle mesh proxy to map pixels from prior rendered images to pixels in the
image plane of an interpolated view. The quality of the synthesized image increases when the
proxy closely approximates the shape of the actual dataset. However, high quality interpolated
views can be generated even when the proxy detail is low, as a coarse hull of the 3D model [8],
or even a simple bounding volume such as a rectangular prism or a sphere will still produce
high-quality renderings given a sufficiently dense set of known images (see Figure 2).

Figure 2. Left: An interpolated view of a 3D mesh model, projected onto a high-quality proxy.
Center: The same view, using an axis-aligned bounding box as the proxy; the image quality
is reduced. Right: Using the bounding box proxy again, but interpolating a greater density
of sample images. The result is comparable with the high-quality proxy image, but does not
require knowledge of the actual geometry.

3.2. Sampling the Blending Field
Rather than recomputing the blending field at every point in the image plane, we choose a
discrete set of sample points and triangulate them, interpolating the blending weights linearly
across each triangle as in [7]. We place a sample point at every vertex of the visible faces of the
proxy geometry, at the center of projection for every known view, and in a regular grid across
the image plane. We add the proxy edges and the square edges of the regular grid as constraints,
and then perform a conforming Delaunay triangulation of the resulting 2D mesh in the image
plane (Figure 3).

3.3. Projecting Back to the Proxy
Each triangle of this triangulation is either outside the bounds of the proxy geometry, or is a
visible subsection of a face of the proxy. We project these triangles back onto the proxy by
raytracing from the camera through the center of each triangle. If the ray does not intersect
the proxy, then the triangle is discarded; otherwise, the ray identifies a unique face of the proxy
that contains the triangle. In the latter case, we intersect rays through each of the triangle’s
vertices with the plane of the face to get the world-space coordinates of the sample triangle on
the proxy.

One advantage of this method over that of [7] is that it allows concave proxies without
repeating triangles - a sample triangle located in front of several proxy faces is only processed
once, for the nearest face.



3.4. Blending Weights
We assign each pre-rendered input image a weight at each sample point. The client obtains an
exact image from the server whenever the user stops moving, and so it is important to ensure
that when our technique is used to synthesize a view that coincides with a portion of a known
pre-rendered view, this known view has weight 1 within that portion, with all other views having
weight 0 (the epipolar consistency property).

We view each input image as a collection of known rays in the lightfield, and compute the
weights by comparing the rays out of the known viewpoints with those from the new view; this
allows us to synthesize new views from a mix of perspective and orthographic cameras, as both
are common in scientific visualization.

The system of penalties used by [7] does not provide true epipolar consistency, so we have
modified the blending weights. We compute four weights for each known image at each sample
point, ranging from zero to infinity. One weight is based on whether the sample point is occluded
in the view of the known image, one on how close the sample point is to the edges of the known
image’s view frustum, one on the angle between the ray from the known image to the point and
the ray from the new view to the point, and one based on the difference between the distances
from the known and new views to the sample point. The total weight per camera per sample
point is the product of these four weights.

For each sample point, we then find the k cameras with highest weights. We subtract the
kth highest weight from the weights of the k − 1 cameras with higher weights, then divide each
of them by the sum of these k − 1 nonzero weights so that they sum to one. This gives us a
uniform blending field that sums to one at every visible point on the proxy, and that will vary
smoothly when the synthesized viewpoint moves.

3.5. Rendering
We render each sample triangle m times, where m is the number of cameras that have nonzero
weights for at least one of the three vertices. Each time, we enable the corresponding camera’s
texture and perform projective texturing using the blending weight as the alpha value. This
results in an image that interpolates the k nearest known views to produce a new view. For the
example images shown in Figures 2 and 3, k = 4.

A coarse geometric
proxy for mesh

The sample points of
the blending field

The resulting
blending field

The final synthesized
view, with the proxy
overlaid

Figure 3. Stages of the unstructured lumigraph rendering.

3.6. Prefetching Images
The unstructured lumigraph rendering technique is most effective when the input images
available for interpolation densely sample the nearby visualization space for the new view
being rendered on the client. We attempt to roughly model and predict the user’s navigation



path through the 3D environment using a number of heuristics, and then accurately prefetch
corresponding rendered images from the server. Our prefetcher adapts the volume of its requests
to the state of the network traffic and server load.

4. Conclusions
The basic algorithms for the unstructured lumigraph rendering as well as the heuristics for
prefetching images are implemented. Our current work involves applying these techniques
to large scale scientific data. Much of this involves integrating lumigraph rendering into the
ParaView application, as demonstrated in Figure 4. Our current challenges include adding
multithreading to the rendering routines to allow prefetching to happen during idle times and
to generate proxy geometries of general data sets.

Figure 4. Turbulent combustion data rendered within ParaView (data courtesy of Jacqueline
Chen, Sandia National Laboratories). Left: Full geometry render. Right: Lumigraph rendering
with simple bounding box proxy.

Acknowledgments
This work was done in part at Sandia National Laboratories. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

References
[1] Ahern S 2007 Petascale visual data analysis in a production computing environment Journal of Physics:

Conference Series (Proceedings of SciDAC 2007) vol 78
[2] Cedilnik A, Geveci B, Moreland K, Ahrens J and Farve J 2006 Remote large data visualization in the ParaView

framework Eurographics Parallel Graphics and Visualization 2006 pp 163–170
[3] Ma K L 1994 Parallel volume rendering using binary-swap image composition IEEE Computer Graphics and

Applications 14 59–68
[4] Wylie B, Pavlakos C, Lewis V and Moreland K 2001 Scalable rendering on PC clusters IEEE Computer

Graphics and Applications 21 62–70
[5] Squillacote A H 2007 The ParaView Guide ParaView 3 ed (Kitware, Inc.) ISBN-13: 978-1-930934-21-4
[6] Lindstrom P 2000 Out-of-core simplification of large polygonal models Computer Graphics (Proceedings of

SIGGRAPH 2000) 259–262
[7] Buehler C, Bosse M, McMillan L, Gortler S and Cohen M 2001 Unstructured lumigraph rendering Computer

Graphics (Proceedings of SIGGRAPH 2001) 425–432
[8] Buehler C, Bosse M, McMillan L, Gortler S J and Cohen M F 2001 Unstructured lumigraph rendering

Computer Graphics (Proceedings of SIGGRAPH 2000) 425–432


