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Abstract. In our efforts to solve ever more challenging problems through computational 
techniques, the scale of our compute systems continues to grow. As we approach petascale, it 
becomes increasingly important that all the resources in the system be used as efficiently as 
possible, not just the floating-point units. Because of hardware, software, and usability challenges, 
storage resources are often one of the most poorly used and performing components of today’s 
compute systems. This situation can be especially true in the case of the analysis phases of 
scientific workflows. In this paper we discuss the impact of large-scale data on visual analysis 
operations and examine a collection of approaches to I/O in the visual analysis process. First we 
examine the performance of volume rendering on a leadership-computing platform and assess the 
relative cost of I/O, rendering, and compositing operations. Next we analyze the performance 
implications of eliminating preprocessing from this example workflow. Then we describe a 
technique that uses data reorganization to improve access times for data-intensive volume 
rendering. 

1. Introduction 
As with theory and experimentation, computation has become a critical component of scientific discovery. 
In the quest to find answers to ever more challenging questions through computational techniques, we find 
ourselves constructing ever larger and more capable systems. Today we are pushing the scale of compute 
systems to reach a petaflop and beyond, and it has become increasingly important that all resources in the 
system are used as efficiently as possible. While we commonly use the floating-point operation rate as a 
measure of the performance of large-scale compute systems, most members of the scientific computing 
community realize that other characteristics of the system, such as the rate of memory access, more often 
determine the resulting application performance. 

Because advances in storage have trailed behind those of processors and networks, data access has 
become a serious challenge for many applications running at large scale. Storage systems are being 
hampered by a number of issues. First, storage hardware bandwidths are not increasing at nearly the rate 
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of processing hardware, meaning that more devices (disks) must be used in each successive generation of 
storage systems in order to keep pace with compute capabilities. Second, while significant algorithmic 
advances have taken place in scientific applications, much storage software – namely commercial parallel 
file systems – are using algorithms, interfaces, and architectures designed over a decade ago for much 
smaller scale systems. Working around the deficiencies of these old approaches can be very difficult. 
Third, scientists are often not using storage systems in the most effective manner. Tuning of data access is 
typically one of the last steps taken when improving an application code to operate more efficiently at 
scale, so many applications still perform I/O the same way they did many years ago, on very different 
systems. This might mean that all processes in a parallel application push data through a single node, or it 
might mean that every process creates its own independent data file when checkpointing, neither of which 
is likely to result in high performance. High-level libraries such as HDF5 [1] and Parallel netCDF [2] have 
been developed to provide more natural and efficient interfaces when used properly, but adopting these 
interfaces is a time-consuming task, and even with these libraries significant tuning is often necessary. 

The analysis phase brings an additional set of I/O challenges. The conventional computational 
workflow has the simulation application deposit results on storage, and those results are processed by 
independent analysis tools as a separate step, after the simulation is complete. The separation of these two 
phases results in significant traffic to and from the storage system, because any data needed for analysis 
purposes must be stored for later access. The end result is that applications spend significant time waiting
on I/O to complete, or they store less data, or store data less often, than they might otherwise. Moreover, 
the data written by the simulation code may not be in a form amenable to analysis, resulting in I/O 
patterns that make poor use of the storage hardware, even if the analysis code itself has been written using 
best practice access methods. These challenges require their own specific solutions, distinct from those 
developed to help with checkpointing and other output during the simulation phase, and developing these 
solutions typically involves both analysis and I/O expertise. 

The SciDAC Institute for Ultra-Scale Visualization is 
working to enable extreme-scale knowledge discovery by 
advancing the state of visualization technologies, 
fostering awareness of and communication about new 
visualization technologies, and by putting these 
technologies into the hands of application scientists, 
especially SciDAC application teams. Institute research 
falls into one of three areas (figure 1). Work in 
architectures for visualization explores the viability of 
various types of compute resources with respect to 
scientific visualization. In improving and developing new 
fundamental algorithms, we seek to enable new 
visualization capabilities or apply existing capabilities to 
new types of data. Efforts in interactivity, interfaces, and 
tools seek to provide new ways to view and interact with data that help scientists more quickly and easily 
gain insight from their results. Overall, these three areas fit together to cover visualization challenges from 
end-to-end: from the underlying computational resources up to the user. 

Because of the technical challenges and the importance of effective visual analysis tools for extreme 
scale data, the Institute has a number of ongoing efforts in this area. One such effort is the addition of a 
parallel I/O layer to Paraview/VTK. This layer allows for the use of MPI-2 [3] I/O routines to improve 
performance on large-scale systems by eliminating bottlenecks in the data path, while serial I/O options 
are provided for portability. A small set of readers using this new parallel I/O layer are under 

 

Figure 1. Research topics in the Institute. 
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development, and preliminary benchmarking is under way. By enhancing the widely used Paraview tool, 
we hope to enable more effective I/O for a broad range of applications. 

Additional research is necessary to develop solutions for the analysis of data at extreme scales. In the 
following two sections we discuss Institute efforts in visualization for extreme scale data. In Section 2 we 
cover our work in volume rendering on the IBM Blue Gene/P architecture, and in Section 3 we describe 
our work in data organization for efficient I/O during visualization. In Section 4 we conclude and point to 
possible future approaches for reducing the I/O demands of analysis. 

2. Volume rendering of large-scale data 
One example of the Institute’s research efforts is parallel 
volume rendering on leadership-class resources such as the Blue 
Gene/P at Argonne National Laboratory. Using the same 
compute architecture for visualization as for simulation can 
provide three benefits for large-scale data: 
• Data movement from the simulation architecture to a 
visualization architecture can be avoided. 
• The massive resources of a leadership machine, including 
high-speed interconnection network and parallel file system, 
can be brought to bear on the visualization problem. 
• This is an intermediate step toward in situ visualization. 

At first glance, using a leadership computing resource for 
analysis might not make sense. The vector parallelism provided 
by modern GPUs enables peak rendering rates that are on 
average 100 to 1000 times faster than the software rendering 
rate of a low-power general-purpose processor such as BG/P’s 
PowerPC. However, modern datasets that are gigabytes or 
larger per time step demand parallel processing for 
visualization, including parallel I/O. In this scenario, the bottleneck is not rendering time, but data 
movement between storage and processors. Thus, we want a visualization system that excels at these 
tasks, not solely by rendering. Fortunately, such visualization architectures, with robust parallel I/O and 
communication infrastructures already exist in the BG/P and Cray XT systems.  

This work is in collaboration with John Blondin of North Carolina State University and Anthony 
Mezzacappa of Oak Ridge National Laboratory, who are working to understand the origin of spherical 
accretion shock instability (SASI) in supernova core collapse [4]. The simulation seeks to understand how 
the SASI is driven by global acoustic modes trapped in the supernova interior. By manipulating the 
transparency of rendered data (i.e., the transfer function) in our volume rendering code, the scientists can 
quickly see different combinations of variables and isolate features of interest. In their dataset, five scalar 
variables are stored in regular grid locations up to 11203, in netCDF format. Up to 200 time steps are 
stored in a simulation run, each in a separate file. 

2.1. Phases of a visual analysis algorithm 
Most parallel visual analysis algorithms can be divided into four main tasks: input, render, composite, and 
output. In classical parallel visualization with smaller datasets and systems, it was customary to ignore 
input costs and focus on rendering and compositing. However, the expanding size and complexity of data 
shift the burden onto the I/O system, meaning this cost must be recognized and included in our analyses as 
an integral component of parallel visualization [5].  

 

Figure 2. Image resulting from 
volume rendering of astrophysics 
dataset on IBM Blue Gene/P. 
Original image is 1600x1600 pixels. 
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Parallel rendering algorithms are usually grouped into one of three types: sort-first, sort-middle, and 
sort-last [6]. We use the sort-last algorithm, which distributes the dataset among processors first and then 
gathers the partial results last. This is appropriate when the size of data dominates the problem size, as it 
does in most modern scientific visualizations that are data-intensive. 

During the input phase, cores read a time step in parallel. By using MPI-2 features such as collective 
I/O as an interface to the parallel file system, all cores simultaneously read only their designated portion of 
the dataset. This approach increases I/O bandwidth due to parallel data paths between compute cores and 
storage, compared to a single data pathway from storage to a root node. Moreover, the entire dataset need 
not fit into the memory of a single core; the memory requirement is distributed among all of the cores. 

Parallel input of a dataset tacitly assumes that a predefined domain decomposition of the data has 
already been established. Distribution can be static or dynamic; while dynamic distribution has been 
shown to produce good load balance at small data and system scales [7], it is costly at large scales and we 
do not believe it appropriate for tens of thousands of cores. Rather, we implement a static scheme that 
decomposes a time step into block-shaped subvolumes. By dividing into a multiple of blocks per 
processor core (usually 4–16) and allocating cores to blocks in a round robin manner, we have balanced 
load to greater than 50% rendering efficiency across 16K cores. As the next paragraph explains, some 
decrease in efficiency is unavoidable even with perfect load balance, because optimizations act locally, 
not globally across the data volume. 

The rendering algorithm within a single core is classic software ray casting [8] with some 
optimizations and quality improvements, with the goal of maximizing rendering quality and minimizing 
per-frame preprocessing costs. Once the core has its subvolume of data and has applied the transfer 
function to map a physical quantity into a chromatic one, it casts rays from all pixels through its data, 
sampling the data at evenly spaced intervals along each ray. The spacing along a ray is controllable and 
proportional to the data spacing. Lighting is computed and includes diffuse, specular, and ambient 
components [9]. Next, the sample points along each ray are blended front-to-back using the “over” 
operator [10] to compute a single (R, G, B, A) pixel value. This process terminates prematurely if a 
maximum opacity is reached, called early ray termination. Other optimizations such as hierarchical levels 
of detail, octree data structuring, or empty space skipping are not used in our algorithm. 

Compositing, like other classical parallel visualization tasks, has been extensively published but not at 
the system scales that we address in our research. We currently use the direct-send algorithm, mainly for 
its simplicity [11]. Direct-send is a two-step process. First, each process receives subimages from those 
processes that contribute to the portion of the image that the process is responsible for compositing. The 
process performs the same “over” blending operation that is performed for an individual ray during the 
rendering phase, but this time blending completed pixels from the subimages. Second, all processes send 
their completed subimages to the root. Unlike rendering, which is only approximately load balanced, the 
work in the compositing stage is evenly divided among processes. We have demonstrated effective 
capability of direct-send compositing up to 16K cores. Our results show nearly constant compositing time 
through 8K cores, and then a gradual increase beyond that. Network contention accounts for the majority 
of the compositing time at this point. In the first step a large number of small messages are exchanged, and 
each process has only a few pixels to composite. In the second step the finished subimages are gathered at 
the root process using MPI_Gather. Both communication steps are expensive at this scale. Because binary 
swap compositing [12] has lower complexity in the number of messages, we plan to analyze its 
performance at these scales in the future. 

Thus far, image sizes have been limited to 2K x 2K pixels, or 4 megapixels, so output bandwidth to 
storage has not been a bottleneck. This will change as images become larger, and we will experiment with 
collective writes of the output image to eliminate the need to send all subimages to one root process, 
which can be a point of contention in the communication system.  
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2.2. Experimental results 
Figure 3 shows how the duration that one time step requires is distributed among I/O, rendering, and 
compositing, from 64 to 16K cores. The jagged steps at smaller numbers of cores are caused by imperfect 
load balancing at certain number of processes. Overall, the time is dominated by I/O, consuming nearly 
90% at 16K cores. Beyond 16K, compositing is more expensive than rendering, which is one indication 
that a new compositing algorithm is needed if we expect to scale further. 

The dependence of large-scale visualization on I/O performance, made clear by figure 3, demonstrates 
the need to (1) continue to improve the I/O bandwidth and latency of the parallel file systems of 
architectures such as BG/P, and (2) devise ways to hide or mitigate the effects of I/O latency within 
visualization applications. While storage researchers attempt to improve storage performance overall 
through techniques such as advanced I/O forwarding [13], in Section 3 we discuss one effort in the 
Institute to reduce the I/O demands of visual analysis algorithms. 

2.3. To preprocess or not to preprocess 
Simulation output files are often preprocessed in order to reduce data sizes prior to moving data across the 
wide area, to extract variables of interest during analysis, or to transform the data into a format more 
amenable to processing by general-purpose analysis tools. In this context we consider this operation 
“preprocessing” because it must be performed before the analysis phase (in other contexts it might be 
termed “postprocessing” because it occurs after the simulation). This preprocessing step doesn’t generate 
any new results, and as such it can be thought of as overhead in the scientific workflow. Reducing or 
completely eliminating preprocessing, especially for multivariate time varying data, presents an 
opportunity to improve the I/O performance of an application.  

In our example astrophysics dataset, each time step is a netCDF file consisting of five record variables: 
pressure, density, and velocity in three directions. Each of these five quantities is a scalar value on a 
regular 3D Cartesian grid. For a grid size of 11203, one time step is approximately 25 GB. In the past, we 
would preprocess each time step to extract a single variable of interest, for example pressure, and write 
this into a separate, 32 bit raw data format. We would then proceed to volume render the sequence of 
pressure time steps, as described above. 

This approach is expensive and needs to be streamlined if we expect it to scale further. First, there is 
the cost of preprocessing time. The extraction of a single variable from a single time step of the above 

 

 
Figure 3. The time distribution between three stages of the volume-rendering algorithm for a 16002-
pixel image, in seconds (left) and as a percentage of run time (right). Time is dominated by I/O. 
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dataset takes 2.5 minutes, using a serial netCDF reader on a single process of the same BG/P machine 
(and storage system). While this may not seem expensive because it is done offline, a dataset consisting of 
multiple variables and hundreds of time steps can require hours or days of preprocessing time. Additional 
storage space is also required: typically the original netCDF files are kept in addition to the extracted files.  

To avoid these overheads, we have implemented direct parallel reading of netCDF data files within our 
volume rendering code. Using the parallel netCDF library [2], we can perform collective I/O from 
multiple cores as we did previously from a file holding a single variable. Our initial tests indicate that this 
parallel read takes 10.8 seconds for the 11203 volume on 16K cores, which is approximately twice the 
time taken to read the preprocessed data file. We are currently investigating ways to improve this 
performance; but given how quickly analysis occurs for this dataset and the simplicity from the workflow 
perspective, this approach of reading directly from the simulation output seems appropriate in this case. 

3. Organizing data for visualization  
In the previous section we discussed the benefits of eliminating one type of preprocessing from the 
scientist’s workflow. When we explored directly reading data from the astrophysics dataset in the above 
example, the performance degradation seen was due to the fact that we were accessing only 20% of the 
data in the time step and that data was spread out in the file, causing noncontiguous I/O access, where 
accesses for a single process are spread out across the file [14]. In datasets with more variables, in 
unstructured datasets where data might be spread less regularly throughout the file, or in cases where some 
data might not be needed for algorithmic reasons, the performance gap could be much wider between 
simulation data and preprocessed data access rates. While storage researchers are investigating methods to 
improve performance for analysis workloads with noncontiguous access patterns [15], we are examining 
methods to reorganize data within preprocessed data files to improve locality of access and, in doing so, 
improve I/O access rates. 

 

Figure 4. Depiction of a 2-
dimensional representation of data 
blocks from the Visible Woman 
dataset stored on a single I/O server. 
Green (light) boxes represent data 
blocks that were not accessed during 
the sample operation. Red (dark) 
blocks show regions that were 
accessed. This view of data access 
highlights the sparse nature of data 
accesses on each server during a 
single visualization operation. This 
type of access will result in many disk 
seeks, reducing I/O throughput, and 
significantly reduces the effectiveness 
of prefetching. 
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Our algorithm is based on knowledge of data distribution in parallel file systems such as the Parallel 
Virtual File System (PVFS) [16], Lustre [17], and GPFS [18]. In these systems, data are striped across I/O 
servers in a round-robin manner. Figure 4 shows the I/O access patterns from a sample I/O server for a 
typical rendering run on a dataset of 512x512x1728 voxels stored on a PVFS file system with 16 I/O 
servers and 1 Kbyte strip size. This figure shows that the data I/O access patterns can be very sparse. 
When the data blocks needed for a visualization query are scattered across a large file, two problems can 
occur. First, these blocks may be striped onto only one or a few I/O servers, which can result in I/O 
congestion. Second, the data blocks on individual I/O servers may be stored noncontiguously, which will 
increase the number of disk seeks on that server during access, reducing effective throughput.  

Generally, when volume rendering is applied to a large dataset, for a given user-defined transfer 
function and a particular view direction, there can be up to 70% of data blocks that are outside the value 
range of interest, and hence meaningless to load. Among those meaningful blocks, half of them can be 
occluded by other data blocks and thus become invisible. These blocks are also unnecessary to load. Our 
approach is to deploy a more efficient data distribution strategy to group together data blocks that are 
more likely to be accessed together to avoid noncontiguous I/O requests when visualizing large scale 
datasets. To group data blocks, we analyze the visibility pattern of the data blocks using visibility feature 
vectors for data blocks as signatures to identify data blocks that have similar access patterns. By 
reorganizing these data blocks based on the calculated access patterns, the number of necessary 
noncontiguous I/O can be greatly reduced. 

3.1. Visibility feature vectors 
When volume rendering is implemented by using the standard ray casting algorithm, a block's visibility 
can be estimated if we are given a list of sample values collected by the viewing rays starting from the 
image plane and before they reach the volume block. This is possible because we can evaluate the discrete 
volume rendering equation using the sample values and estimate the accumulated opacity. To represent 
the sample values for each ray, we can use a per-ray sample histogram. For a volume block under a 
particular view direction, we can combine the per-ray sample histograms from all the pixels within the 
projection footprint of the block. This combined sample histogram can characterize the block's visibility in 
the sense that if two blocks share a very similar sample histogram, they are likely to have similar 
visibility. This is the basic idea behind our visibility feature vector. 

A visibility feature vector is a n-dimensional tuple in the format of [h1, h2, ..., hn], where each 
dimension represents a sample view direction. The entry hi is the corresponding histogram with respect to 
the ith view direction. The purpose of the visibility feature vector is to keep an overall description of a 
block's visibility status for all possible view directions. Each block has a visibility feature vector, based on 
which it is possible to compare the visibility characteristics among multiple blocks. The blockwise 
visibility feature vector is constructed based on the data only and does not depend on run time transfer 
functions. By clustering data blocks based on the visibility feature vectors, it is possible to identify those 
blocks with approximately the same visibility status, and hence the same usage pattern. In addition to 
volume rendering, visibility feature vectors can be applied to other scalar data visualization techniques 
such as isosurfaces by configuring an appropriate transfer function. Isosurfacing can be implemented by 
setting the desired isovalue completely opaque while leaving other isovalues transparent. Invisible 
isosurfaces can be quickly estimated as in volume rendering using the per-ray sample histograms and the 
run-time  transfer function. 

To improve the I/O performance and minimize the number of noncontiguous I/O requests, we group 
the data blocks that share similar visibility characteristics and place them together in a file. When copying 
the file onto the parallel file system, data blocks are striped along various I/O servers in terms of pre-
calculated clusters: the blocks within the same cluster are distributed in a round-robin manner into a 
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sequence of I/O servers. This new layout strategy has the advantage that since the data blocks in the same 
cluster are likely to be accessed together, distributing the I/O load to all servers can avoid placing the load 
among only a few I/O servers. It can also avoid issuing multiple noncontiguous small IO requests in the 
individual I/O servers. Our experimental tests showed that the new file layout greatly reduces the I/O cost. 

3.2. Experimental results 
The test dataset for our I/O performance experiment is a 512x512x1728 dataset called the “Visible
Woman.” All our tests were run on an IBM Blue Gene/L supercomputer at Argonne National Laboratory, 
which has up to 2048 700 MHz PowerPC 440 cores, each with a double-pipeline-double-precision 
floating-point unit (FPU), a cache subsystem with built-in DRAM controller and the logic to support 
multiple communication sub-systems. The dual FPUs give each Blue Gene/L node a theoretical peak 
performance of 5.6 GFLOPS. In our experiments, the Visible Woman volume dataset is partitioned into 
110,592 163 volume blocks and stored on a PVFS file system across all 16 I/O servers. All of our 
experiments were conducted using 64 processors. 

We computed the visibility feature vectors described above. In the case of this data set, the alignment 
of the data set is such that view direction variations along the z-axis produce only small variations in 
resulting images. For this reason the sampled view directions were rotated along the x-axis and y-axis with 
a 20-degree increment in each step, with a fixed z-axis position, which produced a total of 64 sampled 
view directions. It took approximately 2.3 hours using 64 nodes of the Blue Gene/L to sample the view 
directions and build the corresponding visibility feature vectors. Based on the visibility feature vectors, a 
clustering process was conducted to group those blocks with similar feature vectors. Data blocks in the 
same cluster are placed contiguously in a new file; generating this new file took an addition 13 minutes. 
The PVFS file system will stripe the data in a round-robin manner to several I/O servers, placing these 
blocks near one another on individual servers. Assuming that we have correctly clustered data, I/O 
requests in this format should be serviced significantly more quickly than they would have been serviced 
in the original configuration. 

We conducted a series of experiments to test the I/O performance of our algorithm. Two file layouts 
were tested on the Visible Woman dataset: one was the original layout where the data blocks were stored 
sequentially according to their spatial locations, and the other was the new layout using our visibility-
based clustering. In order to ensure that the I/O performance improvement was stable under different 

 

 
Figure 5. Comparison of I/O time between original file layout and visibility-based file layout using 
the Visible Woman dataset and a 1 Kbyte PVFS strip size. 
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transfer functions, four transfer functions were used for each layout, and 35 view directions were sampled 
to test with each transfer function. During the run-time rendering process, after visibility culling, each 
processor reads the needed data blocks using MPI-IO. In our implementation we first use 
MPI_File_set_view() to adjust individual process's view of the data in the file. Then we call 
MPI_File_read_all() to utilize the noncontiguous I/O optimizations provided in MPI-IO. For each view 
direction, the I/O time was collected for each processor and the average time was calculated as the metric 
to compare between the two layouts. We tested using 16 I/O servers with three strip sizes – 1 Kbyte, 4 
Kbyte, and 8 Kbyte – to explore the relationship between strip size and our layout algorithm. 

Figure 5 shows a comparison of I/O performance between the two file layouts with the 1 Kbyte PVFS 
strip size for a sample transfer function, clearly demonstrating the improvements achieved by the 
visibility-based file layout. For each view direction the same number of data blocks were read in both file 
layouts. PVFS performed more efficiently when using the visibility-based layout. Results show up to 50% 
reduction of I/O time by using the visibility-based file layout under different view directions. Similar 
results were found for the other three transfer functions and with the 4 Kbyte and 8 Kbyte strip sizes, 
although access times improved slightly for both layouts as the strip size became more closely matched to 
the data block size. Moreover, the variances of I/O time under different view directions with the visibility-
based layout were far less than those with the original layout. This is because in the visibility-based 
layout, there existed fewer numbers of noncontiguous I/O requests compared with the original file layout. 

4. Conclusions 
Optimizing access to storage is becoming increasingly important, not just during simulation run-time but 
also during analysis. Numerous approaches have been pursued to date, each with its own advantages and 
disadvantages. Directly reading simulation output makes sense when the simulation output is relatively 
well suited to analysis, as was the case in our astrophysics volume rendering example. In other cases 
aggressive preprocessing prior to analysis can provide substantial performance improvement, as seen in 
the Visible Woman example. Another option is to avoid this postsimulation analysis altogether, by 
performing analysis at simulation run-time. 

In situ processing is the reduction, transformation, analysis, or viewing of data as it is being computed, 
using the same architecture as the computation [19]. This technique has two distinct advantages. First, this 
technique allows analysis routines to operate on data while it is still in memory, potentially significantly 
reducing the I/O demands of the overall workflow. Second, the technique naturally enables the application 
scientist to see the results of the simulation as it proceeds, because these results are generated as the 
simulation progresses. The Institute has explored in situ processing previously [19], including a study of in 
situ visualization for steering of a massively parallel earthquake simulation [20]. 

Solutions exist to enable in situ analysis in applications, but current portable solutions require that 
applications be developed in specific problem solving environments [21–25]. This requirement prevents in 
situ analysis from being adopted by a wider community of users, despite the technique’s substantial 
benefits in time to solution and ability to track progress. A more accessible approach to in situ processing 
is desperately needed to address the performance limitations of storage resources in supercomputing 
systems. Because applications are increasingly using more descriptive I/O interfaces to interact with 
storage, from database interfaces such as SQL to multidimensional data interfaces such as the Hierarchical 
Data Format (HDF5) and Network Common Data Format (netCDF) libraries, one option might be to 
incorporate analysis techniques into the I/O path, hiding analysis routines under interfaces already in place 
in the applications and transparently enabling in situ processing. 
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