
PROCEEDINGS OF THE 2008 WORKSHOP ON ULTRASCALE VISUALIZATION 1

Analysis of Fragmentation in Shock Physics
Simulation

Kenneth Moreland, C. Charles Law, Lisa Ice, and David Karelitz

Abstract—Analyzing shock physics, which can involve
high energies, high velocity materials, and highly variable
results, is challenging. Very little can be measured during
a shock physics experiment. Most experimental data is
collected in the aftermath. High-fidelity simulations using
codes like CTH are possible, but require a significant
amount of post processing to properly understand the
results. Physical structures and their accompanying data
must be derived from the volumetric properties computed
by the simulation. And, of course, the simulations must
be validated against experiments. To capture small frag-
mentation effects, the CTH simulations must be run on
very large scales using adaptive meshes, which further
complicates the post processing. By using the scalable vi-
sualization tool ParaView coupled with customized feature
identification, we are able to provide both the analysis and
verification of these large-scale CTH simulations.

I. INTRODUCTION

S IMULATION is a vital part in understanding shock
physics. Although experimentation will always be

the necessary tool for scientific inquiry and corrobora-
tion, the amount of data we can retrieve with simula-
tion is limited. Experiments in shock physics usually
involve high energy, high velocities, and high variability,
all of which hinder detailed, accurate, and repeatable
observations during the experiment. When measurements
cannot be taken during the experiment, they must be
taken after the experiment by observing the remaining
material. Much can be learned in this manner, but the
transient states during the experiment are lost.

Another limiting factor of experimentation is its high
cost and slow turnaround. To create shock physics ex-
periments, physical devices must be fabricated. These
devices are then usually destroyed during the experi-
ment. Safety and political issues also often plague shock
physics experiments. In some cases, experimentation is
simply not feasible.

To better analyze devices in explosive environments,
Sandia National Laboratories is using the CTH shock

K. Moreland, L. Ice, and D. Karelitz are with Sandia National
Laboratories. C. Law is with Kitware Inc.

physics analysis software [1]. In our experiments, a high
fidelity mesh is important. Even the simple interactions
shown in Figure 1 yield thousands of fragments, many
of which are less than one microgram. Such small
fragments cannot be represented if the computation grid
is not fine enough to represent them. We achieve the nec-
essary resolution by using the adaptive mesh refinement
(AMR) capabilities of CTH [2] and running it on large
scale computers like Sandia’s Red Storm, a Cray XT3
supercomputer with over 10,000 compute nodes.

Making scientific queries from CTH simulation data
requires multiple post-processing tasks [3]. First, be-
cause CTH performs volume fraction computations on
an Eulerian grid, object shapes and their metrics are
not immediately known. Fragments must be identified
by isolating connected cells containing a material, and
then statistics such as mass and volume can be derived
from the shape. The second post-processing task is to
validate the simulation. The results of a simulation must
match the results of an experiment with an equivalent
initial condition. Without this verification step, it is
impossible to know if inferences from the simulation
are correct. The third post-processing task is to provide
tools that extract statistical information to provide bet-
ter understanding of the consequences in a real-world
environment.

II. FRAGMENT IDENTIFICATION

The CTH AMR (adaptive mesh refinement) data sets
are composed of small uniform-sampled blocks. The
blocks can have various dimensions, but in any sin-
gle dataset, the blocks all have identical dimensions.
Blocks are commonly 12x12x12 with core dimensions
10x10x10 and an extra layer of cells which are dupli-
cated in neighboring blocks. Although all blocks in a
simulation have the same dimensions, the resolution of
the blocks vary to capture different scale structures in
the model. In CTH AMR data, block resolutions vary in
powers of two. Other than the extra layer of ghost cells,
higher resolution blocks do not overlap lower resolution
blocks.



PROCEEDINGS OF THE 2008 WORKSHOP ON ULTRASCALE VISUALIZATION 2

Fig. 1. Simulation of a high velocity metal ball striking a metal brick.

CTH simulations generate cell centered data and
specifically create cell centered volume-fraction arrays.
The volume-fraction attributes represent the fraction of
the cell volume that is occupied by the represented
material. There can be many materials represented, and
each has a volume fraction array.

Although the basic challenge is pretty straight forward,
there are several issues that make this task difficult.
First: the datasets are very large and it is essential
to have the data distributed across multiple processes.
Second: most iso-surface algorithms work on point-
centered data. Dealing with the cell-centered data adds
extra complexity. Third: transitions between blocks with
different levels have to be handled so that there are no
cracks in the iso-surfaces. It is important that the surfaces
are water tight and manifold.

A. Connectivity

The connectivity algorithm is implemented as a
breadth first search considering only face neighbors of
voxels. The standard approach iterates over all voxels.
When an unmarked voxel above the volume fraction
threshold is encountered, a new fragment id is created
and the voxel is used to seed a new breadth first search.
The CTH file format does not explicitly give information
about neighbor relations between blocks. In order to
speed the search for neighbors during connectivity a
graph of blocks is created that have explicit neighbor
links.

Distributed data is handled in multiple processes, each
performing its own connectivity search. The first step of
handling parallelism is sharing of ghost blocks so that
every voxel has all neighbor voxels local in its process.
Although the original CTH data contains ghost cells
around each block, the supplied extra layer of cells in
each block is not good enough because neighbors can
have different resolutions. It is important to have the
native resolution represented in the ghost cells so that
transitions can be handled with no discontinuities. Rows,
layers, or blocks of cells are shared between processes
to get complete sets of neighboring voxels. These new

blocks are added to the block graph, but are marked as
special ghost blocks. After connectivity is complete on
all processes, these ghost voxels are sent back to their
originating processes. Fragment ids of corresponding
voxels are added to a table to generate an equivalence
set. This mapping is used to merge fragments that were
artificially split by process boundaries. Mass properties
of fragments integrated during the connectivity search
are also unified at this stage of processing.

B. Fragment Surfaces

We have a few different options for creating surface
models of fragments. An approach we used previously
interpolates the cell volume fraction arrays at the vertices
and then executes a modified marching-cubes [4] iso-
surface algorithm. This strategy fails because the re-
sulting surfaces may not correspond to the fragments
extracted with face connectivity. Fragments may merge
or disappear completely due to the interpolation of the
volume fraction array. A viable alternative algorithm
computes a dual grid [5]–[7] where every voxel becomes
a point and every point becomes a 3d cell. The iso-
surface is then computed directly from the volume
fraction values, which have become point centered data.
Although this algorithm produces water tight manifold
surfaces, we selected another algorithm because it easily
generates a surface in tandem with the connectivity
search.

The basic idea of the algorithm is straightforward.
It is equivalent to passing the input volume through
a threshold filter that only keeps voxels with volume
fractions greater than some threshold (Figure 2). This
threshold is typically 50%. The outer surface of this set
is then generated. The surface vertex positions are then
adjusted to be close to the interpolated threshold value
(Figure 3). This sub-voxel positioning is similar to sub-
pixel positioning used for Canny edge detection [8].

We extract the surface of the fragment’s voxels as
they are visited during the connectivity search. When
an interior voxel (root voxel) finds a face neighbor
outside the fragment, the face shared by the voxels is



PROCEEDINGS OF THE 2008 WORKSHOP ON ULTRASCALE VISUALIZATION 3

Fig. 2. Input voxels with material fractions larger than a threshold
value are extracted. Face connectivity is performed to label voxels
with fragment ids.

Fig. 3. Surface points are moved along the volume fraction
gradient to smooth the fragment surface model. During this stage,
the movement of the points is constrained to ensure the resulting
surface is manifold.

triangulated and added to the fragment surface model.
We also create a surface for voxel faces that have no
neighbors. This creates capping surfaces for fragments
touching the boundary of the dataset. Faces are not
generated for ghost cells so surface models from multiple
processes fit together nicely.

Care is taken when triangulating faces to avoid T-
junctions when adjacent cells are from different levels
(Figure 4). When we generate a face, we find all voxels
that touch the face. We use these voxels to determine
which edges of the face must have a middle point to
mesh with neighboring faces of a higher resolution. We
use a 16 entry case table to triangulate the faces (Fig-
ure 5). Each edge contributes one bit to the case index.
There is no attempt to merge points from neighboring
faces. Duplicate points are created and they are merged
in a separate post processing phase.

Sub-voxel positioning is used to smooth the blocky
surface into a more accurate representation of the frag-
ment (Figure 3). The points are moved to be close to

Fig. 4. Surface models of fragments are created by extracting the
outer surface of fragment voxels. Care is taken at level boundaries
to ensure that the fragment surface is water tight with no cracks.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 

Fig. 5. These are the cases used to triangulate faces of voxels.
The index into the table is computed from the four binary values
indicating which of the four edges of the quad are split. Cases 6, 7,
9, 11, 13, 14 and 15 never occur in our data because our blocks are
always more than one cell thick in every dimension.

the interpolated threshold value and are also positioned
so the final surface will be manifold. For every point we
find the eight neighbor voxels that surround the point.
We threshold the eight volume fractions and use a case
table to mask the resulting values. The mask removes
the influence from voxels that are not directly connected
(through the eight neighbor voxels) to the root. This
masking keeps the surface from pinching down opposite
surfaces to non-manifold points or edges. We take the
gradient of the masked values to determine which direc-
tion we should move the point. We normalize the vector
so that the largest component is 1 unit. The resulting
vector has 26 discrete possible values that correspond
to the faces, edges and corners of a cube. This vector
is the direction we use for the point displacement. This
computed direction is like the normal of the unsmoothed
surface at the point. This computation of direction keeps
the mesh well behaved and avoids the surface folding
back on itself.

To compute the magnitude of the displacement we
assume all eight voxels have the same resolution as the
root voxel. We limit the magnitude of the displacement
to be half the size of the root voxel. We choose the



PROCEEDINGS OF THE 2008 WORKSHOP ON ULTRASCALE VISUALIZATION 4

Fig. 6. A test article (left) and corresponding quarter-symmetry
CTH model of the outer case (right).

Fig. 7. Initial quarter-symmetry CTH simulation at 2.0 × 10−4

seconds colored by fragment mass.

displacement so that the tri-linear interpolated volume
fraction at the new point is as close to the threshold as
possible.

III. SIMULATION VERIFICATION

One of the most important tasks we can perform with
the classified fragments is to validate the simulation. In
simulation validation, an experiment is performed, and a
simulation is run with its initial conditions set equivalent
to the experiment setup. The measurements taken during
the experiment are then compared with the results of the
simulation. Figure 6 shows one of the test articles we
constructed and detonated and the corresponding initial
CTH model used for simulation, which can be used to
analyse the fracturing behavior of the material [9].

The intention of the grooves in the test article are to
control its fragmentation when it detonates. We would
expect the fragments to follow the scores so that they
would have similar width and height. Instead, the sim-
ulation, shown in Figure 7, clearly shows the cylinder
fragmenting into long vertical strips.

This fragmentation is corroborated by the experimen-
tal data. Figure 8 shows the witness plate that was placed
within proximity of the experiment’s exploding cylinder.
The long indentations from the damage clearly indicate

Fig. 8. Witness plate from the test article. Notice the fragment strip
indentations highlighted in yellow.

Fig. 9. Representative fragments from the test article.

long thin fragments oriented in the vertical direction.
Fragments collected after the experiment, shown in Fig-
ure 9, are also in the same shape and size as those
computed by the simulation.

In an attempt to better understand how to control
fragmentation with the grooves, an additional simulation
was run with an initial model containing deeper grooves.
The resulting simulation, shown in Figure 10, suggests
that the cylinder will now fragment in smaller pieces as
expected. This result is not yet verified by experiment,
but gives good information on how to design the exper-
iment.

Fig. 10. A CTH simulation starting with an initial model having
deeper grooves at 2.0×10−4 seconds. The color map has a different
range than that shown in Figure 7.



PROCEEDINGS OF THE 2008 WORKSHOP ON ULTRASCALE VISUALIZATION 5

Fig. 11. A large CTH simulation containing about 180 million cells
with its fragments identified and characterized by bounding boxes. A
set of fragments has been selected visually.

IV. DATA QUERIES

Once the fragments of the simulation are success-
fully identified, deriving physical characteristics of the
fragments is straightforward. For instance, by fitting an
oriented bounding box around each fragment, as shown
in Figure 11, we can provide some general information
and compute statistics about the fragment shapes. We
can also readily compute the mass and volume of each
fragment. If the simulation produces other field informa-
tion, such as temperature, pressure, or velocity, then we
can determine the weighted average for each fragment
based on the mass or volume.

ParaView allows you to visually explore, select, and
inspect the fragments. However, when the fragmentation
is complex and the number of fragments is high, extract-
ing information from the data as a whole can be tedious
or impossible. Often a better approach is to use the
statistics made available by the fragment identification.
For example, Figure 12 shows alternatively the heaviest
and lightest fragments. Because the largest and smallest
fragments differ by six orders of magnitude and because
the distribution of fragment size is heavily biased to
the smaller fragments, it is greatly beneficial to group
fragments based on mass before deriving statistical in-
formation.

ParaView’s histogram filter is also an important tool
for analyzing the distribution of data. Figure 12 uses
a histogram to show the distribution of mass for the
smallest fragments. One possible use for this distribution
is to compare the data from the simulation to other
simulations or to experimental data. Due to the highly
variable nature of the physics, it is impossible to directly
compare individual fragments between simulations or
experiments. However, distributions are sometimes a
reliable way to compare these types of data.

Fig. 12. On the left the three heaviest fragments are identified. On
the right are the lightest fragments (those with mass between 10−8

and 10−6 grams) with a histogram showing the distribution of the
weight.

Fig. 13. Plot of mass versus average temperature.

Another use of the histogram tool is provide to com-
parisons between two variables. In addition to simply
counting up the instances of fragments in each bin, the
histogram filter is capable of computing the average
field value of all fragments in the bin. Figure 13 uses
the histogram filter to show the relationship between
mass and temperature. The data shows that the smallest
fragments tend to have the highest temperature.

A frequent quandary of these simulations is to estimate
the effect these exploding materials can have on nearby
objects. To determine the time and location fragments
might strike an object, we provide a query tool that
allows us to intersect the fragments with a plane at
any time step. We can view the cross section of the
fragment/plane intersection as shown in Figure 14. The
intersections can be annotated with any of the material
properties calculated for the fragments as previously
mentioned.

In addition to the qualitative information about the
shape provided by the intersection, we can also extract
quantitative information. By creating a single mark for
each fragment (shown in Figure 15), we can provide
quantitative information about the center of each inter-
section as well as the properties of each intersecting
fragment including volume, mass, and velocity.



PROCEEDINGS OF THE 2008 WORKSHOP ON ULTRASCALE VISUALIZATION 6

Fig. 14. Fragment/plane intersections. The top images show the
fragment cross sections at the intersection. The bottom images show
all fragments with respect to the plane. The left images are annotated
by velocity and the right by mass.

Fig. 15. Fragment/plane intersections. To top images show a mark
at the center of intersection for each fragment. The bottom images
show all fragments with respect to the plane. The left images are
annotated by velocity and the right by mass.

V. FUTURE WORK

One frequent problem encountered when simulating
shock physics is the tracking of features at multiple
scales. Although it is straightforward for a simulation
to give an accurate picture of the overall effects of an
explosion, the details of the effects of individual frag-
ments are lost. The fidelity required to accurately portray,
for example, how an individual fragment affects another
object it impacts cannot be achieved when representing
the environment as a whole.

We can get around this problem by running a sub-
sequent simulation modeling only a single fragment
but at a much higher resolution. We do this by first
extracting the polygonal representation of the fragment
and its material properties, which is already done with
the algorithm discussed previously, and using this to
create an input mesh for a subsequent simulation. For
the most part, this already works. We are currently
working on one final issue caused by the nature of the
extraction of fragment surfaces from volume fractions;
nearby surfaces sometimes touch and share vertices,
which breaks the manifold preconditions of the meshing
algorithm. We are finishing the ability to detect and
correct these pinches of the data and expect to be able
to perform the subsequent meshing and simulation soon.

Another project we are working on is the integration

Fig. 16. An image captured from within a running CTH simulation
using our fragment identification module.

of the fragment tracking into a running CTH simulation.
Our approach is similar to that of Clarke and Mark [10];
we create code that uses CTH’s Spymaster interface
to access data generated in a running CTH simulation
while it is still in core. Our code converts the data
into VTK data object types and uses our algorithms to
identify fragments and extract surfaces and statistical in-
formation. Figure 16 shows an example image generated
during a running CTH simulation that relies on fragment
identification.

The advantage of running or processing in-situ with
the simulation is that we remove the file I/O bottleneck.
When processing data after the simulation has finished,
we are limited to the data written to spyplot files. These
files are large and grow proportionally with the size of
the simulation job. Typically, data in spyplot files are
written only sporadically. Writing out all of the data
produced during a large CTH simulation is prohibitive
in terms of both time and disk usage. As we move to
petascale computing and beyond, we predict that the
fraction of data that can be stored to disk will get ever
smaller.

However, when the post processing is running with
the simulation, we potentially have access to all the
data produced with minimal overhead. Furthermore, the
resulting data from the post processing, such as images,
statistical values, and polygonal surfaces, are usually
much smaller than the input from which they are derived.
Thus, in-situ processing allows us to generate results
with a much higher fidelity.

VI. ACKNOWLEDGMENTS

This work was done in part at Sandia National Lab-
oratories. Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National



PROCEEDINGS OF THE 2008 WORKSHOP ON ULTRASCALE VISUALIZATION 7

Nuclear Security Administration under contract DE-
AC04-94AL85000.

REFERENCES

[1] E. S. Hertel, R. L. Bell, M. G. Elrick, A. V. Farnsworth,
G. I. Kerley, J. M. Mcglaun, S. V. Petney, S. A. Silling, P. A.
Taylor, and L. Yarrington, “CTH: A software family for multi-
dimensional shock physics analysis,” in Proceedings of the 19th
International Symposium on Shock Waves, 1993, pp. 377–382.

[2] R. G. Schmitt, D. A. Crawford, R. L. Bell, and E. S. Hertel,
“Adaptive mesh refinement and multi-phase flow in the CTH,”
in Workshop on Numerical methods for multi-material fluid
flows, Paris, France, September 2002.

[3] D. B. Karelitz, L. Ice, J. Wilke, S. W. Attaway, and K. D. More-
land, “Post-processing V&V level II ASC milestone (2843)
results,” Sandia National Laboratories, Tech. Rep. SAND2008-
6183, 2008.

[4] W. E. Lorensen and H. E. Cline, “Marching cubes: A high reso-
lution 3D surface construction algorithm,” Computer Graphics,
vol. 21, no. 4, pp. 163–169, July 1987.

[5] S. Schaefer and J. Warren, “Dual marching cubes: Primal
contouring of dual grids,” in Proceedings of Pacific Graphics
2004, 2004, pp. 70–76.

[6] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual contouring
of hermite data,” ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH 2002), vol. 21, no. 3, pp. 339–346, July
2002.

[7] G. M. Nielson, “Dual marching cubes,” in Proceedings IEEE
Visualization 2004, October 2004, pp. 489–496.

[8] J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 8, no. 6, pp. 679–698, November 1986.

[9] L. C. Chhabildas, T. F. Thornhill, W. D. Reinhart, M. E. Kipp,
D. R. Reedal, L. T. Wilson, and D. E. Grady, “Fracture resistant
properties of aermet steels,” International Journal of Impact
Engineering, vol. 26, pp. 77–91, 2001.

[10] J. A. Clarke and E. R. Mark, “Extending post-processing
and runtime capabilities of the CTH shock physics code,” in
Proceedings of the Users Group Conference (DOD-UGC’05),
2005, pp. 300–303, dOI=10.1109/DODUGC.2005.29.

http://dx.doi.org/10.1109/DODUGC.2005.29

	Introduction
	Fragment Identification
	Connectivity
	Fragment Surfaces

	Simulation Verification
	Data Queries
	Future Work
	Acknowledgments
	References

