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Abstract

This report documents thirteen of Sandia’s contributions to the Computational Systems and
Software Environment (CSSE) within the Advanced Simulation and Computing (ASC) pro-
gram between fiscal years 2009 and 2012. It describes their impact on ASC applications.
Most contributions are implemented in lower software levels allowing for application improve-
ment without source code changes. Improvements are identified in such areas as reduced
run time, characterizing power usage, and Input/Output (I/O). Other experiments are more
forward looking, demonstrating potential bottlenecks using mini-application versions of the
legacy codes and simulating their network activity on Exascale-class hardware.
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Chapter 1

Introduction and Executive Summary

As part of its mission, the CSSE sub-program within ASC is responsible for deploying key
software components. These include system software and tools, input/output, storage sys-
tems, networking, and post-processing tools. Some work is on-going in nature, some activities
address short term requirements, and others address the need to invest in technology de-
velopment for anticipated future mission requirements. This milestone report covers the
work done within Sandia’s CSSE program to support the ASC applications as computer
technology evolves.

We begin with the milestone description:

Cielo is expected to be the last capability system on which existing ASC
codes can run without significant modifications. This assertion will be tested to
determine where the breaking point is for an existing highly scalable application.
The goal is to stretch the performance boundaries of the application by applying
recent CSSE RD in areas such as resilience, power, I/O, visualization services,
SMARTMAP, lightweight LWKs, virtualization, simulation, and feedback loops.
Dedicated system time reservations and/or CCC allocations will be used to quan-
tify the impact of system-level changes to extend the life and performance of the
ASC code base. Finally, a simulation of anticipated exascale-class hardware will
be performed using SST to supplement the calculations.

The milestone team collected Sandia’s recent CSSE project activities that strive to im-
prove application performance without (or with minimal) source code changes to the ap-
plication. Work is from FY09, when the milestone was originally developed, through the
second quarter of FY12. Thirteen activities are highlighted herein. They are:

• Catamount enhancements to fully utilize cores per node

• Utility to reduce debugging time on Red Storm

• Optimizations to reduce core-to-core communication overhead

• Improved node allocation algorithms

• Enhancements to increase power efficiency during application execution on Red Storm
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• Application-level data services to reduce effective I/O costs

• In situ and in transit visualization and analysis

• Dynamic shared libraries on Cielo

• Process replication for reliability

• Enabling dynamic resource-aware computing

• Scalable virtualization environment

• File system for high bandwidth checkpoints

• Exascale simulation to enable collective communication offload

For each area, we identified and measured the performance impact using whichever unit of
measure was most applicable. Performance was not constrained to the most narrow definition
of “runs faster”. In addition to improved/decreased runtime, some technologies offers better
throughput of jobs, some improve user productivity, some offer efficiency improvments, others
increase job resiliency, etc. Some of the work targeted future technologies and provided design
data with an estimate for the expected improvement.

The milestone text references “an existing highly scalable application”. We gathered
data primarily using the CTH [44] and/or Charon [83] ASC applications. In a few cases,
neither application exhibited the feature or issue being addressed by the milestone area. In
that case, one or more different applications were used. Over time, we decided it was not
necessary to down-select to an existing application. Each application provided interesting
data that added value to the milestone results. All results are provided.

To address the “breaking point” portion of the milestone, we analyzed both CTH and
Charon to determine where the scalability fell off, even with the available CSSE enhance-
ments. We also estimated, using CTH’s mini-app, the cross over point when the current
CTH mpi-everywhere programming model was surpassed by on-node OpenMP and inter-
node MPI. This analysis can be found in chapter 15.

Chapters 2 through 14 each address one of the thirteen development areas listed above.
The chapters are sequenced primarily by platform, with the oldest targeted platform first.
This translates to Red Storm, Cielo, and future platforms. Although the system is now
retired, the Red Storm work offered interesting techniques and lessons learned as we continue
on the path to exascale. A number of these early chapters compare the results with the
equivalent Cielo tool giving us insight into the value of lightweight kernels. Each chapter
begins with an abstract that presents the problem, describes the solution approach, and
gives a very brief summary of the results of the work. The reader is encouraged to review
just the chapter abstracts if only the highlights are desired. However, it is best to read the
full content of each chapter in order to understand the environment under which the data
was collected.
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The remainder of this chapter gives an executive summary. Instead of the historical order
used for sequencing the chapters, we summarize the work by the areas of improvement. The
same caution about the risk of taking the results out of context from the test setup applies
here as well.

Reduced runtime We document six different R&D contributions that can reduce the
runtime for applications.

The SMARTMAP optimization was installed into the Red Storm’s lightweight kernel
operating system, Catamount. The production MPI library was then modified to take ad-
vantage of this very efficient on-node shared memory capability to reduce completion times
for collective communication operations. Results indicate that SMARTMAP provides a 4.5%
improvement in performance when running Charon on 2,048 quad-core compute nodes (8,192
cores) of Red Storm. See chapter 4 for more information.

Smart algorithms for allocating available nodes to jobs can have a significant effect on
their runtime. For networks configured as a mesh or torus, a cube-like allocation of nodes
reduces distance between communicating pairs and minimizes the impact of traffic from
other jobs on the system. The initial Sandia-developed algorithm has been implemented in
the Cray scheduler by Cray. The experiment documented herein shows that the magnitude
of the improvement increased by tenfold when the average job running time of the sample
increased by less than twenty percent. See chapter 5 for more information.

The Trilinos I/O Support (Trios) capability has been released as part of the Trilinos
project. It includes the infrastucture for application-level data services. When combined
with an I/O service, such as PnetCDF and netCDF, it can provide an effective I/O rate that
is 10X higher for a single shared file. The application is free to continue its computation
while the staged data is written to disk. See chapter 7 for more information.

The ability to adapt computation based on dynamically available resource utilization
information has been identified as an enabler for applications running at exascale. We
demonstrate such a mechanism on Cielo, proving the feasibility of dynamic resource-aware
computing. The capability is very lightweight consuming less than a hundredth of a percent
of the computing resource. It has a scalable implementation and was demonstrated on 10,000
cores. It provides both static and dynamic feedback mechanisms for the application or a
library. See chapter 11 for more information.

We introduce a new file system concept and project, currently called GoofyFS. It is tar-
geted for exascale-class systems. Quality of service is maximized by supporting multiple data
storage devices and by allowing for local decision making. The first large-scale experiment
on Cielo used off-node memory to write checkpoint files, which resulted in a 10-60x speedup
in effective I/O rates. See chapter 13 for more information.

Reduced runtime was a goal of an exascale hardware design as well. The design offloads
collective communication processing to a potential new NIC architecture. Under simulation,
when coupled with the new version 4 of the Portals networking protocol, it is possible to
achieve lower latency and higher tolerance to system noise. The simulations, run up to
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32,768 nodes, show a 40% reduction in latency over host-based collectives processing. See
chapter 14 for more information.

Improved Job Throughput: Three chapters report on contributions that can increase
the job throughput on a system. The jobs do not necessarily run faster, but system utilization
is improved.

The job management software on Red Storm was modified to allow the user to specify
resources based on units more intuitive to their problem setup. Instead of nodes, the user
specifies the number of needed processing elements (aka MPI ranks) and optionally, the
amount of memory needed per procesing element. This more natural specification was mo-
tivated initially by the fact that nodes on Red Storm are heterogeneous. Nodes could have
either two or four processing elements and the amount of memory per processing element
varied as well. Without the change, an allocation based on nodes had to assume only two
processing elements and the smallest amount of memory per node. Allocation based on the
most conservative node architecture wastes processors and memory. An experiment was run
that showed the modification to the allocation specification improved overall job throughput
by 10% as well as enhanced the user interface. See chapter 2 for additional information.

Traditionally, the computation and visualization portions of a problem analysis have been
performed separately. Data files are written to disk during the computation phase. The files
are then read during a separate visualization phase. Computational capabilities continue to
outpace I/O and disk technological advances. To address this ever widening gap, in situ and
in transit visualization techniques are being developed to reduce the amount of required I/O
to disk. Modifying the standard HPC workflow can shrink the time from initial meshing to
final results. Chapter 8 describes the progress to date, which will be further documented in
an FY13 L2 milestone.

Although counter-intuitive, process replication can provide job throughput improvements
depending on job size and job mean time to interrupt. We describe a prototype implemen-
tation to understand runtime overhead of replication. Modeling, empirical analysis and
simulation are used to find the cross over curves where replication can be more efficient
than traditional file-based checkpoint/restart solutions for resiliency. This data is extremely
useful for exascale regimes. See chapter 10 for more information.

Increased User Productivity: Four of the R&D contributions improve user produc-
tivity. Depending on the specific area, these contributions may cause an increase in job
runtime. For these situations, the increase in runtime is quantified, as user productivity can
be a subjective measure.

A debugging utility called fast where was provided on Red Storm to help understand
what might be going on when a job appears hung. The TotalView debugger can perform the
same function. However on Red Storm it was taking 30 minutes for TotalView to attach to
1024 processes. The fast where utility was able to collect the required information in a few
minutes on 31,600 cores. See chapter 3 for more information.

The in situ and in transit visualization capabilities described above are also anticipated
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to improve user productivity because of the compressed workflow.

Statically linked application binaries have traditionally been mandated for the jobs run-
ning at the largest scales. However, dynamically linked binaries introduce productivity
enhancements for application developers. It is not necessary to relink the application every
time a library is changed. Also, some applications are so large they are forced to statically
relink for each combination of modules needed for the problem being analyzed. At a mini-
mum, this is a difficult bookkeeping task. The Cielo team implemented a hierarchical cache
for active shared libraries and ran an experiment to assess its efficiency. Based on bench-
marks, the setup appeared optimal. However, the dynamically linked version of Charon ran
34% longer than the statically linked version. The traditional wisdom of statically linked
binaries prevails, unless circumstances dictate the use of a dynamically linked binary. See
chapter 9 for more information.

Application developers are often concerned about the portability of their application.
Virtualization can provide multiple operating systems on a single hardware platform. This
allows the application to operate in an environment most suitable to its needs. The Kitten
operating system, working in concert with the Palacios virtual machine monitor, can provide
a highly scalable lightweight kernel environment and also support applications requiring a
richer set of functionalty. Experiments shows a 5% increase in runtime when running in
a virtual machine, rather than directly on the hardware itself. See chapter 12 for more
information.

Reduced Power Consumption: In 2008, the Red Storm lightweight kernel operating
system, Catamount, was modified to automatically transition to lower power states when
idle. As part of this work, we developed scalable measuring techniques to quantify the
power savings of the change. This somewhat ancillary activity created a capability that can
identify additional opportunities for reduced power consumption. In this report we discuss
research that identifies the impact of reduced power states on a per job basis. In a series
of experiments we characterize the effect of CPU frequency and network bandwidth tuning
on power usage and demonstrate energy savings of up to 39% with little to no impact on
runtime performance.

Data for Co-Design: Most of the activities discussed so far inform our exascale co-
design efforts. Of particular note are 1) power efficiency, 2) new visualization workflow
techniques, 3) process replication for reliability, and 4) virtualization.

Chapter 15 is specifically targeted at scalability. We studied the CTH and Charon ap-
plications to identify bottlenecks that we expect to be issues as machines and applications
approach exascale. There was no single breaking point found. In fact, several different ones
were found for CTH and Charon. System software scalability issues remain, even with the
enhancements documented herein. An analysis was performed estimating the breaking point
for the MPI-everywhere programming model within CTH. Algorithmic improvements were
identified to improve Charon scalability.

Given this introduction and summary of the work, we hope you are inspired to read more
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of the document in the areas that interest you.
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Chapter 2

Red Storm Catamount Enhancements
to Fully Utilize Additional Cores per
Node

Abstract: Enhancements to the job submission interface are described here which enable
more efficient core utilization by accepting requests for compute resources using parameters
that match the requirements of the application. This spares the user the task of remapping
those requirements to the peculiarities of the hardware configuration, which may be compli-
cated by heterogeneity and may be evolving. Experiments are described that demonstrated
a 10% improvement in core utilization using sampled actual job mixes from Red Storm.

2.1 Motivation for the Change

The Red Storm computer and Catamount, its lightweight compute node operating system,
evolved over the years through multiple hardware upgrades. Throughout most of Red Storm’s
lifetime, as a result of partial system hardware upgrades, its hardware has been heterogeneous
with a varying number of compute cores per node and a varying amount of memory per node.
The software enhancements described and evaluated here were developed and installed to
allow seamless full utilization of the processors in such a heterogeneous environment.

Before these changes, the user requested some number of nodes from Moab, the batch job
scheduler, but had to specify the number of cores (MPI ranks) per node to use to Yod, the
Catamount program that loads and oversees a particular parallel job. There was a quad-core
batch queue available, restricting jobs to only run on quad-core nodes. The standard queue
included all the nodes. Thus unless one submitted their job to the quad-core queue, they
could only assume there were 2 cores per node available. This conservative assumption could
mean that not all cores were fully utilized on each allocated node. The changes described
here allow the user to request the more natural number, the number of ranks needed and
optionally the amount of memory per rank that the job requires. It is then up to the
system to load the job on dual-core nodes, quad-core nodes or a mixture to fully utilize the
processors. It’s easy and in the language of the application to specify to Moab the number of
ranks needed and optionally the memory per rank needed. It’s more cumbersome to specify
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to Yod how many cores per node are consistent with the memory requirements per rank and
with the queue choice and then calculate how many nodes need to be requested from Moab.
The enhancement described here required change to both Moab and to Yod.

2.2 Characterizing the effect of the Enhancements

To measure the performance impact of these changes, three run streams were created. The
core utilizations were compared by running each of these streams twice on Red Storm, once
with the changes ( “new way”) and once emulating the environment without (“old way”).
To do this, three two-week windows of actual Red Storm usage were selected from before
these changes were introduced. For each of those windows, the number of nodes used, the
elapsed time of job execution (truncated to minutes) and a flag to indicate whether the job
ran in the quad-core batch queue was collected from the Accounting Database. Very small
jobs, less than 9 nodes or less than 20 minutes, were excluded.

2.2.1 Details of the test

The creation, submitting and running in the two modes differed in three ways. (1) Separate
Bourne shell scripts were used for the each mode to read the job list file and submit the jobs
to Moab. Each submission requested a Yod enforced time limit of the scaled run time. Since
Moab now needs requested cores instead of requested node, for the new way, the number of
requested cores was two or four times the number of nodes depending on the quad-queue flag.
For the emulation mode, the number of requested cores from Moab was always artificially
set to twice the number of nodes. If the quad-queue flag was set, that information was
passed on to Moab and used in creating the Yod command line. (2) The currently installed
Moab program was used for all runs, but for emulation mode, the node description in the
Moab configuration file was changed by specifying that all nodes had two cores per node.
Fortunately the current Moab has a separate specification tag of node type. Thus specify
“quad” could be used to force a job to quad-core nodes. (3) For emulation mode only, a
modified Yod was then used that tweaked the loading information so that non-quad-queue
jobs were forced to use 2 cores per node no matter which node they ran on and to enable
quad-queue jobs to utilize 4 cores. The shock physics code, CTH, was used for all of the
jobs. The submission scripts configured the run to use the appropriate number of ranks.

2.2.2 Results

The results for core utilization are shown in Figure 2.1, which plot the percent of unused
cores throughout the runs of the job streams derived from window one. Visually it appears
that the average number of unused cores is less the new way, i.e. the core utilization is
better. To reduce the end effects as the queue emptied, the comparisons were done using the
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average core utilization computed over the period up until the work done in the job stream
was 90 percent completed. In the figures the three squares in the upper right mark the 85,
90 and 95 percent core-hours point. The results would not be particularly different if 85
percent or 95 percent had been chosen.

Figure 2.1: Node Utilization - Unused Core Percentage
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Table 2.1: Summary of Node Utilization Test Details

Start Date of Number Time Average core Average core
Window 2 week window of Jobs Scale Utilization Utilization Improvement

Factor Old Way New Way
#1 Jan. 18, 2009 322 180 83.4% 92.4% 10.8%
#2 Feb. 22, 2009 264 240 80.4% 88.2% 9.7%
#3 May 3, 2009 245 240 82.0% 91.3% 11.4%

For the first run stream the time was scaled by 180. That is, seconds are used for
minutes and the time is divided by an additional factor of 3. The elapsed time for the first
run indicated that using a scale factor of 180 would make the full experiment run too long
and so a time scale factor of 240 was employed with the 2nd and 3rd run streams. The time
to complete each experiment was highly dependent on the order in which jobs ran, i.e. which
jobs were left to finish in the tail.

If there were no quad-core queue or no jobs requested the quad queue, there would
be theoretically improvement available of about 33 percent1. The improvement of only 10
percent is consistent with the fact that a significant fraction of the jobs in the run streams
had been submitted to quad queue.

2.3 Conclusion

The enhancement described here allows the user to request compute resources directly using
parameters that match the requirements of the application without having to remap those
requirements to the peculiarities of the hardware configuration. An added bonus is the
potential for improvement in core utilization which was measured here at about 10 percent
on actual job mixes.

1In large mode, Red Storm had 3,360 dual-core nodes and 6,240 quad-core nodes for a total of 31,680
cores. If only two cores per node are used that leaves 12,480, about 33% of the cores, idle.
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Chapter 3

Fast where: A Utility to Reduce
Debugging Time on Red Storm

Abstract: A simple debugging utility for Red Storm called fast where was developed and
deployed. It addressed the need to identify where in a running application each MPI process
is executing. While Red Storm’s Totalview debugger can provide this information, it only
effectively scaled to about 1024 processes. Red Storm is a Massively Parallel Processing
(MPP) system with 9600 nodes and 31680 processing cores for computation. The 1024 pro-
cess effective limit for Totalview is far below the size of the running jobs on Red Storm.
Above that process count, Totalview startup time exceeded 30 minutes, which is not toler-
able or practical for the standard, non-desperate user. Fast where was able to collect and
summarize this information in a manner of minutes on up to 31,600 MPI processes. A small
study was done to compare timing results of fast where with the more recently available
Stack Trace Analysis Tool (STAT) [8] on Cray systems. Fast where’s text-based output
was naively basic in comparison to STAT. However, performance was comparable, while
robustness and ease of use, were better with fast where.

3.1 Motivation for the Implementation

A common question posed in emails to HPC system help lists, including Red Storm’s, is, ”I
think my job is hung. How can I tell? In what function(s) are the processes executing?”
While full featured parallel debuggers can answer this question, they also provide additional,
powerful debugging capabilities often at the expense of good scalability for any query. Re-
sponses at high scale can take several tens of minutes.

Prompted by the email appeals for help, Red Storm staff brainstormed ways to use exist-
ing health checking and ptrace-like capabilities provided by the lightweight kernal operating
system, Catamount, running on Red Storm’s compute nodes. The result was a 400-line shell
script that could provide a summary of which ranks were executing in which functions. The
vision was that this script could pinpoint three likely scenarios: 1) one node does not respond
and is likely hung, 2) all but one process are waiting in an MPI barrier, with one lagging
behind or 3) processes are stuck in I/O routines, indicating a possible file system problem.
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3.2 Evaluating the Impact of the New Utility

To measure the performance impact of fast where, we look at three facets related to usability.
Are the results provided sufficiently quickly? Is the output understandable and scalable? Is
the utility robust? Performance results from a scaling study are provided to answer the first
question. The latter two questions are addressed by empirical observations made during the
scaling study. Data was obtained using the two legacy applications, CTH and Charon.

3.2.1 Fast where Performance Results

Timing data for fast where on Red Storm was obtained during dedicated time to minimize
variability in the results. Thus, fewer data points were needed to smooth out possible impact
of other users’ jobs running on the mesh. Batch jobs were submitted at various sizes for
both CTH and Charon. Once the jobs were determined to be started, a simple script was
run. The script used the Unix ”time” command to measure how long the fast where utility
took to execute. The results are shown in Figure 3.1.

Figure 3.1: Based on the limited data points collected, fast where execution times scaled
very well with CTH. Charon results were acceptable, but difficult to interpret.

The CTH runs show very nice scalable performance with a small time to solution of
42 seconds when running on 31600 MPI ranks/processes. The results for Charon were less
predictable, with no apparant pattern. The largest run with 24800 processes took the least
amount of time–71 seconds. The medium-sized run with 8192 processes took 15 minutes.
And finally, the smallish runs using 512 and 2048 processes, took on the order of 6 minutes.
The output of the runs gave a clue as to the cause. When the data was collected for the large
24800 process run, all processes were executing in the same function. The data coalescing was
trivial. For the other runs, almost every process was in a different function and reporting the
high volume of not-well-summarized results was very slow. CTH is primarily a FORTRAN
application, while Charon is C++ with considerable use of templates.
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All of the fast where test cases ran on Red Storm without failure. In production use,
there was an early bug due to (C++) function names longer than 4096 characters. That
was quickly addressed, especially since the utility is a shell script. Anyone can debug the
problem, make a copy of the script, code the fix and rerun from their personal copy. Due
to the nature of the CTH logic, the fast where output was easily understable. It provided
a readable and useful text file enumerating which processes were executing in a relatively
small list of functions. Charon output was far less useful. If there had been a hung node,
that would have been readily apparent from the output. During the dedicated test time,
there were no hung nodes. Output was voluminous making it hard to interpret. Since it was
text output, it would be possible for a desperate user to parse the file and find a candidate
for a rogue, run-away process. But that was not the intent of the utility.

3.2.2 STAT Results

Fast where has clearly exceeded the performance of the Totalview debugger, which was
30 minutes for 1024 processing elements. A second set of data points was obtained using
another debugging utility called STAT. STAT cannot be run on Red Storm since it requires
an interface not provided by the compute nodes’ Catamount light weight kernel. But STAT
does run on later Cray systems, such as Cielo, which run Cray’s Compute Node Linux light
weight kernel. The rest of Cielo’s software architecture is very similar to Red Storm’s. STAT
was run without performing a study of tunable options.

Timing data for version 1.1.3 of STAT on Cielo was also obtained during dedicated time
to minimize variability in the results. Batch jobs were submitted at various sizes for both
CTH and Charon. Once the jobs were determined to be started, a simple script was once
again run. The script used the Unix ”time” command to measure how long the STAT utility
took to execute. The available results are shown in Figure 3.2. The CTH fast where results
on Red Storm are provided for comparison purposes.

The STAT execution times for smallish core counts (less than 5000) were acceptable. A
response time of 30 seconds is certainly tolerable. However, when run on 8192 cores, STAT
aborted with ”too many open files”. Therefore, no results were available for runs above 5000
cores. It should be noted, that on Cray systems, the STAT utility is only officially supported
on up to 1024 cores. It is possible that tuning options could have addressed this problem
and/or will be addressed in later releases by Cray.

The Charon runs were more disconcerting. The first test used 512 cores. The STAT
program appeared to execute normally and took 47 seconds. However, the Charon applica-
tion aborted with an out of memory error while STAT was interogating it. This error was
repeatable at all attempted process counts. The Charon binary is approximately 1GB in
size. Each of the 16 processes on a single Cielo node share 32GB of memory with no swap
space.

The STAT utility was not robust at the vendor-supported limit of 1024 cores. It was
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Figure 3.2: STAT timing results gave acceptable interactive response times for the data
points obtained. However, fast where exhibited a better scaling curve.

disappointing that the Charon application was aborted, rather than the STAT utility when no
more memory was available. The scaling issues with STAT appear to be vendor-specific, since
STAT has been demonstrated at very high scales on IBM Blue Gene systems. The graphical
tree-shaped output provided by STAT is extremely intuitive and easy to understand. It is
far superior to fast where. The nature of Charon, with processes executing in many different
functions at the same time was problematic for both STAT and fast where. The graphical
output was difficult to read. The graphical tree was more bush-like with function names
overwriting each other on a relatively large monitor display.

3.3 Conclusion

The fast where utility played a useful role on Red Storm. Its contribution to application
performance and scalability was to reduce debugging time at high core counts. The tech-
niques used in fast where are not directly applicable to Unix/Linux based systems. The
STAT utility provides the equivalent, plus additional features for other HPC systems. There
are both Linux and Blue Gene CNK (Compute Node Kernel) [96] implementations. While
STAT’s implementation is immature on the Cray Linux Environment, it will likely improve
to exceed that provided by fast where.

Fast where was a successful CSSE effort. It was used by Red Storm users and support staff
to diagnose hung applications. Not every hung job ended up being one of the three scenarios it
was designed to detect (hung/dead node, process ”stuck in the weeds”, or I/O problem), but
it eliminated these problems as a possibility for the hang. The quantification of its value was
reducing the time it takes to execute Totalview’s ”where” command. While Totalview took
30 minutes for 1024 processes, fast where was capable of providing the equivalent information
in five minutes or less on 31,600 processes. Now that’s a fast where command!
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Chapter 4

SMARTMAP Optimization to
Reduce Core-to-Core Communication
Overhead

Abstract: SMARTMAP [25] is a Sandia-developed operating-system (OS) memory-mapping
technique that enables separate processes running on a multi-core processor to access each
other’s memory directly, without any intermediate data copies and without OS kernel in-
volvement. This technique has been implemented in the Catamount OS on Red Storm
and used to optimize MPI point-to-point and collective operations [21, 23]. The impact
of SMARTMAP is demonstrated here by benchmarking the Charon semiconductor device
simulation application running on Red Storm with and without SMARTMAP optimizations.
Results indicate that SMARTMAP provides a 4.5% improvement in performance when run-
ning Charon on 2,048 quad-core compute nodes (8,192 cores) of Red Storm. Additionally,
results are presented for Charon running on the newer Cielo system with and without Cray’s
SMARTMAP-like XPMEM optimization technique for Linux. Results indicate significantly
reduced benefit compared to the Charon SMARTMAP results from Red Storm running
Catamount.

4.1 SMARTMAP Overview

Sandia has recently developed a simple address space mapping capability, called SMARTMAP
[25], and used it to implement multi-core optimized MPI point-to-point and collective oper-
ations [21, 23]. SMARTMAP enables cooperating processes in the same parallel job on the
same multi-core processor to access each other’s memory directly by using normal load and
store instructions. This eliminates all extraneous data copies and operating system (OS)
involvement, resulting in the minimum possible memory bandwidth utilization. Minimizing
memory bandwidth is important on multi-core processors because the number of cores per
processor is growing at a faster rate than per processor memory bandwidth.

SMARTMAP is implemented at the OS-level and uses the top-level page table entries
of each process (i.e., address space) to map the memory of cooperating processes at fixed-
offset virtual addresses. This enables a given source process to access a virtual address in a
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static inline
void ∗
remote address(unsigned rank,const void ∗vaddr)
{

uintptr t addr=(uintptr t)vaddr;

addr |= ((uintptr t)(rank+1))<<39;

return addr;
}

Figure 4.1: Catamount code for converting a local address to a remote address.

destination process by doing a straightforward address offset calculation, shown in Figure 4.1,
and then using the resulting address directly (e.g., by casting to an appropriate pointer
type and dereferencing). This operation is completely one-sided requiring no participation
from the destination process. Once SMARTMAP has setup all of the required address space
mappings, which typically occurs one time at job startup, there is no additional OS overhead
for accessing the memory of a remote process.

SMARTMAP is a general-purpose technique. In addition to MPI, it maps very well to the
partitioned global address space (PGAS) programming model and can be used to implement
one-sided get/put operations such as those available in the OpenSHMEM model [24]. At the
system software level, SMARTMAP functionality could be added to any OS kernel. Cray
has recently developed a SMARTMAP-like technique for the Cray Linux Environment called
XPMEM. SMARTMAP and XPMEM provide essentially the same user-visible capability,
but have different internal implementations and runtime behavior. XPMEM performance is
evaluated in Section 4.3.

4.2 SMARTMAP Performance Evaluation on Red Storm

To measure the performance benefit of SMARTMAP, the Charon ASC application was run on
up to 2,048 nodes of Red Storm with and without SMARTMAP optimizations. Descriptions
of Charon, the Red Storm test platform, the experiment setup, and results obtained are
described in the following sections.

4.2.1 Charon Application

Charon is an ASC semiconductor device simulation code [83] that models semiconductor
devices via the drift-diffusion equations. These equations, which consist of a coupled system
of nonlinear partial differential equations, are discretized using a stabilized finite element
formulation and solved via a Newton-Krylov approach.
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Charon has been designed to run on distributed memory massively parallel computers
and uses MPI for all communication. Previous empirical observations have shown Charon
to make MPI collective calls at high rate, and that collective performance is a major factor
constraining its performance on a large number of processors [117]. This makes Charon
a good candidate for performance and scalability improvement by SMARTMAP-optimized
MPI collectives.

4.2.2 Red Storm Test Platform and System Software

Red Storm is the first instance of the Cray XT architecture, and was jointly designed by
Cray Inc. and Sandia. At the time of the experiment, Red Storm contained a mix of dual
and quad-core compute nodes, but only quad-core processors were used for testing.

Red Storm runs the Catamount operating system on its compute nodes, which is a
special-purpose lightweight kernel designed to maximize performance for large-scale ASC
applications. The Catamount OS kernel was modified by Sandia to support SMARTMAP,
and this version of Catamount has been running in production for over a year.

The Red Storm MPI library was extended by Sandia to take advantage of the SMARTMAP
optimizations for both intra-node point-to-point and collective operations. In the case of col-
lective operations, a hierarchical approach is used where the first step is to perform the col-
lective within each multi-core node using SMARTMAP, then one representative from each
node communicates off-node to complete the inter-node portion of the collective. When
SMARTMAP collectives are turned off, the MPI library uses shared-memory for MPI mes-
sages sent between cores on the same node, which is more efficient than using the network
interface in loop-back mode, but less efficient than using SMARTMAP.

4.2.3 Experiment Setup

The Charon input problem solved was to find a 2D steady-state drift-diffusion solution for
a bipolar junction transistor. The Charon application code was not modified in any way.
The only difference between runs was enabling or disabling SMARTMAP optimizations in
the MPI library.

Three different problem sizes were evaluated: 128, 512, and 2048 nodes. In each case,
four MPI processes per node were used binding one process to each of the quad-core node’s
cores, resulting in 512, 2048, and 8192 total cores being used for each problem size. The
Charon input problem was scaled so that each core had about 31,000 unknowns per core
for each configuration. Dedicated system time was used to eliminate interference with other
running jobs. One job at a time was run, ensuring predictable allocation of nodes.
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4.2.4 SMARTMAP Results

Table 4.1 shows the Charon solution time measured for each test configuration. Solution time
measures the time needed to perform the main calculation, which includes MPI messaging
between processes. Solution time includes job startup overhead (job load time, one-time
data structure initialization, etc.), and I/O overhead.

As can be seen, the SMARTMAP optimizations provide up to a 7.3% improvement
in solution time compared to the baseline, which uses normal shared memory instead of
SMARTMAP for intra-node communication. At the largest scale tested, 2048 nodes and
8192 cores, SMARTMAP provides a 4.5% benefit.

Table 4.1: SMARTMAP/Catamount on Red Storm, Charon Solution Time

Baseline With SMARTMAP
Nodes Cores solution time solution time Improvement

(seconds) (seconds)
128 512 394.0 386.0 2.0%
512 2048 331.0 307.0 7.3%
2048 8192 446.0 426.0 4.5%

Table 4.2 shows the overall end-to-end runtime for each configuration, including job star-
tup/shutdown and file I/O. The results are slightly better than the results without startup
and I/O time. A possible explanation for this is that when SMARTMAP is disabled, more
intermediate communication memory buffers need to be allocated and freed at job startup
and shutdown. More investigation is required to determine if this is the case. Nonetheless,
SMARTMAP is providing a substantial benefit.

Table 4.2: SMARTMAP/Catamount on Red Storm, Charon Overall Elapsed Time

Baseline With SMARTMAP
Nodes Cores overall time overall time Improvement

(seconds) (seconds)
128 512 414.1 403.3 2.6%
512 2048 366.6 335.1 8.6%
2048 8192 527.3 487.7 7.5%

4.3 XPMEM Performance Evaluation on Cielo

Tables 4.3 and 4.4 present results for Charon running on the Cielo system at LANL with
and without Cray’s XPMEM optimization. The test is setup similarly to the SMARTMAP
results presented in Section 4.2, with the following main differences:
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1. Cielo is a much newer system than Red Storm (Cray XE6 vs. XT4).

2. Cielo compute nodes have 16 cores per node vs. 4 cores per node on Red Storm.
Therefore, 16 MPI ranks per node were used for the Cielo experiments.

3. Cielo runs Cray’s Linux OS on compute nodes. Red Storm runs the Catamount OS.

4. Cielo uses Cray’s XPMEM optimization to provide SMARTMAP-like functionality,
along with a proprietary closed-source MPI library that makes use of XPMEM for
intra-node core-to-core communication.

Notably, the same Charon test problem used on Red Storm was used for the Cielo ex-
periments. As with Red Storm, dedicated system time was used on Cielo and only one
application was run at a time to ensure predictable node allocation.

As can be seen from the results in Table 4.3, Cray’s XPMEM does not show any benefit for
Charon solution time. This was surprising since MPI microbenchmarks do show bandwidth
and latency improvements when using XPMEM. It is possible that Cray’s proprietary MPI is
lacking the specific SMP-optimized MPI collective that Charon needs. Further investigation
would be required to confirm this theory. Another possibility is that on Cielo, something
other than intra-node core-to-core communication is the primary bottleneck for Charon.

Results for Charon overall runtime are improved with XPMEM optimizations, as shown
in Table 4.4. Overall runtime includes job startup and shutdown overhead as well as I/O
overhead. It is possible that something about using XPMEM accelerates these operations.
On Cielo, use of XPMEM is the default so Cray has likely not spent much time optimizing
for when XPMEM is turned off (the baseline case in the tables).

Table 4.3: XPMEM/Linux on Cielo, Charon Solution Time

Baseline With XPMEM
Nodes Cores solution time solution time Improvement

(seconds) (seconds)
128 2048 181.6 181.7 0%
512 8192 248.8 248.8 0%

Table 4.4: XPMEM/Linux on Cielo, Charon Overall Elapsed Time

Baseline With XPMEM
Nodes Cores overall time overall time Improvement

(seconds) (seconds)
128 2048 245.6 232.0 5.5%
512 8192 343.7 331.5 3.5%
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4.4 Conclusion

The impact of SMARTMAP has been demonstrated by benchmarking the Charon semicon-
ductor device simulation application running on Red Storm with and without SMARTMAP
optimizations. Results show that SMARTMAP provides a 4.5% improvement to solution
time and a 7.5% improvement to overall elapsed time when running Charon on 2,048 quad-
core compute nodes (8,192 cores) of Red Storm. Results on Cielo using Cray’s XPMEM
optimization, which provides functionality similar to SMARTMAP, are less encouraging.
XPMEM provided 0% benefit to Charon solution time and 3.5% improvement to overall
elapsed time on 512 Cielo compute nodes (8192 cores). SMARTMAP-like techniques such
as XPMEM should in theory provide increased benefit as the number of cores per node is
increased, since they reduce memory bandwidth, so the XPMEM results were surprising. A
possible next step is to run SMARTMAP/Catamount on Cielo to see if a larger performance
benefit is observed.
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Chapter 5

Smart Allocation Algorithms

Abstract: Enhancements to processor allocation that enable improved job throughput are
described here. Experiments are described that demonstrate improvement in stream running
time using actual job mix samples from Red Storm whose running times were scaled down
to fit our test windows on Red Storm and Cielo. While improvement was demonstrated
on both Red Storm and Cielo, the magnitude of the improvement seems to increase with
running time. The magnitude of the improvement increased by tenfold when the average job
running time of the sample increased by less than twenty percent. This is consistent with
our previous result of over twenty percent improvement on a stream of jobs that took several
hours to run on a smaller machine.

5.1 Background and Motivation

Previous experiments have shown that allocating nearby processors to each job can improve
throughput on a range of architectures [13, 95, 86, 80, 138]. The quality of an allocation can
have a significant effect on job running time; previous work has shown that hand-placing
a pair of high-communication jobs into a high-contention configuration can roughly double
their running times [80]. The placement of job tasks has also been shown to speed up an
actual application by up to 1.64 times [62]. Furthermore, with the exponential growth in
the number of cores on chips, high-quality processor allocation of cores will be necessary for
good performance on mesh-connected chips (e.g. [10]) as well.

Several papers suggest that minimizing the average number of communication hops is an
appropriate metric for job placement [76, 86]. This metric was experimentally shown to cor-
relate with running times by Leung et al. [80]. Krumke et al. [76] considered a generalization
of this problem on arbitrary topologies for several measures of “locality”, motivated by allo-
cation on the CM5. They prove it is NP-hard to approximate average pairwise distance in
general. We survey approximation algorithms in Subsection 5.1.1. In previous experiments,
Walker et al. [137] used the simplest of these approximation algorithms, MC1x1 (see Figure
5.1(b)), to benchmark some of the heuristic algorithms surveyed in Subsection 5.1.2.

For square meshes, Walker et al. [137] find that a 1D curve-based strategy using a Hilbert
curve (see Figure 5.2(b)) can give allocations of comparable quality to a fully 2D algorithm,
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MC1x1. However, most meshes are not square or cubic. For non-cubic meshes, Walker et
al. [137] find that a 1D curve-based strategy using a “snake” curve (see Figure 5.2(c)) that
goes along the mesh’s shorter dimensions first can give allocations of comparable quality to
a fully 3D algorithm, MC1x1. Furthermore, these algorithms are much faster than MC1x1,
which takes more than 200 times as long in some cases [137]. Based on how Cray XE6
systems are assembled, Albing et al. [4] were able to develop a Hilbert-like curve for the
Cray Application Level Placement Scheduler (ALPS).

5.1.1 Approximation Algorithms

A natural algorithm for high-quality mesh allocation is MC1x1 by Bender et al. [14]. MC1x1
was developed as a variant of the algorithm MC (see Figure 5.1(a)), introduced by Mache et
al. [87]. The work of Krumke et al. [76] implies that MC1x1 is a (4 − 4/k)-approximation
for average pairwise distance on k processors.

Krumke et al. [76] proposed another member of this family called Gen-Alg (see Figure
5.2(a)). Krumke et al. [76] were explicitly trying to minimize the sum of L1 distances
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between processors and they show that Gen-Alg is a (2−2/k)-approximation for this problem,
meaning it always finds an allocation within a factor of (2− 2/k) of the optimal, where k is
the job size.

Also in the same family of algorithms as MC1x1 is MM, proposed by Bender et al. [14].
Bender et al. [14] show that MM is a 2−1/(2d)-approximation algorithm in a d-dimensional
mesh, making it a 7/4-approximation in 2D and an 11/6-approximation in 3D. Bender et al.
[14] also give an arbitrarily-good approximation algorithm (PTAS) to find allocations that
minimize the sum of pairwise distances.

5.1.2 Heuristic Algorithms

Another family of allocation algorithms is based on a linear order of processors. The first of
these is Paging, proposed by Lo et al. [84], which uses a linear order to maintain a sorted
list of free processors. When an allocation is needed, Paging assigns it a prefix of this list.
Lo et al. [84] proposed several linear orders to use with the Paging algorithm, including
the row-major, a “snake” curve that traverses alternate rows in opposite directions, and
“shuffled” versions of these.

An ordering-based strategy was independently proposed by Leung et al. [80], who in-
troduced a couple of refinements. They ordered processors using a space-filling curve such
as the recursively-generated Hilbert curve [67]. These curves are recursively defined and
are known to preserve several measures of “locality” [61, 94]. Although the Hilbert curve
is in 2D, it has generalizations to higher dimensions [3]. Later work expanded on this by
considering another curve [29] and non-square meshes [137].

They also proposed the use of strategies adapted from bin packing to select processors
from the list [80]. They found that both change of ordering and the use of bin-packing
heuristics gave improvements, with the curve giving the main improvement [80]. Weisser et
al. [138] and Albing et al. [4] adopted the curve portion of the algorithm on BigBen and in
ALPS, respectively.

As mentioned above, Walker et al. [137] find that a 1D curve-based strategy using a
Hilbert curve and bin-packing heuristics can give high quality allocations for square meshes.
They also find that a 1D curve-based strategy using bin-packing heuristics and a“snake”
curve that goes along the mesh’s shorter dimensions first can give high quality allocations
for non-cubic meshes.

5.2 Experiments

To measure the performance impact of these algorithms, the three run streams described in
Section 2.2 were used. Throughputs were compared by running each of these streams twice
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on Red Storm or Cielo, once with the default algorithm and once with the best heuristic
algorithm for the machine. The best heuristic algorithms were determined by the configu-
ration of the machine and the simulation and smaller scale experimental results reported in
Walker et al [137].

For Red Storm, a Cray XT4 that is not cubic and not running ALPS, the 1D curve-
based strategy using a “snake” curve that goes along the mesh’s shorter dimensions first is
the best heuristic algorithm. For Cielo, a Cray XE6 running ALPS, the Hilbert-like curve
for ALPS is the best heuristic algorithm. Also the algorithm on Red Storm uses strategies
adapted from bin packing, while the algorithm on Cielo does not. (The strategies were not
transferred from Red Storm in time to meet security requirements for Cielo.) Note that due
to the research in this area, the default algorithms for both Red Storm and Cielo are far
superior to the default algorithm for the original Cray XT3 [138].

5.2.1 Details

The details of the test are similar to those in Section 2.2.1. The creation, submission, and
runs in the two modes differed only in one way, the allocation algorithm used. The shock
physics code, CTH was used for all of the jobs. Since we are interested in the changes in
run times between the two modes, we could not request a Yod enforced time limit of the
run time. Instead, we reduced the number of iterations in CTH. Using CTH in this manner
allowed us to scale a two-week window of actual Red Storm usage down to about one hour of
Red Storm or Cielo usage. Since CTH has highly optimized communications, this reduction
in work for each job will further reduce the run time differences between the two modes and
make for a very challenging test of the best heuristic algorithms.

Table 2.1 shows the start date and number of jobs for each two week window. The
start dates are progressively later in time and the number of jobs are progressively fewer
from windows one to three. Since Red Storm was fully utilized during each of the two week
windows, the jobs in the later windows ran longer than the jobs in the earlier windows on
average. A consequence of this would be greater run time difference between the two modes
in later windows. This is at least partially born out in the results described in the next
section.

5.2.2 Results

The results for smart allocation are shown in Figures 5.3, 5.4, 5.6, and 5.7 which plot the
run and completion times for the runs of the job streams derived from windows one, two,
and three on Red Storm or Cielo.
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Figure 5.3: The run and completion times for the runs of the job stream derived from window one on Red Storm.
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Figure 5.4: The run and completion times for the runs of the job stream derived from window two on Red Storm.
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Figure 5.5: The run and completion times for the run of the job stream derived from window three on Red Storm.
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Figure 5.6: The run and completion times for the runs of the job stream derived from window three on Cielo.
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Figure 5.7: The run and completion times for the runs of the job stream derived from window two on Cielo.
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5.2.2.1 Red Storm

Figure 5.3 shows the run and completion times for the runs of the job stream derive from
window one on Red Storm. The completion time for a job is determined by both when it is
scheduled and how it is allocated. Since both the schedule and allocation differed between
the two runs, we compared the run time for each job and the job stream as a whole. Seventy-
one jobs took less time, ninety-six jobs took about the same amount of time, and 155 jobs
took more time with the best heuristic algorithm. Overall, it takes approximately 0.33% less
time for the stream to run with the best heuristic algorithm. As noted above, the research
in this area have improved the default algorithm on Red Storm, and the use of CTH and
the reduction in work for each job would reduce the run time differences between the two
modes.

Figure 5.4 shows the run and completion times for the runs of the job stream derive from
window two on Red Storm. Ninety jobs took less time, seventy-eight jobs took about the
same amount of time, and ninety-six jobs took more time with the best heuristic algorithm.
Overall, it takes approximately three percent less time for the stream to run with the best
heuristic algorithm. Note that window two with fewer jobs takes about the same time to run
as window one. Therefore the jobs in window two must take on average more time to run.
This difference could account for the greater separation between the two modes for window
two.

Figure 5.5 shows that window three has fewer jobs than window two and took longer to
run in the default mode. Unfortunately the experiments on Red Storm were not without
some minor glitches, and we ran out of time before we could run window three with the best
heuristic algorithm. So we ran the Cielo experiments in the reverse order.

5.2.2.2 Cielo

Figure 5.6 shows the run and completion times for the runs of the job stream derive from
window three on Cielo. 161 jobs took less time and eighty-four jobs took more time with
the best heuristic algorithm. Overall, it takes approximately three percent less time for the
stream to run with the best heuristic algorithm. This is the same percentage difference for
window two on Red Storm. Note that this job stream took less time to run on Cielo than it
did on Red Storm. The job stream derived from a Red Storm window appears not to have
posed a similar challenge to Cielo, a couple of generations beyond Red Storm.

Figure 5.7 shows the run and completion times for the runs of the job stream derive from
window two on Cielo. 173 jobs took less time, and ninety-one jobs took more time with the
heuristic algorithm. Overall, it takes approximately six percent more time for the stream to
run with the heuristic algorithm. Note that the run times for the jobs in windows two and
three seem to be fairly consistent on Cielo. This could explain the relationship between the
times for windows two and three being reversed on Cielo, i.e. the time for window three was
less than the time for window two. However, it is not clear why the performance of the best
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heuristic algorithm flipped between the two windows.

We were able to run only two windows for both the default and best heuristic algorithm
in the time allotted on Cielo. Therefore, the only overlaps between the runs on Red Storm
and the runs on Cielo were for window two and part of window three. Note that the jobs
were scheduled differently on Red Storm and Cielo. The scheduler on Red Storm selects the
largest job possible, while the scheduler on Cielo does not. It is not clear whether this is a
consequential difference.

5.3 Conclusions

Due to the research in this area, the default algorithms for both Red Storm and Cielo are
far superior to the default algorithms for the original Cray XT3 [138]. Additionally, the use
of CTH with its optimized communications and the reduction in its run time to fit into our
test window made for a very challenging test for our best heuristic algorithms. Despite these
very challenging conditions, the best heuristic algorithms were able to show improvements
over the default algorithms on Red Storm and Cielo. This was especially true for longer
running jobs. For both Red Storm and Cielo, the longer running jobs in the later windows
yielded better results for the best heuristic algorithms. For example, both the 322 jobs in
window one and the 264 jobs in window two took about an hour to run on Red Storm,
but the percentage improvement of the best heuristic algorithm increased by a factor of ten
from window one to window two. This is not inconsistent with our previous result of over
twenty percent improvement on a stream of jobs that took several hours to run on a smaller
machine [80]. The advantage of the best heuristic algorithm seems to increase for longer
running jobs.
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Chapter 6

Enhancements to Red Storm and
Catamount to Increase Power
Efficiency During Application
Execution

Abstract: In the scientific High Performance Computing sector, run-time performance has
been the primary, if not sole, metric for measuring success. Recently, however, the impor-
tance of power as a metric has been recognized and new multi-dimensioned metrics are being
considered such as; FLOPs per Watt and energy or cost to solution. We have addressed this
changing priority by demonstrating that power efficiency can be achieved with little to no
impact on performance. Our experiments have shown that increased power efficiency can
be gained by exploiting existing bottle-necks in scientific applications. In a series of experi-
ments, we characterize the effect of both CPU frequency and network bandwidth tuning on
power usage and demonstrate energy savings of up to 39% with little to no impact on run-
time performance. These results on existing platforms indicate next generation large-scale
platforms should not only approach CPU frequency scaling differently, but could also bene-
fit from the capability to tune other platform components, such as the network, to achieve
greater energy efficiency. Our results also indicate that there are significant opportunities for
this work to impact how future algorithms are implemented to maximize both performance
and energy efficiency.

6.1 Introduction and Motivation

Power has increasingly been identified as the tall pole in the path to Exascale. Applications
executing on next generation systems will not only have to meet performance goals but
accomplish these goals within an environment that will possibly diverge greatly from current
platforms. It is clear that one of our future challenges will be increasing energy efficiency
while preserving application performance. Our motivation for this work is to demonstrate
improvements in energy efficiency using current ASC scientific applications on existing ASC
platforms. Our experiments will not only reveal where energy efficiency can be increased but
what software and hardware platform characteristics will have the most impact, if available,
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on future ASC platforms.

In response to this challenge we apply a, thus far, unique ability to measure current draw
and voltage, in situ, to analyze the trade-offs between performance and energy efficiency of
production ASC scientific applications run at large scale (thousands of nodes) while manip-
ulating CPU frequency and network bandwidth.

The results of our experiments clearly indicate that opportunities exist to save energy
by tuning platform components without sacrificing application performance. Our goal is to
reduce energy consumption of scientific applications run at very large scale while minimizing
the impact on run-time performance (wall-clock execution time).

Evaluating acceptable trade-offs between energy efficiency and run-time performance is,
of course, somewhat subjective. Our work indicates that the parameters of these trade-offs
are application dependent. With annual power costs on track to meet or exceed acquisition
costs of next generation large scale platforms, our traditional prioritization of performance
above all will be forced to change. It is likely that more emphasis will be placed on energy ef-
ficiency metrics like FLOPS/Watt, Energy Delay Product or energy to solution. Regardless,
performance remains a critical parameter of our evaluation.

6.2 CPU Frequency Tuning

Typical approaches to CPU frequency scaling employed by operating systems, such as Linux,
while efficient for single server or laptop implementations, have proven to be detrimental
when used at scale causing the equivalent of operating system jitter[113]. For this reason, it
is common practice at most HPC sites that deploy medium to large scale clusters to disable
frequency scaling. It is clear to us that techniques designed for laptop energy efficiency are
not directly applicable to large scale HPC platforms. It is particularly important that any
approach taken has a system-level, rather than node-level, view of these issues.

To accomplish our goals, we made a small number of targeted modifications to the Cata-
mount light-weight kernel. Typically, light-weight kernels are small and accommodate low
level changes more easily than general purpose operating systems, such as Linux. Our
changes to Catamount involved leveraging the Dynamic Voltage and Frequency Scaling
(DVFS) capabilities available on the processor (CPU). We made additions to Catamount that
allowed a user space process to request a CPU frequency change. Currently, our method
of frequency scaling is limited to frequencies defined in the P-state table, although most
processors support frequency stepping in 100MHz increments.

Power on CMOS chips has three primary contributing factors; dynamic power, static
power and leakage current. Equation 6.1 depicts each contributing factor.
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P = dynamicP + staticP + leakageI

P = ACV 2f + tAV Ishortf + V Ileak (6.1)

Dynamic power currently dominates the equation, but leakage current is quickly becoming
a significant contributor. We will focus on the contribution of dynamic power. Notice, there
is a quadratic relationship between voltage (V) and power (P). Consequently, the largest
impact on power can be obtained by lowering input voltage which is what our frequency
changes ultimately accomplish.

In our CPU frequency experiments we employ static frequency scaling. Static frequency
scaling is defined, for our purposes, as changing the processor frequency to a specified state
and keeping that frequency state constant over the duration of the application execution.
The applications used in our experiments were selected based on their importance to the
three DOE National Nuclear Security Administration (NNSA) nuclear weapons laboratories
(Sandia, Los Alamos and Lawrence Livermore). The test applications include; SAGE, CTH,
AMG2006, xNOBEL, UMT, Charon and LAMMPS. We tested each application at a range
of frequencies (P-states) and measured the energy used over the duration of the application
execution.

Decreasing CPU frequency, in general, will slow active computation. If applications
were solely gated by computation this approach would be entirely detrimental. However,
applications exhibit a range of characteristics. In this experiment, we altered CPU frequency
and measured the impact on CPU energy and run-time (other platform parameters are left
unchanged). Note, for all experiments we contrast both run-time and CPU energy to the
baseline runs conducted at P-states 0 or 1 (depending on the platform used) and report the
contrast as percent difference. For the baseline runs we record the execution time in seconds
(s) and the energy used in Joules (J).

Our CPU frequency experiments focused on the effect that CPU frequency modifications
had on CPU energy alone. CPU energy is the single largest contributor to total node energy
used as observed in [52]. On our test platforms, CPU energy ranges from 44-57% of total
node power. For this reason we feel measuring CPU energy in isolation is important. Further,
the results of this experiment have the potential to be more widely applicable. Later, we
take a broader look at total system energy in our network bandwidth tuning experiment.
Total energy considers the contribution of additional node components and is somewhat
more platform specific than our CPU energy analysis. We feel both approaches have utility
and provide interesting insights.

6.2.1 Results: CPU Frequency Tuning

Table 6.1 lists the results of our CPU frequency scaling experiments. We obtained results
for AMG2006 at P-states 1-4 at a scale of 6K cores. At P-state 2 we observed an increase in
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Figure 6.1: Application Energy Signatures of AMG2006 and LAMMPS run at P-states 1-4

run-time of 7.47% accompanied by an energy savings of 32.0%. Note, we used the longest of
three run-times in each case for our final measurements. AMG2006 had a short run-time and
we found the shortest run-time in P-state 2 was actually faster than the longest run-time in
P-state 1. For this reason we are confident in stating that AMG2006 could benefit from a
reduction in frequency to, at a minimum, P-state 2. The trade-off at P-state 3 is not as clear.
The run-time impact increases more than the energy is reduced at P-states 3 and 4. We do
note, while P-state 4 exhibits a significant hit in run-time, we measured the largest savings
in energy recorded in our experiments. Depending on policies and/or priorities AMG2006
might be able to take advantage of any of the available P-states to produce significant savings
in energy.

LAMMPS (tested at 16K cores), in contrast to AMG2006, does not display a clear win
when run at lower frequencies. Our results for P-state 2 show a 16.3% increase in run-
time and a 22.9% decrease in energy. The results for P-states 3 and 4 demonstrate a very
significant hit in run-time. While it is our opinion that increases in run-time of this magnitude
are not acceptable, LAMMPS does, however, show a larger percent savings in energy versus
run-time impact at P-states 2, 3 and 4. This may be acceptable in some circumstances
where energy consumption is the primary consideration or policy decisions enforce energy
limitations.

Figures 6.1(a) and 6.1(b) graphically depict each of the four executions of AMG2006 and
LAMMPS at P-states 1-4. The shaded area under each curve represents the energy used
over the duration of the application. Figure 6.1(a) clearly depicts the positive run-time vs.
energy trade-off for AMG2006 indicated in Table 6.1, especially between P-states 1 and 2.
In contrast, more dramatic increases in run-time can be seen in figure 6.1(b) for LAMMPS.
While AMG2006 showed a favorable trade-off between run-time and energy when run at lower
frequencies there might be even more benefit to obtain. Notice the compute intensive phase
of AMG2006 early in the application execution. If we were to maintain high CPU frequency
during this phase but transition to lower frequency for the remainder of the application it is
likely that the energy savings would be even greater. While LAMMPS did not show a clear
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win when lowering CPU frequency we observed very regular compute and communication
phases throughout the entire application execution (indicated by peaks and valleys in the
graph). We have work planned to further examine these application characteristics, and
potentially leveraged them using a more dynamic approach, to obtain power savings even in
applications that do not present a clear choice when we statically modify the CPU frequency.

We obtained results for SAGE at two different scales (4K and 16K cores). In both cases,
a small increase in run-time (0.402% at larger scale and 3.86% at smaller scale) is observed
accompanied by a very significant reduction in energy (39.5% at large scale and 38.9% at
small scale). We were able to obtain results for a 4k core run of SAGE at P-state 3. The
impact on run-time remains low while additional energy savings were recorded. Based on
our observations, it is possible that SAGE run at 16k cores would have also demonstrated a
favorable trade-off at P-state 3.

CTH was executed at P-states 0, 2 and 3 at a scale of 16K cores. Similar to LAMMPS,
there is no clear win with CTH when the CPU frequency is lowered. Also, like LAMMPS,
CTH has very regular compute and communication phases. LAMMPS and CTH will likely
both be targets of our future work in dynamic CPU frequency scaling at large scale.

We obtained results for xNOBEL at 6K cores at P-states 0, 2 and 3. Our results indicate
that xNOBEL, like AMG2006, is a good candidate for CPU frequency reduction. Having
the ability to tune CPU frequency at large scale for this application is a clear win.

UMT and Charon behaved in a very similar manner. Since UMT was run at a much
larger scale than Charon (16K cores vs. 4K cores) we feel the results obtained for UMT are
more meaningful and more accurately represent what we could expect at large scale. Charon
may act differently when run at larger scale, but these results indicate that both UMT and
Charon are sensitive to CPU frequency changes. It is possible that further analysis will reveal
opportunities to dynamically scale frequency during the execution of these applications.

The CPU is only one component that affects application performance. In the follow-
ing section we will experiment with tuning network bandwidth and observe the trade-offs
between performance vs. total system energy.
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Table 6.1: Experiment 1: CPU Frequency Scaling: Run-time and CPU Energy %Difference vs. Baseline

Baseline Frequency P-2 - 1.7 GHz %Diff P-3 - 1.4 GHz %Diff P-4 - 1.1 GHz %Diff
Nodes/Cores Run-time (s) Energy (J) Run-time Energy Run-time Energy Run-time Energy

HPL 6000/24000 1571 4.49×108 21.1 (26.4)
Pallas 1024/1024 6816 1.72×108 2.30 (43.6)

AMG2006 1536/6144 174 9.49×106 7.47 (32.0) 18.4 (57.1) 39.1 (78.0)
LAMMPS 4096/16384 172 2.79×107 16.3 (22.9) 36.0 (48.4) 69.8 (72.2)

SAGE 4096/16384 249 4.85×107 0.402 (39.5)
(weak) 1024/4096 337 1.51×107 3.86 (38.9) 7.72 (49.9)
CTH 4096/16384 1753 3.60×108 14.4 (28.2) 29.0 (38.9)

xNOBEL 1536/6144 542 4.96×107 6.09 (35.5) 11.8 (50.3)
UMT 4096/16384 1831 3.48×108 18.0 (26.5)

Charon 1024/4096 879 4.47×107 19.1 (27.8)

Table 6.2: Experiment 2: Network Bandwidth: Run-time and Total Energy %Difference vs. Baseline

Baseline Bandwidth (BW) 1/2 BW %Diff 1/4th BW %Diff 1/8th BW %Diff
Nodes/Cores Run-time (s) Energy (J) Run-time Energy Run-time Energy Run-time Energy

SAGE strong 2048/4096 337 5.79×107 (0.593) (15.3) 8.90 (15.5) 20.2 (11.4)
SAGE weak 2048/4096 328 5.64×107 0.609 (14.3) 8.23 (15.8) 22.6 (9.63)

CTH 2048/4096 1519 2.58×108 9.81 (7.09) 30.2 1.04 40.4 3.50
AMG2006 2048/4096 859 1.45×107 (0.815) (15.8) (0.116) (22.7) 0.931 (25.9)
xNOBEL 1536/3072 533 7.01×107 (0.938) (15.4) (0.375) (22.2) (0.375) (25.9)

UMT 512/1024 838 3.57×107 0.357 (14.7) 1.07 (21.7) 6.32 (21.8)
Charon 1024/2048 1162 9.96×107 1.55 (13.7) 2.15 (20.8) 2.67 (24.5)
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6.3 Network Bandwidth Tuning

Our goal in this experiment was to determine the affect on run-time performance and en-
ergy of production scientific applications run at very large scale while tuning the network
bandwidth of an otherwise balanced platform. To accomplish network bandwidth scaling
we employed two different tunable characteristics of the Cray XT architecture. First, we
tuned the Seastar NIC to reduce the interconnect bandwidth in stages to 1/2 and 1/4th of
full bandwidth. Next, we used the ability to tune the node injection bandwidth, effectively
reducing the network bandwidth to 1/8th. This allowed for the most complete stepwise
reduction in overall network bandwidth we were able to achieve using this architecture.

Modifying the network interconnect bandwidth on the Cray XT requires a fairly simple
change to the router configuration file, consulted during the routing process of the boot
sequence. A full system reboot is required for every alteration of the interconnect bandwidth.
Typically, all four rails of the Seastar are configured to be enabled. Alternatively, the number
of enabled rails can be reduced by specifying a bitmask in the system’s router configuration
file (e.g., 1111 for four rails, 0011 for two rails). In our experiments, we configured the
interconnect bandwidth of the Seastar to effectively tune the network bandwidth to full, 1/2
and 1/4th.

Since the interconnect bandwidth on the XT architecture is far greater than the injec-
tion bandwidth of an individual node, the interconnect bandwidth had to be reduced to 1/2
before it produced a measurable effect. Multiple nodes may route through an individual
Seastar depending on communication patterns and node placement relative to logical net-
work topology. For this reason, we limited our experiments to one application executing at
a time. This allowed for the nearest estimation of the impact of network bandwidth tuning
on an individual application. Running other applications concurrently would be an inter-
esting experiment but would greatly complicate analysis and was beyond the scope of this
experiment but is planned for future investigations.

Tuning the node injection bandwidth, to further reduce the network bandwidth, requires
a small modification to the Cray XT bootstrap source code. Cray provided us access to this
source code under a proprietary license. The portion of the code that required modification
(coldstart) serves an equivalent purpose to the BIOS on a personal computer or server. Our
experiments were conducted in phases beginning with a baseline full bandwidth run for each
application followed by subsequent executions at each reduced bandwidth.

For each phase we collected power samples (current draw and voltage). The scale used
for each application, number of nodes and cores, is listed in Table 6.2. No operating system
modifications were necessary for either the interconnect or injection bandwidth experiments.
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6.3.1 Results: Network Bandwidth Tuning

Total energy in Table 6.2 includes the measured energy from the CPU, a measured energy
from the Seastar and an estimated energy from the memory subsystem. Node energy is
calculated by totaling the energy used by all nodes measured for each experiment divided
by the number of nodes measured to produce the average energy used by each node (Ecpu).
Current draw of the Seastar, measured from the VRM supporting the entire mezzanine, is
constant since the SerDes do not throttle up and down based on network traffic or demand.
There are four Seastars in a mezzanine, therefore, we multiply the current reading by the
input voltage and divide by four to produce the baseline Seastar energy value (Enetwork). For
1/2, 1/4th and 1/8th network bandwidth calculations we assume a linear reduction in power.
As stated, we use an estimated per node memory energy value which remains constant for
each experiment (Ememory). Finally, the separate individual node CPU, network and memory
values are summed then multiplied by the number of nodes participating in each experiment
to determine the total energy. The calculation is as follows (where E = Energy):

(Ecpu + Enetwork + Ememory) × number of nodes = Total Energy (6.2)

In our calculations we used 25 W for the full network bandwidth value, 12.5 W for 1/2,
6.25 W for 1/4th and 3.125 W for 1/8th network bandwidth. We used 20 watts for the memory
value in all calculations primarily to avoid the network energy having a disproportional affect
on the total energy calculation.

Addressing each application in table order (see Table 6.2) we see SAGE displays similar
characteristics for both input problems tested. Reducing the network bandwidth by 1/2
has little affect on the run-time while a significant savings in energy is experienced. The
impact on run-time is larger when the network bandwidth is reduced to 1/4th with little
additional energy savings. At 1/8th network bandwidth SAGE, for both input problems,
experiences significant impacts on run-time accompanied by smaller energy savings. Based
on this data, reducing network bandwidth by 1/2, if we could reduce the corresponding
energy consumption of the network by half, would be advantageous. Considering the run-
time energy trade-off we would likely not choose to reduce the network bandwidth beyond
1/2.

CTH was affected more by changes in the network bandwidth than any other application
we tested. Even at 1/2 bandwidth, CTH experiences a greater percent increase in run-time
(9.81%) than is saved by reducing network energy (7.09% decrease in total energy). At
1/4th bandwidth, CTH experiences a very large increase in run-time (30.2%) accompanied
by an actual increase in energy used of 1.04%. Clearly, reducing network bandwidth further
is highly detrimental to both run-time and energy as can be seen from the 1/8th network
bandwidth results. Even at this moderately large scale CTH requires a high performance
network to execute efficiently.

AMG2006 and xNOBEL, in contrast with CTH, are insensitive to the network band-
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width changes in terms of run-time, but demonstrate large energy savings opportunities.
Reductions down to 1/8th network bandwidth cause virtually no impact in run-time for both
AMG2006 and xNOBEL while a 25.9% savings in energy can be achieved for both. We do
note the savings in energy seems to be flattening by the time we reduce network bandwidth
to 1/8th. While further reductions in network bandwidth may or may not increase run-time,
there is likely little additional energy savings available.

UMT produced similar results to AMG2006 and xNOBEL when the network bandwidth
was reduced up to 1/4th, little to no impact in run-time accompanied by a large energy
savings. At 1/8th network bandwidth we see different characteristics. UMT experiences a
much higher impact on run-time at 1/8th network bandwidth (6.32%) than at 1/4th (1.07%)
with virtually no additional energy savings (21.7% at 1/4th and 21.8% at 1/8th). We seem to
have found the limit of network bandwidth tuning that should be applied to UMT at least
at this scale. We should note that UMT was run at a smaller scale relative to the other
applications. It is possible that at larger scale our results would differ.

Charon showed small, but increasing, impact on run-time as we reduced network band-
width. At this scale it is clear that we could reduce the network bandwidth down to 1/4th

with probably an acceptable impact in run-time (increase of 2.15%) accompanied by a very
significant savings in energy (decrease of 20.8%). Moving from 1/4th to 1/8th network band-
width shows indications that the energy savings is flattening but results are not conclusive.
Experiments with Charon at larger scale are also warranted.

Overall, we observed significant evidence that a tunable network would be beneficial for
most of the applications tested. In all cases but CTH, virtually no impact to run-time would
be experienced by tuning the network bandwidth to 1/2. The result would be significant
energy savings with little to no performance impact. In the case of AMG2006, xNOBEL and
UMT the network bandwidth could be reduced to 1/4th full bandwidth with little run-time
impact, allowing for even larger energy savings. Our observations indicate that a tunable
network would be beneficial but they also indicate a high performance network is critical for
some applications. The ability to tune the network, similar to how frequency is tunable on
a CPU, would be an important characteristic on next generation exascale platforms.

It should be stressed that our data is representative of a single application running at a
time. One of the reasons the interconnect bandwidth of the Seastar was designed to be greater
than the injection bandwidth of a single node is that the network is a shared resource on the
Cray XT architecture, shared by all simultaneously running applications. Often many hops
are required for a messages to travel from source to destination, and poor node mappings
result in individual network links carrying messages for multiple applications. Having a
greater interconnect bandwidth is essential for handling this increased load. Thus, the ability
to tune network performance could not be exploited without considering the possible impact
on other applications running on the platform, at least for network topologies like meshes
and 3D-toruses. Network topologies with fewer hops on average could benefit more easily
from a tunable network since less consideration would be necessary regarding the impact on
other applications co-existing on the platform.
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Figure 6.2: Normalized Energy, Run-time and (E ∗ Tw) where (w) = 1, 2, or3

6.4 Energy Delay Product

Calculating the Energy Delay Product (EDP) [69],[28] is one way of producing a single
one-dimensional metric to evaluate both the energy and performance impact. In figure 6.2
we have graphed the energy and runtime normalized to baseline and three separate EDP
curves using the equation E ∗ Tw where w = 1, 2 or 3 for HPL, AMG2006 and LAMMPS.
The graphs shown are based on the same data used for Table 6.1 from experiment #1. Data
from both experiments #1 and #2 have been analyzed and while too extensive for this report
results can be found in SAND2011-5702 in their entirety. The HPL graph demonstrates the
progressive affect increasing the exponent of the time factor has on the metric. This graph
reinforces why we would likely not use an unweighted EDP calculation for HPC applications.
The EDP squared and EDP cubed plots more accurately represent our previous analysis of
the affect of lowering frequency for HPL. The graphs representing AMG and LAMMPS
parallel our previous analysis nicely. Even the EDP cubed curve indicates it is beneficial
to lower the CPU frequency while running AMG. In the case of LAMMPS if we based
our analysis on EDP squared we might determine there is benefit if we run at P-state 4.
If we evaluate based on the EDP cubed curve all P-states are detrimental. Generally, no
significantly different insights were discovered using EDP for analysis but they did serve as
reinforcement of our initial conclusions.

6.5 Conclusions

Applications like AMG2006, and xNOBEL were fairly insensitive to CPU frequency reduc-
tions. Both AMG2006 and xNOBEL were also tolerant of network bandwidth reductions.
It is possible that if we tune both the CPU frequency and network bandwidth, at the same
time, we could realize even greater energy savings. As an example, if we use the per node
energy value for xNOBEL when executed at P-state 2 in our total energy calculation for the
1/8th network bandwidth experiment, xNOBEL would experience a total of 56.4% in energy
savings with a 6% impact in runtime.
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We specifically selected xNOBEL in our previous example since it was the least impacted
by any tuning we applied. CTH, however, was significantly affected by CPU frequency
adjustments. If we did choose to reduce CPU frequency, could we reduce the network
bandwidth without further impact on run-time but save additional energy making the run-
time impact more palatable? Possibly, if memory or some other component is the bottleneck,
but we cannot definitively state this would be the result. A better approach for applications
like CTH would be to apply dynamic frequency scaling but coordinated with application
compute and communication cycles.

Our experiments indicate each application has a sweet spot based on its computation
and communication requirements. Additionally, we have observed energy savings and run-
time are impacted, often significantly, by scale. We feel that the trade-offs are platform and
application specific – when one bottleneck is removed, another will appear, and the order
that the bottlenecks appear will depend on the platform. Conducting these experiments on
a platform like the Cray XT is valuable since it is a well-balanced in its default configuration.
As a result of our experiments, we have concluded that components on future HPC platforms
(exascale and beyond) should be as tunable as possible under software control so that end-
users or system software can optimize the energy/performance trade-off.
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Chapter 7

Reducing Effective I/O Costs with
Application-Level Data Services

Abstract:

Data Services are applications that run on compute or service nodes of HPC platforms
that provide a staging or processing capability on behalf of another running application. A
traditional example of a system-level service is a file-system server that processes requests on
an I/O node of a parallel file system like Lustre or Panasas. In contrast, an application-level
service is owned and managed by the user. These services can provide a data-processing
capability that cooperates with a large-scale scientific application to significantly reduce the
I/O overheads seen by applications on HPC systems. This chapter describes the Network
Scalable Service Interface (Nessie), a framework for developing and deploying data services
on existing HPC system, and presents performance results from two example data services:
a simple data-transfer service, and a production-level data-staging service for a commonly
used high-level I/O library.

7.1 Background and Motivation

For decades there has been a growing mismatch in the rate scientific applications generate
data and the rate parallel file systems can consume that data. There are a number of
compounding reasons for this mismatch. First, technology for parallel file systems for large-
scale capability class systems has remained fairly stagnant for the last decade and is still
largely based on parallel disks and a sequential POSIX model. Second the scale in number of
processors, system memory, and fidelity of the application puts an increasing burden on the
file system by increasing the size of resulting data sets from application simulations. Finally,
the primary means of resilience which is application-directed checkpoint, is incredibly I/O
intensive and consumes a high percentage of I/O bandwidth at large scales [101]

For high-performance computing (HPC) applications, it is often easy to identify distinct
phases in the application’s runtime where computation, communication, or I/O dominate the
current activity. For example, a finite-difference code three distinct phases for each timestep
calculation. The first phase is a period of intense computation where the code calculates a
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resulting value for a particular data point based on a function applied to its nearest neigh-
bors. After the compute-intensive phase, there is a period of intense communication where
processor boundary values are exchanged with other processors in the parallel application.
Finally, at the end of the communication-intensive phase for some of the timestep calcula-
tions, there is an I/O-intensive phase where the application writes a (perhaps large) portion
of its memory to the file system as a “restart” file allowing the application to make progress
in the event of an application or system failure.

Of the three phases, I/O is often the largest performance bottleneck for the application.
While there are known techniques for overlapping communication and computation (e.g.,
double buffering and asynchronous message passing), the I/O cost is difficult to hide. Using
traditional POSIX interfaces, the majority of the application is idle while data streams from
memory to the remote storage devices. Efforts to make the I/O phase asynchronous require
large local memory reserves and have often led to unexpected interference effects that further
reduce application performance [1].

One approach to both reduce the burden on the file system and improve “effective” I/O
rates for the application is to employ the use of “data services” [1, 85, 97, 100, 139]. Simply
put, a data service is a separate (possibly parallel) application that performs operations
on behalf of an actively running scientific application. This type of processing was first
demonstrated for HPC computing as part of the Salvo seismic imaging application in mid
1990s [106]. Salvo used an “I/O Partition” to perform preprocessing (FFTs) on data between
the storage systems and the application. As HPC systems continued to evolve, the need to
supplement parallel file systems with similar approaches became evident. Now there are
entire research communities exploring better ways to use similar processing techniques for
data staging and in-situ analysis.

A data service architecture uses remote direct-memory access (RDMA) to move data from
memory to memory between the application and the service(s). Figure 7.1 illustrates the
organization of an application using data services. On current capability-class HPC systems,
services execute on compute nodes or service nodes and provide the application the ability to
“offload” operations that present scalability challenges for the scientific code. One commonly
used example for data services is data staging, or caching data between the application and
the storage system [100, 101, 118]. Section 7.4 describes such a service. Other examples
include proxies for database operations [105] and in-situ data analysis [57, 85, 139].

This chapter provides a description of our data-service framework the Network Scalable
Service Interfaice (Nessie), as well as examples and performance results of data services cur-
rently in use or in development at Sandia. The data-transfer service, described in Section 7.3,
is the canonical example on how to develop a data service using Nessie, and the PnetCDF
service from Section 7.4 is an example of link-time replacement I/O library that performs
data-staging for bursty I/O operations. Finally, we briefly discuss other options for data
services, including an in-development service for real-time analysis of data from the CTH
shock physics application.
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Figure 7.1: A data service uses additional compute resources to perform operations on behalf
of an HPC application.

7.2 Nessie

The NEtwork Scalable Service Interface, or Nessie, is a framework for developing parallel
client-server data services for large-scale HPC systems [85, 104].

Nessie was originally developed out of necessity for the Lightweight File Systems (LWFS)
project [103], a joint effort between researchers at Sandia National Laboratories and the
University of New Mexico. The LWFS project followed the same philosophy of “simplicity
enables scalability”, the foundation of earlier work on lightweight operating system kernels
at Sandia [119]. The LWFS approach was to provide a core set of fundamental capabilities
for security, data movement, and storage and afford extensibility through the development
of additional services. For example, systems that require data consistency and persistence
might create services for transactional semantics and naming to satisfy these requirements.
The Nessie framework was designed to be the vehicle to enable the rapid development of
such services.

Because Nessie was originally designed for I/O systems, it includes a number of features
that address scalability, efficient data movement, and support for heterogenous architectures.
Features of particular note include 1) using asynchronous methods for most of the interface
to prevent client blocking while the service processes a request; 2) using a server-directed
approach to efficiently manage network bandwidth between the client and servers; 3) using
separate channels for control and data traffic; and 4) using XDR encoding for the control
messages (i.e., requests and results) to support heterogenous systems of compute and service
nodes.

A Nessie service consists of one or more processes that execute as a serial or parallel job on
the compute nodes or service nodes of an HPC system. We have demonstrated Nessie services
on the Cray XT3 at Sandia National Laboratories, the Cray XT4/5 systems at ORNL,
and a large InfiniBand cluster at SNL. The Nessie RPC layer has direct support of Cray’s
SeaStar interconnect [26], through the Portals API [27]; Cray’s Gemini interconnect [6]; and
InfiniBand [9].
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Figure 7.2: Network protocol for a Nessie storage server executing a write request. The
initial request tells the server the operation and the location of the client buffers. The server
fetches the data through RDMA get commands until it has satisfied the request. After
completing the data transfers, the server sends a small “result” object back to the client
indicating success or failure.

The Nessie API follows a remote procedure call (RPC) model, where the client (i.e., the
scientific application) tells the server(s) to execute a function on its behalf. Nessie relies on
client and server stub functions to encode/decode (i.e., marshal) procedure call parameters
to/from a machine-independent format. This approach is portable because it allows access
to services on heterogeneous systems, but it is not efficient for I/O requests that contain raw
buffers that do not need encoding. It also employs a ‘push’ model for data transport that
puts tremendous stress on servers when the requests are large and unexpected, as is the case
for most I/O requests.

To address the issue of efficient transport for bulk data, Nessie uses separate communi-
cation channels for control and data messages. In this model, a control message is typically
small. It identifies the operation to perform, where to get arguments, the structure of the
arguments, and so forth. In contrast, a data message is typically large and consists of “raw”
bytes that, in most cases, do not need to be encoded/decoded by the server. For example,
Figure 7.2 shows the transport protocol for an I/O server executing a write request.

The Nessie client uses the RPC-like interface to push control messages to the servers, but
the Nessie server uses a different, one-sided API to push or pull data to/from the client. This
protocol allows interactions with heterogeneous servers and benefits from allowing the server
to control the transport of bulk data [75, 130]. The server can thus manage large volumes of
requests with minimal resource requirements. Furthermore, since servers are expected to be
a critical bottleneck in the system (recall the high proportion of compute nodes to I/O nodes
in MPPs), a server directed approach affords the server optimizing request processing for
efficient use of underlying network and storage devices – for example, re-ordering requests
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to a storage device [75].

7.3 A Simple Data-Transfer Service

The data-transfer service is included in the “examples/xfer-service/” directory of the Trios
package. This example demonstrates how to construct a simple client and server that transfer
an array of 16-byte data structures from a parallel application to a set of servers. The code
serves three purposes: it is the primary example for how to develop a data service, it is used
to test correctness of the Nessie APIs, and we use it to evaluate network performance of the
Nessie protocols.

Creating the transfer-service requires the following three steps:

1. Define the functions and their arguments.

2. Implement the client stubs.

3. Implement the server.

7.3.1 Defining the Service API

To properly evaluate the correctness of Nessie, we created procedures to transfer data to/from
a remote server using both the control channel (through the function arguments or the result
structure) and the data channel (using the RDMA put/get commands). We defined client
and server stubs for the following procedures:

xfer write encode Transfer an array of data structures to the server through the procedure
arguments, forcing the client to encode the array before sending and the server to
decode the array when receiving. We use this method to evaluate the performance
of the encoding/decoding the arguments. For large arrays, this method also tests our
two-phase transfer protocol in which the client pushes a small header of arguments and
lets the server pull the remaining arguments on demand.

xfer write rdma Transfer an array of data structures to the server using the data channel.
This procedure passes the length of the array in the arguments. The server then
“pulls” the unencoded data from the client using the nssi get function. This method
evaluates the RDMA transfer performance for the nssi get data function.

xfer read encode Transfer an array of data structures to the client using the control chan-
nel. This method tells the server to send the data array to the client through the
result data structure, forcing the server to encode the array before sending and the
client to decode the array when receiving. This procedure evaluates the performance
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/∗ Data structure to transfer ∗/
struct data t {

int int val; /∗ 4 bytes ∗/
float float val; /∗ 4 bytes ∗/
double double val; /∗ 8 bytes ∗/

};

/∗ Array of data structures ∗/
typedef data t data array t<>;

/∗ Arguments for xfer write encode ∗/
struct xfer write encode args {

data array t array;
};

/∗ Arguments for xfer write rdma ∗/
struct xfer write rdma args {

int len;
};

...

Figure 7.3: Portion of the XDR file used for a data-transfer service.

of the encoding/decoding the arguments. For large arrays, this method also tests our
two-phase transfer protocol for the result structure in which the server pushes a small
header of the result and lets the client pull the remaining result on demand (at the
nssi wait function).

xfer read rdma Transfer an array of data structures to the client using the data channel.
This procedure passes the length of the array in the arguments. The server then “puts”
the unencoded data into the client memory using the nssi put data function. This
method evaluates the RDMA transfer performance for the nssi put data function.

Since the service needs to encode and decode remote procedure arguments, the service-
developer has to define these data structures in an XDR file. Figure 7.3 shows a portion of the
XDR file used for the data-transfer example. XDR data structures definitions are very similar
to C data structure definitions. During build time, a macro called “TriosProcessXDR”
converts the xdr file into a header and source file that call the XDR library to encode the
defined data structures. TriosProcessXDR executes the UNIX tool “rpcgen” the remote
procedure call protocol compiler to generate the source and header files.

7.3.2 Implementing the client stubs

The client stubs provide the interface between the client application and the remote service.
The stubs do nothing more than initialize the RPC arguments, and call the nssi call rpc
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int xfer write rdma(
const nssi service ∗svc,
const data array t ∗arr,
nssi request ∗req)

{
xfer write rdma args args;
int nbytes;

/∗ the only arg is size of array ∗/
args.len = arr−>data array t len;

/∗ the RDMA buffer ∗/
const data t ∗buf=array−>data array t val;

/∗ size of the RDMA buffer ∗/
nbytes = args.len∗sizeof(data t);

/∗ call the remote methods ∗/
nssi call rpc(svc, XFER WRITE RDMA OP,

&args, (char ∗)buf, nbytes,
NULL, req);

}

Figure 7.4: Client stub for the xfer write rdma method of the transfer service.

method. For RDMA operations, the client also has to provide pointers to the appropriate
data buffers so the RDMA operations know where to put or get the data for the tranfer
operation.

Figure 7.4 shows the client stub for the xfer write rdma method. Since the nssi call rpc

method is asynchronous. The client checks for completion of the operation by calling the
nssi wait method with the nssi request as an argument.

7.3.3 Implementing the server

The server consists of some initialization code along with the server-side API stubs for any
expected requests. Each server-side stub has the form described in Figure 7.5. The API in-
cludes a request identifier, a peer identifier for the caller, decoded arguments for the method,
and RDMA addresses for the data and result. The RDMA addresses allow the server stub to
write to or read from the memory on the client. In the case of the xfer write rdma srvr,
the stub has to pull the data from the client using the data addr parameter and send a
result (success or failure) back to the client using the res addr parameter.

For complete details on how to create the transfer service code, refer to the online docu-
mentation or the source code in the trios/examples directory.
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int xfer write rdma srvr(
const unsigned long request id,
const NNTI peer t ∗caller,
const xfer pull args ∗args,
const NNTI buffer t ∗data addr,
const NNTI buffer t ∗res addr)

{
const int len = args−>len;
int nbytes = len∗sizeof(data t);

/∗ allocate space for the buffer ∗/
data t ∗buf = (data t ∗)malloc(nbytes);

/∗ fetch the data from the client ∗/
nssi get data(caller,buf,nbytes,

data addr);

/∗ send the result to the client ∗/
rc = nssi send result(caller,request id,

NSSI OK, NULL, res addr);

/∗ free buffer ∗/
free(buf);

}

Figure 7.5: Server stub for the xfer write rdma method of the transfer service.

7.3.4 Performance of the transfer service

As mentioned earlier in the text, the transfer service is also a tool for evaluating the correct-
ness and performance of the network protocols. Here we present performance results from
three different HPC platforms: the Red Storm system at Sandia [30], a Cray XT3 that uses
the Seastar interconnect [26] interfaced through the Portals API [27]; RedSky, a cluster of
Oracle/Sun Blade Servers on a an InfiniBand network; and the Cielo supercomputer, a Cray
XE6 system that uses the new Gemini interconnect [6].

Figure 7.6 shows a comparison of using the xfer-write-rdma and xfer-write-encode

methods to transfer an array of data t data structures from Figure 7.3. The objective is
to evaluate the overhead of the XDR encoding scheme. The xfer write rdma method has
very little encoding overhead–just the cost of encoding the request. These results clearly
demonstrate the value of having separate control and data channels for bulk data, and while
it is possible to transfer all data through the control channel, it is clearly not an efficient
way to implement a bulk data-transfer operation.

The Gemini port of Nessie, developed for the Cray XE6 Cielo system, is our latest port
and still requires quite a bit of tuning to achieve reasonable performance. To demonstrate the
efficiency of a well-tuned implementation, Figures 7.7(a) and 7.7(b) show xfer-write-rdma

72



● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

1 32 1024 32768 1048576

0
50

0
10

00
15

00
20

00

Comparison of Write Methods on Cielo

Bytes/Transfer

T
hr

ou
gh

pu
t(

M
iB

/s
)

Gemini Network

● xfer−write−rdma
xfer−write−encode

Figure 7.6: Comparison of xfer-write-encode and xfer-write-rdma on the Cray XE6
platorm using the Gemini network transport.

performance for the SeaStar (Portals) and InfiniBand interconnects as the number of clients
per server ranges from 1–64. The Portals implementation achieves near peak performance
with only slight interference effects when using 64 clients. The InfiniBand port performs at
near 75% of peak for large transfers.

7.4 PnetCDF staging service

Demonstrating the performance and functionality advantages Nessie provides, the NetCD-
F/PnetCDF link-time replacement library offers a transparent way to use a staging area
with hosted data services without disturbing the application source code and not impacting
the ultimate data storage format. At a simple level, the library is inserted into the I/O
path affording redirecting the NetCDF API calls into the staging area for further processing
prior to calling the native NetCDF APIs for the ultimate movement of data to storage. This
structure is illustrated in Figure 7.7.

At a minimum, this architecture affords reducing the number of processes participating
in collective coordination operations enhancing scalability [85]. Overall, it affords changing
or processing the data prior to writing to storage without impacting the application source
code.

The staging functionality can be hosted over any number of processes and nodes as
memory and processing capabilities demand. The initial results shown in the Parallel Data
Storage Workshop 2011 paper uses a single staging node, but with 12 staing processes on that
node. Those processes are capable of coordinating among themselves in order to manipulate
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the data. Currently there are five data processing modes for the data staging area:

1. direct - immediately use the PnetCDF library to execute the request synchronously
with the file system

2. caching independent - caches the write calls in the staging area until either no more
buffer space is available or the file close call is made. At that time, the data is written
using an independent IO mode rather than collective IO. This avoids both coordination
among the staging processes and any additional data rearrangement prior to movement
to storage.

3. aggregate independent - similar to caching independent except that the data is ag-
gregated into larger, contiguous chunks as much as possible within all of the server
processes on a single compute node prior to writing to storage. That is, to optimize
the data rearrangement performance, the movement is restricted to stay within the
same node avoiding any network communication overhead.

4. caching collective - works like the chaching indpendent mode, except that it attempts
to use as many collective I/O calls as possible to write the data to storage. If the data
payloads are not evenly distributed across all of the staging processes, a number of
collective calls corresponding to the number of smallest number of data payloads in
any staging process followed by a series of independent calls to complete writing the
data.

5. aggregate collective - operates as a blend of the caching collective in that it tries to use
as many collective I/O calls as possible to write the data, but uses the aggregation
data pre-processing steps to reduce the number of data packets written.

Unlike many aschronous staging approaches, the PnetCDF staging service ultimately
performs synchronously. The call to the file close function blocks until the data has been
flushed to storage.

Using the staging service at run time is a 4 step process. First, the staging area is launched
generating a list of contact strings. Each string contains the information necessary to reach
a single staging process. The client (science application) can choose which client process
communicates with which staging service process. Second, these strings are processed to
generate a standard XML-based format making client processing simpler and environment
variables are set exposing the contact file filename in a standard way. Third, the science
application is launched. Finally, as part of the PnetCDF initialization, the re-implementation
of the PnetCDF reads the environment variable to determine the connection information
file filename, reads the file, and broadcasts the connection information to all of the client
processes. These processes select one of the server processes with which to communicate
based on a load-balancing calculation.

The current functionality of increasing the performance of PnetCDF collective operations
is just a first step. The current architecture offer the ability to have any parallel or serial
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processing engine installed in the staging area application. The scaling of this application
is independent of scaling of the science application. This decoupling of concerns simplifies
programming of the integrated workflow of the simulation generating raw data and the
analysis routines distilling the data into the desired processed form.

Ultimately, this technique of reimplementing the API for accessing staging offers a way
to enhance the functionality of online scientific data processing without requiring changing
the application source code. As in the case of the PnetCDF service, these analysis or other
data processing routines can be inserted as part of the I/O path with the data ultimately
hitting the storage in the format prescribed by the original API.

7.4.1 PnetCDF staging service performance analysis

Evaluating the performance of the service is performed in two parts. First, an examination of
IOR [70] performance is evaluated followed by an I/O kernel for Sandia’s S3D [35] combustion
code.

7.4.1.1 IOR Performance

To evaluate the potential of PnetCDF staging, we measured the performance of our PnetCDF
staging library when used by the IOR benchmark code. IOR (Interleave-or-random) [70] is
a highly configurable benchmark code from LLNL that IOR is often used to find the peak
measurable throughput of an I/O system. In this case, IOR provides a tool for evaluating
the impact of offloading the management overhead of the netCDF and PnetCDF libraries
onto staging nodes.

Figure 7.8 shows measured throughput of three different experiments: writing a single
shared file using PnetCDF directly, writing a file-per-process using standard netCDF3, and
writing a single shared file using the PnetCDF staging service. In every experiment, each
client wrote 25% of its compute-node memory, so we allocated one staging node for each four
compute nodes to provide enough memory in the staging area to handle an I/O “dump”.

Results on Thunderbird show terrible performance for both the PnetCDF and netCDF
file-per-process case when using the library directly. The PnetCDF experiments maxed out
at 217 MiB/s and reached the peak almost immediately. The PnetCDF shared file did not
do much better, achieving a peak throughput of 3.3 GiB/s after only 10s of clients. The
PnetCDF staging service, however, achieved an “effective” I/O rate of 28 GiB/s to a single
shared file. This is the rate observed by the application as the time to transfer the data from
the application to the set of staging nodes. The staging nodes still have to write the data to
storage, but for applications with “bursty” IO patterns, staging is very effective.
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7.4.1.2 S3D Performance

In the final set of experiments, we evaluate the performance of the PnetCDF staging library
when used by Sandia’s S3D simulation code [35], a flow solver for performing direct numerical
simulation of turbulent combustion.

All experiments take place on the JaguarPF system at Oak Ridge National Laboratories.
JaguarPF is a Cray XT5 with 18,688 compute nodes in addition to dedicated login and
service nodes. Each compute node has dual hex-core AMD Opteron 2435 processors running
at 2.6GHz, 16 GB RAM, and a SeaStar 2+ router. The PnetCDF version is 1.2.0 and uses
the default Cray MPT MPI implementation. The file system, called Spider, is a Lustre
1.6 system with 672 object storage targets and a total of 5 PB of disk space. It has a
demonstrated maximum bandwidth of 120 GB/sec. We configured the file system to stripe
using the default 1 MB stripe size across 160 storage targets for each file for all tests.

In our test configuration, we use ten, 32 cubes (32×32×32) of doubles per process across
a shared, global space. The data size is 2.7 GB per 1024 processes. We write the whole
dataset at a single time and measure the time from the file open through the file close. We
use five tests for each process count and show the best performance for each size. In this set
of tests, we use a single node for staging. To maximize the parallel bandwidth to the storage
system, one staging process per core is used (12 staging processes). Additional testing with a
single staging process did not show significant performance differences. The client processes
are split as evenly as possible across the staging processes in an attempt to balance the load.

Figure 7.9 shows the results of S3D using the PnetCDF library directly with the four
different configurations of our PnetCDF staging library described in Section 7.4. In all
cases measured, the base PnetCDF performance was no better than any other technique
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at any process count. The biggest difference between the base performance and one of the
techniques is for 1024 processes using the caching independent mode at only 32% as much
time spent performing IO. The direct technique starts at about 50% less time spent and
steadily increases until it reached parity at 7168 processes. Both cache independent and
aggregate independent advantages steadily decrease as the scale increases, but still have a
20% advantage at 8192 processes.

In spite of there only being 12 staging processes with a total gross of 16 GB of RAM, the
performance improvement is still significant. The lesser performance of the direct writing
method is not very surprising. By making the broadly distributed calls synchronous through
just 12 processes, the calling application must wait for the staging area to complete the
write call before the next process will attempt to write. The advantage shown for smaller
scales shows the disadvantage of the communication to rearrange the data compared to just
writing the data. Ultimately, the advantage is overwhelmed by the number of requests being
performed synchronously through the limited resources.

The advantage of the caching and aggregating over the direct and base techniques shows
that by queueing all of the requests and letting them execute without interruption and delay
of returning back to the compute area offers a non-trivial advantage over the synchronous
approach. Somewhat surprisingly, the aggregation approach that reduces the number of
IO calls via data aggregation did not yield performance advantages over just caching the
requests. This suggests that for the configuration of the Spider file system at least, reducing
the number of concurrent clients to the IO system is the advantageous approach. Additional
efforts to reduce the number of IO calls do not yield benefits.
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7.5 Availability of Data Services Software

All of the non export-controlled software developed by the data-services project is available as
part of the Trilinos software repository [65] under the Trilinos I/O Support (Trios) capability
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area. Trios is a newly formed capability area to facilitate the co-design and development of
open-source I/O tools and libraries developed for the ASC/CSSE program. Trilinos provides
a fantastic development and testing environment and also provides a great tool for rapid
deployment of R&D codes into production applications.

7.6 Summary and Future Work

This chapter describes R&D at Sandia National Laboratories to use integrated data services
to reduce the effective I/O cost for scientific applications. The Nessie framework provides
an RPC abstraction that allows for the rapid development of experimental data services to
explore new new I/O techniques and programming models. We are using this framework to
explore improved access interfaces to staging areas, standard approaches integrate ‘in flight’
data processing between the science application and storage, and we are exploring how to
leverage the data services model with advanced accelerators such as GPGPUs and FPGAs.

While we expect data services to be common on next-generation systems, it is important
to note that data-services also provide practical solutions for applications in the current
generation of HPC systems. The results presented in this paper demonstrate the advantage
of data-services on systems with three different interconnects: the Seastar for Cray XT
systems, the Gemini interconnect for Cray XE systems, and InfiniBand for large capacity
clusters. In addition, we plan to modify the Exodus interface to use our PnetCDF staging
service, providing an immediate impact to the Sierra applications, as well as any other
applications using Sandia’s Exodus I/O library.

For next-generation systems, there are many improvements that could better support
data services in a production environment. For example, runtime support for dynamic al-
location and reconfiguration of nodes would allow for on-demand data-processing services
that effectively utilize system resources. Control over placement algorithms within an al-
location would also allow data-services to better utilize networks to avoid contention with
application communication and file-system communication. The projected promulgation of
NVRAM could also improve use of data-staging services, especially services primarily used
to manage large bursts of data. In short, nearly every proposed Exascale architecture would
benefit from, and perhaps require, a data-services architecture. Research prospects in this
area will continue to grow throughout the next decade.
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Chapter 8

In situ and In transit Visualization
and Analysis

Abstract: Traditional analysis workflow prescribes storing simulation results to disk and
later retrieving them to perform analysis and visualization for final results. This workflow
becomes increasingly difficult due to data movement at petascale and beyond. In situ [49]
and In transit [98] are both techniques that by-pass the traditional workflow and manage
the data movement problem. In situ refers to linking the visualization tools directly into
the simulation code to run in the same memory. In transit uses data staging, as described
in the previous chapter, and executes the analysis and visualization in a separate staging
job concurrently with the main computation job. In the following chapter, we describe
experiments and results using these coupling techniques.

8.1 Background

Scientific simulation on parallel supercomputers is traditionally performed in four sequential
steps: meshing, partitioning, solver, and visualization. Not all of these components are
actually run on the supercomputer. In particular, the meshing and visualization usually
happen on smaller but more interactive computing resources. However, the previous decade
has seen a growth in both the need and ability to perform scalable parallel analysis, and this
gives motivation for coupling the solver and visualization.

The concept of running a visualization while the simulation is running is not new. It is
mentioned in the 1987 National Science Foundation Visualization in Scientific Computing
workshop report [90], which is often attributed to launching the field of scientific visual-
ization. It is only recently, however, as we move into petascale that the idea has started
gaining significant traction [2, 71]. Recent studies show that cost of specialized hardward
for visualization at petascale is prohibitive [36] and that time spent writing data to and
reading data from disk storage is beginning to dominate the time spent in both simulation
and visualization [111, 112, 122].

There are a variety of analyses and visual representations available and appropriateness
of each depends highly on the type of problem being analyzed. Thus, it is important that

81



a framework for coupling visualization into a simulation is both flexible and expandable. In
the following, we show methods using the ParaView Coprocessing Library directly coupled
with the simulation and indirectly coupled using Nessie.

8.1.1 In situ Implementation

The ParaView Coprocessing Library is a C++ library with an externally facing API to C,
FORTRAN and Python that allows in situ access to a set of the algorithms available in
the ParaView visualization application. It is built on top of the Visualization Toolkit which
makes available a large number of algorithms including I/O, rendering, and processing algo-
rithms such as isosurface extraction, slicing, and fragment detection. Although it is possible
to construct pipelines entirely in C++, the ParaView control structure allows pipelines con-
figured through Python scripts. Results shown here were all made using the Python scripts
to construct the pipelines.

Solver  ParaView 
Coprocessing 

Library 

Coprocessing 
API Adaptor 

INITIALIZE() 
ADDPIPELINE(in pipeline) 
 
REQUESTDATADESCRIPTION(in time, out fields) 
COPROCESS(in vtkDataSet) 
 
FINALIZE() 

Figure 8.1: The ParaView Coprocessing Library generalizes to many possible simulations,
by means of adaptors. These are small pieces of code that translate data structures in the
simulation’s memory into data structures the library can process natively. In many cases,
this can be handled via a shallow copy of array pointers, but in cases where that is not
possible, it must perform a deep copy of the data.

Since the coprocessing library will extend a variety of existing simulation codes, we cannot
expect its API to easily and efficiently process internal structures in all possible codes. The
solution used is to rely on adaptors, Figure 8.1, which are small pieces of code written for each
new linked simulation, to translate data structures between the simulation’s code and the
coprocessing library’s VTK-based architecture. An adaptor is responsible for two categories
of input information: simulation data (simulation time, time step, grid, and fields) and
temporal data, i.e., when the visualization and coprocessing pipeline should execute. To do
this effectively, the coprocessing library requires that the simulation code invoke the adaptor
at regular intervals.
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The simulation we used for this work was CTH [72]. It is an Eulerian shock physics code
that uses an adaptive mesh refinement (AMR) data model. We developed an adaptor to
convert the CTH AMR model to ParaView’s AMR model with minimal copying. We also
modified CTH to make calls into the coprocessing library API.

8.1.2 In transit Implementation

The NEtwork Scalable Service Interface (Nessie) described in chapter 7 is the framework
used to develop the in transit analysis capabilities used here. In transit visualization occurs
on the data service nodes instead of the computation nodes as it is done in situ. We link the
ParaView Coprocessing library against the Nessie server and process as data is transferred
in from the computational client. Nessie transfers from client to server all the API calls that
were modified in the original CTH. These calls are then passed to the in situ adaptor linked
in on the Nessie Server, so that the adaptor implementation can stay the same whether
linked directly or linked through the Nessie implementation. The only change apparent to
the in situ processing is the number of cores available.

8.2 Performance on Cielo
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Figure 8.2: Block processing rate of simulation and visualization at growing scales on Cielo.
Note that 256 and 16384 core counts are repeated twice. This is an overlap where the block
count was increased in order to continue scaling effectively. Gaps are locations where memory
errors are preventing execution.

To begin measuring performance, we tested the direct coupling of the ParaView library
using a canonical pipeline that performs an isocontour using the well known marching cubes
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algorithm. This pipeline performs very little communication itself and exposes any commu-
nication overhead associated with framework itself, especially those used in setting up this
pipeline. The results of the scaling are shown in Figure 8.2. This plot shows an increase in
the block processing rate as we increase the number of processors. This rate is similar for
both the simulation part and the ParaView part. It is worth noting that these costs are for
computing both parts every simulation step. It is usually not necessary to visualize every
step of the simulation and the ParaView processing could be run less frequently to decrease
overall runtime.

Figure 8.3: Generating a contour on an AMR mesh requires special processing at the bound-
ary between two different resolutions. Degenerate triangles must be created to close the
seams between the otherwise irregularly shaped boundary, as shown in this figure.

While the framework itself scales to the entirety Cielo, there may be pipeline analysis
algorithms which run fine for post processing, but do not scale well enough to run efficiently at
16,000 cores and above. One particular algorithm is the AMR contouring algorithm. Unlike
the isocontouring algorithm used previously, the AMR algorithm does not assume there is a
regular distribution on the data. It must generate special triangles at regions with different
spatial distributions (i.e., different resolutions as a result of the AMR process), as shown in
Figure 8.3. Therefore it must communicate between these neighborhoods. Currently this
algorithm works by redistributing neighborhood information via all-to-all communication at
the beginning of every pipeline execution. Its scaling performance is shown in Figure 8.4.

Although the AMR algorithm is dominated by the all-to-all neighbor communication,
the remainder of the computation scales effectively. We are currently investigating a way to
transfer information about the communicating neighborhoods used by the simulation. This
should allow us to shortcut the all-to-all communication by taking advantage of the same
neighborhoods the simulation is already tracking. This information is available in memory
while the simulation is running, but would be too expensive to spend time writing out to a
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Figure 8.4: Block processing rate of AMR contouring at growing scales on Cielo. The two
different lines represent different AMR sizes. Large depth means more blocks are in the
simulation.

file and not necessary for post-processing anyway.

In general as we broaden use of the in situ capability using more of the algorithms
available in VTK and ParaView, we expect to find a similar pattern of scaling performance.
Some of these algorithms will require very little communication and will scale very well.
Some may be rewritten to take advantage of information available in simulation memory
which is not normally written out to disk. Finally, some of these may never scale, because
they require too many communications not already performed by the simulation. Streamline
visualization may be an example of such an algorithm.

In this last case where the algorithm doesn’t scale, we would use in transit visualization.
This is also a practical solution for algorithms which could be rewritten, but have not yet
been, as is the case AMR Contour algorithm above. Figure 8.5 shows the timing, running
on Redsky, of the AMR Contour relative to the simulation itself. It runs fast enough to keep
up with the simulation on up to 128 cores, but beyond that starts to run increasingly slower
and would become a bottleneck to the running simulation. It is beyond this point that we
switch to in transit operation, allowing the simulation to continue to operate at full speed,
while offloading the processing to the service nodes and allow the AMR contour to run as
quickly as it can without impacting the simulation.

8.3 Conclusion

Using these methods of coupling the analysis and visualization in with the simulation while
it is running and by-passing the need to write everything out to disk, we are able to optimize
the standard HPC workflow to shrink the time from initial meshing to final results. The
ParaView Coprocessing Library scales effectively to run at full scale on Cielo, and in the
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Figure 8.5: Running on Redsky, the block processing rate of AMR pipeline at growing scales
compared with the simulation processing rate.

case of pipeline algorithms which do not or are unable to scale to that size, we can fall
back to a lower scale by using the in transit coupling method. In both cases, we reap the
savings of using memory and network instead of disk as the medium of interchange. A
detailed comparison of the in-situ and in-transit approaches is the focus of an FY13 ASC
Level II milestone titled, “Data Co-processing for Extreme Scale Analysis.” We will have
more thorough examination of of the two approaches, as well as performance analysis for a
number of different application use cases in that report.
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Chapter 9

Dynamic Shared Libraries on Cielo

Abstract: Popularity of dynamically linked executables continues to grow within the sci-
entific computing community. The latest copy of a shared library can be accessed when
the application is run. By contrast, statically linked applications use the version of the li-
brary that was available when the application was built. Secondly, a shared library, as the
name asserts, is shared across all application images running on a node. This can relieve
memory pressure, since the same text is accessed by all. Lastly, shared libraries are often
memory mapped from disk to further minimize the memory usage. Only the portions of
the library that are being accessed need to reside in memory. Although attractive from a
flexibility and resource reduction perspective, dynamically linked executables continue to
suffer performance issues on massively parallel processing (MPP) systems. This is particu-
larly true for systems such as Cielo, where each node does not have a disk drive on which
to store the libraries. Instead, a custom file system configuration was installed on Cielo.
This chapter describes the results of two experiments that analyze its performance. Results
showed it superior to the other available file systems. However, when the Charon application
was run in static and then dynamic link configurations, run time was increased by 34% on
8192 cores. The chapter concludes with possible areas for further investigation, including a
possible Linux kernel bug.

9.1 Motivation for the Implementation

Historically, applications running in capability mode are built (i.e. linked) statically. In-
creasingly, application code groups are asking for the flexibility provided by dynamic shared
objects. Dynamically linked executables have been supported on desktop system for decades.
More recently, they have been successfully used on cluster computers of considerable scale
(a few thousand cores). When specifying the Cielo system, the procurement team elected to
require support for dynamically linked executables on compute nodes. However, full scale
testing was done with static binaries.

Following the delivery of the system, the Cielo bring-up team began assessing the Cray
(and other) options for providing support for dynamic libraries. We considered both hard-
ware and software alternatives to achieve as much scalability as possible when using a dy-
namically linked executable. One important aspect was that in addition to system shared
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objects, the user community wished to provide their own shared libraries and other dynamic
objects, such as python modules.

As implied by the adjective, dynamic, requests for shared objects are asynchronous.
Since they are unpredictable, they can introduce noise to a bulk synchronous application.
Consistent quality of service for file access cannot be assured. Secondly, since all of Cielo’s
jobs are SPMD (single program, multiple data), the I/O node serving the shared object file
can be flooded trying to satisfy a request from every single process in the job. With over
100,000 cores, that could be a very large number of requests.

We elected to remain with the Linux software solution for linking and loading dynamic
shared objects. This implementation is familiar to the Cielo user community and is supported
by all third party libraries. It is not trivial and a custom re-implementation was a larger
effort/committment than we could make. On the down side, the Linux implementation is not
tunable for parallel applications at all. We focused primarily on the hardware implementation
to maximize parallel access to the shared objects.

9.2 Configuration and Implementation of the Solution

Cray proposed Cielo use Cray’s DVS (Data Virtualization Service) to distribute the system-
provided shared libraries to compute nodes. DVS makes use of the read-only nature of
shared libraries to enable parallel access from compute nodes. Multiple DVS servers can be
configured to serve some unique subset of compute nodes. The first compute node to ask
for a shared library will ask its pre-defined DVS server. This DVS server will then ask for
the data from the single NFS server hosting the disk with the library/file. Any subsequent
requests to that pre-defined DVS server can hopefully be satisfied locally in its cache and
there won’t be a need to re-request from the NFS server. Other DVS servers, serving the
remaining compute nodes, will need to go back to the NFS server. In this case, the NFS
server should have the file contents cached, eliminating the need to do the actual disk I/O.
While caches are constrained by memory size, this design can significantly reduce the number
of accesses to the physical file. It distributes the requests between the DVS servers and the
one NFS server.

There were several options for where to place user provided shared libraries. The options
and their pros and cons are discussed fully in [73]. While no solution was ideal, we elected
to mimic the solution used by Cray for system shared libraries that is described above. The
file system serving the user-built shared libraries to the compute nodes is mounted read-
only. It is served for read and write access from the login nodes where user compilations are
performed.

Figure 9.1 shows the before and after file system configuration. Changes are outlined
in red. To achieve scalability, 50 nodes were repurposed to serve the almost 9000 compute
nodes. This solution means that only 50 nodes are actually requesting the file data from
the nodes serving the system and user shared objects. The hardware spreads out the I/O

88



load to a hierarchy of caches. There is a file cache on the compute node for the processess
running the same binary on the other cores of the node. There are caches on the 50 DVS
servers, each of which is supporting 1/50 of the compute nodes. Lastly, there is a cache on
the NFS server where the file is actually located.

Figure 9.1: Fifty DVS servers were added to serve both system and user dynamic shared
libraries to compute nodes.

9.3 Evaluating the Impact of the New Configuration

Two experiments were run to assess the impact of the implemented configuration. The first
experiment used the Pynamic benchmark [79] to determine if the new user shared library
(/udsl) file system would meet the needs of the user community. The second test used the
Charon application to collect data points on the impact of a dynamically linked executable
versus a static executable.

9.3.1 Benchmark Results

The Pynamic benchmark was developed to simulate the dynamic loading activity of a par-
ticularly demanding ASC application. The benchmark does no computation. It just contin-
uously loads python modules. At the end of the execution, it calls a few MPI collectives to
gather statistics of the run and load times. We used the default Pynamic configuration for
the tests. Our goal was to understand if a dedicated, read-only, file system was necessary
to achieve some level of scalability. We did not expect full-system capability-class jobs to
run with dynamic libraries, but we were hopeful dynamically built executables could run at
a reasonable scale without performance loss. Figure 9.2 shows a summary of the results. A
detailed discussion of the setup, configuration and results is provided in [73]. While users
might have preferred to keep their shared objects with their other data in their personal
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(home) directory or on the parallel file system, the performance does not scale. The custom
file system was validated as a necessary implementation for this ASC application.

Figure 9.2: Pynamic timing results gave acceptable results only with the special purpose file
system.

9.3.2 Application Results

The results in subsection 9.3.1 were encouraging. The implemented configuration was
optimal as compared to the two other possible locations for user shared libraries. Since the
system shared libraries were configured to use the same 50 DVS nodes as a staging area, we
anticipated similar scalability. To validate this assertion, a second experiment was run on
Cielo using V4.6 of the Charon application. A batch job was submitted with two executions
of Charon. By using a single job we could be assured that the two executions would use
the identical compute nodes. This eliminated any variability that could be introduced by
different layouts in the mesh. The first execution used a statically linked binary. The second
used a dynamically linked binary. The 2D test problems were identical for both executations.

There were no user supplied dynamic libraries. Only the system libraries were dynamic.
Based on the loadmap produced during the dynamic build, there were 23 shared object
files loaded and 7 functions in the code that caused shared objects to be loaded. They
are pgCC throw, mp penter, mth i cexp, mth i csqrt, mth i cdsqrt, ftn str copy, and
fmth i exp gh.

We ran two sizes: 2048 and 8192 cores (processing elements). The test results were run
on a quiet system to eliminate any question of variability due to network or I/O activity
from other jobs. The results are shown in Figure 9.3a. They report a 19% and 34% increase
in run times for the 2048 and 8192 core runs, respectively. Some of this increase may be
due to an increased load/initialization phase. Longer runs might amoratize any additional,
perhaps fixed, start-up cost. However, a disturbing additional data point is the Charon-
calculated compute time. This time, which is not believed to include any application I/O,
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also increased. Figure 9.3b illustrates this increase. It is a 7% increase in computation time
for the 2048 core run and an 18% increase for the 8192 core run.

This data is very disconcerting. We speculate that there is an additional delay caused by
the indirect address needed for every function call. We also do not know how frequently the
shared objects are being called during the computation phase of Charon. Additional study
is required.

Figure 9.3: Based on a small number of data points, dynamic shared libraries negatively
impact application run time.

9.4 Conclusion

The significant increase in Charon run time when using a dynamically linked executable
was disappointing. Based on the results reported in subsection 9.3.1 for the Pynamic
benchmark, we can assume the run time would have been even worse with a different file
system configuration. As a result of this testing, we may have identified a potential bug in
the Cray software. We have determined that not all cores on the same node are served fairly.
Some cores wait a significant amount of time before they have access to the shared object.
This unfairness would introduce noise in the application. If this Bug 771251 is resolved with
a fix, we can hope performance will improve. Otherwise, a more dramatic change to the
loading of shared libraries may likely be required for future systems.
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Chapter 10

Process Replication for Reliability

Abstract: As high-end computing machines continue to grow in size, issues such as fault
tolerance and reliability limit application scalability. Current techniques to ensure progress
across faults, like checkpoint-restart, are increasingly problematic at these scales due to ex-
cessive overheads predicted to more than double an application’s time to solution. Replicated
computing techniques, particularly state machine replication, long used in distributed and
mission critical systems, have been suggested as an alternative to checkpoint-restart. In this
chapter, we evaluate the viability of using state machine replication as the primary fault
tolerance mechanism for upcoming exascale systems. We use a combination of modeling,
empirical analysis, and simulation to study the costs and benefits of this approach in com-
parison to checkpoint/restart on a wide range of system parameters. These results, which
cover different failure distributions, hardware mean time between failures, and I/O band-
widths, show that state machine replication is a potentially useful technique for meeting the
fault tolerance demands of HPC applications on future exascale platforms.

10.1 Introduction

Process replication, generally referred to as state machine replication [126], is a well-known
technique for tolerating faults in systems that target high-availability. In this approach, a
process’s state is replicated such that if the process fails, its replica is available or can be
generated to assume the original process’s role without disturbing the other application pro-
cesses. Process replication can be costly in terms of space if replicas have dedicated resources
or time if replicas are co-located with other primary processes. However, process replication
can dramatically increase an application’s mean time to interrupt (MTTI). Additionally,
variants of this technique can detect or correct faults that do not crash a process but instead
cause it to yield incorrect results [32].

Primarily due to its high costs, process replication has been examined only in a lim-
ited manner for high performance computing (HPC) systems [132]. Instead, HPC appli-
cations have relied primarily on rollback recovery techniques [46], particularly coordinated
checkpoint/restart, where application state is periodically written to stable storage (check-
pointed), and when failures occur, this state is used to recover the application to a previously
known-good state. However, future exascale systems are expected to present a much more
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challenging fault tolerance environment to applications than current systems [17]. Addi-
tionally, recent studies conclude that for these systems, high failure rates coupled with high
checkpoint/restart overheads will render current rollback-recovery approaches infeasible. For
example, several independent studies have concluded that potential exascale systems could
spend more than 50% of their time reading and writing checkpoints [47, 102, 128].

In this chapter, we examine the viability of the process replication paradigm as a pri-
mary exascale fault tolerance mechanism, with checkpoint/restart providing secondary fault
tolerance when necessary. Our goal is to understand the advantages and limitations of this
approach for extreme scale computing systems. We focus on exascale MPI applications: re-
dundant copies of MPI processes provide failover capabilities, which allow these applications
to transparently run through most errors without the need for rollback. Checkpoint/restart
augments our process replication scheme in cases where process replication is insufficient,
for example, if all replicas of a process crash simultaneously or become inconsistent due to
faults corrupting the machine state.

To summarize, we present a study of redundant computing for exascale applications to
address the scalability concerns of disk-oriented coordinated checkpoint/restart techniques
and the inability of checkpoint/restart methods to tolerate undetected hardware errors and
non-crash failures (Section 10.2). Our results show that redundant computing should be
considered as a viable approach for exascale systems because:

• Even at system scales less than those projected for exascale systems, our model-based
analysis shows that process replication’s hardware overheads are less than those of
traditional checkpoint/restart (Section 10.5);

• Based on a full implementation MPI process replication that has been evaluated on
more than 4000 nodes of a Cray XT-3/4 system, our empirical analysis shows that
process replication overheads are minimal for real HPC applications (Section 10.6);
and,

• Additional simulation-based analysis that includes both software and hardware over-
heads shows that process replication is a viable alternative to traditional checkpoint/restart
on systems with more than 20,000 sockets (Section 10.7), depending on system check-
point I/O bandwidth and per-socket mean time between failures (MTBF).
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10.2 Background

10.2.1 Disk-based Coordinated Checkpoint/Restart

10.2.1.1 Current State of Practice

Disk-based coordinated checkpoint/restart has been the dominant fault tolerance mechanism
in high performance computing systems for at least the last 30 years. In current large
distributed memory HPC systems, this approach generally works as follows:

1. Applications periodically quiesce all activity at a global synchronization point, for
example a barrier;

2. After synchronization, all nodes send some fraction of application and system state,
generally comprising most of system memory, over the network to dedicated I/O nodes;

3. These I/O nodes store received checkpoint information data to stable storage, currently
hard disk-based storage;

4. In the event of application crash, the stored checkpoint can be used to restart the
application at a prior known-good state.

The dominance of coordinated checkpoint-restart as the primary HPC fault tolerance
technique rests on a number of key assumptions that have thus far remained true:

1. Application state can be saved and restored much more quickly than a system’s mean
time to interrupt (MTTI);

2. The hardware and upkeep (e.g. power) costs of supporting frequent checkpointing are
a modest portion (currently perhaps 10-20%) of the system’s overall cost; and

3. System faults that do not crash (fail-stop) the system are very rare.

Heroic work in both I/O systems and hardware error detection has largely kept these as-
sumptions valid through the present day, allowing large parallel applications to scale to over
a petaflop of sustained performance in the face of occasional fault-induced system crashes.

10.2.1.2 Scaling of Coordinated Disk-based Checkpoint/Restart

There are a number of excellent studies investigating the efficiency of disk-based check-
point/restart for large scale systems, including past petascale systems [47, 107, 46] and
upcoming exascale systems [128, 7, 17]. These projections invalidate essentially all of the
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assumptions on which traditional checkpoint/restart depend. For example, these studies sug-
gest exascale MTTIs ranging from 3-37 minutes, checkpoint times for low memory systems
taking up to five hours, and significant non-crash system failures, for example undetected
DRAM errors.

We begin by assuming a 15-minute checkpoint time, a modest improvement over the
approximate 20 minute checkpoint time that supercomputers both a decade ago (ASCI
Red [89]) and today (BlueGene and Jaguar [31]) achieve. We also assume a one hour system
MTTI, again a generous assumption given recent studies. Daly’s model [39] estimates that
such a system should checkpoint once every 27 minutes and would achieve only 44% system
utilization. Scaling the I/O system to achieve a utilization greater than 80% would require
checkpoint times of approximately one minute. Assuming that the I/O system supporting
that 15 minute checkpoint took only 10% of the system’s original budget and I/O throughput
scaled up perfectly, a simple Amdahl’s law calculation shows that an I/O supporting such
checkpoint speeds would comprise 63% of the total cost of the system!

Checkpoint-restart is also problematic when dealing with non-crash failures such as so-
called “soft errors”. In particular, checkpoint-restart preserves the impact of failures that
corrupt application state. Addressing this would require application developers to either
restart an application from scratch or analyze the contents of their checkpoints looking for
one prior to when the fault that corrupted application state occurred.

10.2.2 State Machine Replication

Redundant computation, process replication, and state machine replication have long histo-
ries and have been used extensively in both distributed [58, 34] and mission critical systems
[91, 12, 109, 126] as a technique to improve fault tolerance. State machine replication, the
focus of this paper, maintains one or more replicas of each node and assumes every node
computes deterministically in response to a given external input, for example a message be-
ing received. It then uses an ordering protocol to guarantee all replicas see the same inputs
in the same order, and additional communication to detect and recover from failures.

State machine replication offers a different set of trade-offs compared to rollback recovery
techniques such as checkpoint/restart. In particular, it completely masks a large percentage
of system faults, preventing them from causing application failures without the need for roll-
back. Some forms of state machine replication can also be used to detect and recover from a
wider range of failures than checkpoint/restart, potentially including Byzantine failures [32].
Unlike checkpoint/restart, however, state machine replication is not sufficient by itself to
recover from all node crash failures; faults that crash all of a node’s replicas will cause a
computation to fail.

This approach has previously been dismissed in HPC as being too expensive for the
meager benefits that are seen at present machine scale. For the reasons described above
in Section 10.2.1, however, several authors have recently suggested using this technique in
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HPC systems [128, 140, 48]. In the remainder of this paper, we examine the suitability of a
specific type of state machine replication in HPC systems.

10.3 Replication for Message Passing HPC Applica-

tions

10.3.1 Overview

State machine replication is conceptually straightforward in message passing-oriented HPC
applications. In this approach, each replica is created on independent hardware for every
processor rank in the original application of which failure cannot easily be tolerated. Note
that we do not require all ranks to be replicated—in master/slave-style computations where
the master can recover from the loss of slaves, only the master might be replicated.

The replication system then guarantees that every replica receives the same messages in
the same order and that a copy of each message from one rank is sent to each replica in
the destination rank. In addition, the replication system must detect replica failures, repair
failed nodes when possible, and restart failed nodes from active replicas. The replication
system may also periodically check that replicated ranks have the same state.

Checkpoint/restart recovery is still required in this approach for recovery from faults that
fail all replicas of a particular process rank. It is also used to recover from situations where
replica state becomes inconsistent, for example due to silent (undetected) failures.

10.3.2 Costs and Benefits

This approach requires significantly increased computational resources—at least double the
hardware for replicated ranks. In cases where only portions of an application must be
replicated, these requirements are potentially modest. For many HPC applications (e.g.
traditional stencil calculations), however, this approach doubles the required hardware—
2N nodes are required to fully replicate a job that would otherwise run (perhaps much
more slowly) on N nodes. In addition, there are runtime overheads for maintaining replica
consistency.

With these costs, however, come significant advantages:

• Dramatically increased system MTTI. This approach dramatically reduces the
number of faults visible to applications. Specifically, the application only sees faults
that crash (or otherwise fail) all replicas of a particular rank.

• Significantly reduced I/O requirements. Increased system MTTI reduces the
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speed at which checkpoints must be written to storage to allow applications to effec-
tively utilize the system. A smaller fraction of the system cost and power budget must
as a result be spent on the I/O system.

• Detection of “soft errors”. By comparing the state of multiple replicas (e.g. using
memory checksums) prior to writing a checkpoint, replication can detect if application
state has been corrupted and trigger restart from a previous checkpoint.

• Increased system flexibility. The extra nodes used for redundant computation
when running the largest jobs can be used for providing extra system capacity when
running multiple smaller jobs for which fault tolerance is less of a concern. A system
that uses N nodes and an expensive I/O system to reach exascale can only run 100
10PF jobs at a time, for example. A system that uses 2N nodes and a less expensive
I/O system to reach exascale, however, can potentially run 200 10PF jobs at a time.

10.4 Evaluating Replication in Exascale Systems

The advantages described in Section 10.3 provide a compelling reason to examine the vi-
ability of state machine replication for extreme-scale HPC systems. Without quantifiable
performance benefits compared to other approaches, however, state machine replication will
not be viable for use in exascale systems. The remainder of this paper therefore examines
the performance costs and benefits of state machine replication.

10.4.1 Comparison Approach

Our primary performance evaluation criteria is: at what node counts, if any, state machine
replication provides quantitative performance advantages over past approaches particularly
in terms of system utilization, after accounting for the overheads of state machine replication.
If, for example, state machine replication achieves 46% utilization at a given system socket
count and another technique only achieves 40% system utilization, we regard state machine
replication as superior at that point.

We use traditional checkpoint/restart fault tolerance as the baseline technique against
which to compare because its performance characteristics are well-understood. We hope
that comparing against a well-understood baseline will facilitate future comparisons against
other proposed exascale fault tolerance techniques as their costs and benefits at scale are
more fully quantified. A brief qualitative comparison with several such techniques, however,
is provided in [55].
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10.4.2 Assumptions

Because we are comparing a new technique on projected hardware systems, our comparisons
make a number of assumptions that are important to make explicit:

1. Full dual hardware redundancy for all applications, resulting in a maximum possible
efficiency for state machine replication of 50%.

2. The MPI library is the only potential source of non-determinism in the application.

3. Machines suffer only crash failures, not more general failures from which checkpoint/restart
may not be able to recover. While this replication approach can handle a more general
fault model, the numbers in this paper do not include the checks required to handle a
more general fault model.

4. Based on past study results [127], system MTTI decreases linearly with increased
system socket count.

10.5 Model-based Analysis

We first examine the performance benefits of state machine replication compared to its funda-
mental redundant hardware costs. For this initial comparison, we assume every MPI process
is replicated, and make very simple assumptions about system characteristics, particularly
that there is no software overhead for maintaining replica consistency, that the system can
checkpoint in a fixed amount of time regardless of scale, and that all failures follow a simple
exponential distribution. These assumptions will be successively relaxed in the following
sections.

When two nodes are used to represent the same MPI rank, the failure of one node in a
pair does not interrupt the application. Only when both nodes fail does the application need
to restart. The frequency of that occurring is much lower than the occurrence of a single
node fault and can be characterized using the well-known birthday problem.

One version of the birthday problem asks how many people on average need to be brought
together until there are enough to have a greater than 50% chance that two of them share
the same birth month and day. If we equate days in a year with nodes and let the number
of people represent the faults occurring, we can use the birthday problem to calculate how
many faults can occur until both nodes in a pair are damaged and cause an application
interrupt.

Equation 10.1, from [88, 68], shows how to calculate this version of the birthday problem.

F (n) = 1 +
n∑

k=1

n!

(n − k)! · nk
≈

√
πn

2
+

2

3
(10.1)
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Essentially, replicas act like a filter between the system and an application, and the
birthday problem helps us estimate how many faults can be absorbed before the application
is interrupted.
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Figure 10.1: Modeled application efficiency with and without state machine replication for
a 168-hour application, 5-year per-socket MTBF, and 15 minute checkpoint times. Shaded
region corresponds to possible socket counts for an exascale class machine [17].

Figure 10.1 estimates the resulting application efficiency with optimal checkpoint intervals
for both state machine replication and using only traditional checkpoint/restart. MTTI was
computed directly from the birthday problem approximation in Equation 10.1, while the
resulting efficiency is computing using Daly’s higher-order checkpoint/restart model and
optimal checkpoint interval [39]. These calculations assume a 43800 hour (5 year) per-
socket MTBF based on past studies [127, 63], 15 minute checkpoint times as discussed in
Section 10.2.1, and a 168 hour application solve time.

These results show the dramatic increase in system MTTI that state machine replication
provides, allowing it to maintain efficiency close to 50% as system socket count increases
dramatically towards the 200,000 heavyweight sockets suggested for exascale systems [17].
In contrast, the efficiency of a checkpointing-only approach drops precipitously as system
scales approach those of upcoming exascale systems.

10.6 Runtime Overhead of Replication

While the previous sections demonstrate that state machine replication is viable at exascale
in terms of the basic hardware costs, they do not evaluate the runtime overhead of the neces-
sary consistency management protocols. Transparently supporting state machine replication
for MPI applications on HPC systems requires maintaining sequential consistency between
replicas. It also requires protocols for detecting and repairing failures. As mentioned in
Section 10.2, these are potentially expensive in communication-intensive HPC systems as
every replica must see messages arrive in the same order.
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(a) Mirror Protocol (b) Parallel Protocol

Figure 10.2: Basic replicated communication strategies for two different rMPI message con-
sistency protocols. Additional protocol exchanges are needed in special cases such as MPI -

ANY SOURCE.

To study this overhead, we designed and implemented rMPI, a portable user-level MPI
library that provides redundant computation transparently to deterministic MPI applica-
tions. rMPI is implemented on top of an existing MPI implementation using MPI profiling
hooks. In the remainder of this section, we outline the basic design and implementation of
rMPI and measure the runtime overhead of this implementation for several real applications
on a large scale Cray XT-3/4 system. A complete description of rMPI, including low-level
protocol and implementation details is available elsewhere [53, 22].

10.6.1 rMPI Design

The basic idea for the rMPI library is simple: replicate each MPI rank in an application
and let the replicas continue when an original rank fails. To ensure consistent replica state,
rMPI implements protocols that ensure identical message ordering between replicas. Unlike
more general state machine replication protocols [126, 32], these protocols are specific to
the needs of MPI in an attempt to reduce runtime overheads. In addition, rMPI uses the
underlying Reliability, Availability and Serviceability (RAS) system to detect node failures,
and implements simple recovery protocols based on the consistency protocol used.

10.6.1.1 Basic Consistency Protocols

rMPI implements two different consistency protocols, named mirror and parallel , to ensure
that every replica receives a copy of every message and to order message reception at replicas.
Both protocols take special care when dealing with MPI operations that could potentially
result in different message orders or MPI results being seen at different replicas. Note that
collective operations in rMPI call the point-to-point operations internal to rMPI.

Figure 10.2(a) shows the basic organization of how the mirror protocol ensure that all
replicas see the same messages. In this figure, A and B represent distinct MPI ranks and A’
and B’ are A’s and B’s replicas respectively. In this protocol, each sender transmits duplicate
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messages to each of the destinations. Similarly, receivers must post multiple receives for the
duplicate messages, but only require one of those messages to arrive in order to progress.
This eases recovery after a failure, but doubles network bandwidth requirements.

The parallel protocol, in comparison, is shown in Figure 10.2(b). In this approach, each
replica has a single corresponding replica for each other rank with which it communicates in
non-failure scenarios. In the case of failure, one of the remaining replicas of a rank takes over
sending and receiving for the failed node. This failure detection requires frequent message-
based interaction with the reliability system on current systems. As a result, the parallel
protocol will initiate approximately double the number of messages for each send operation.
These extra messages contain MPI envelope information and are small. Therefore, the
parallel protocol reduces network bandwidth requirements for an increased number of short
messages.

10.6.1.2 MPI Consistency Requirements

rMPI assumes that only MPI operations can result in non-deterministic behavior, and there
are a few specific MPI operations that can result in application-visible non-deterministic
results. For example, rMPI must address non-blocking operations, wildcard (e.g. MPI ANY -

SOURCE and MPI ANY TAG) receives, and operations such as MPI Wtime. As a first step, both
rMPI protocols use the notion of a leader node for each replicated MPI rank, while non-
leader nodes are referred to as replicas or redundant nodes. When a leader drops out of a
computation, the protocol chooses a new replica from among those remaining for a rank to
take over as leader. rMPI uses one high order bit in the tag to distinguish messages from
leader and replica nodes.

For the remainder of consistency protocol discussions, we focus on the mirror protocol
implementation; the parallel protocol implementation is generally similar and described in
more depth elsewhere [53]. For blocking non-wildcard receives, one of the the most common
forms of MPI communication, rMPI posts a receive for both senders A and A’ into the buffer
provided by the user. Since the data in the two arriving messages is identical, there is no
danger of corrupting the user buffer. If multiple messages from the replica set A arrive with
the same tag, rMPI must make sure that the first active and first redundant message arrive
in the first buffer, and the second active and second redundant in the second buffer. rMPI
achieves this by using one high-order tag bit, setting it on all outgoing redundant messages
and setting the same bit for all receives of redundant messages.

Due to MPI message-passing semantics and the possibility of wildcard source receives,
this basic approach is not completely sufficient. To handle MPI ANY SOURCE and MPI ANY TAG,
rMPI relies on explicit communication between the leader of each rank and other replicas.
Essentially, rMPI allows only one actual wildcard receive to be posted at any time on a
node, and then only on the leader. When a wildcard receive is matched, the leader then
sends the MPI envelope information to replica nodes which then post for the actual message
needed. The situation is more complicated for non-blocking wildcard receives, test, and wait
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operations, requiring a queue of outstanding wildcard receives, but the basic approach is
similar.

Finally, rMPI must guarantee that operations such as MPI Wtime() return the same value
on active and redundant nodes, as some applications make decisions based on the amount of
time elapsed. For these situations, the leader node sends its computed value to the redundant
node. As an option, rMPI can synchronize the MPI Wtime() clocks across the nodes [77].

10.6.1.3 Failure Detection

rMPI’s failure detection requirements are relatively modest, and it assumes the underlying
supercomputer RAS system can provide much of this functionality. Both mirror and parallel
protocols require that messages from failed nodes will be consumed and do not deadlock
the network or cause other resources, such as status in the underlying MPI implementation,
to be consumed. Furthermore, failing nodes must not corrupt state on other nodes. I.e.,
corrupted or truncated messages in flight must be discarded. Most systems already do this
using CRC or other mechanisms to detect corrupt messages. The RAS system is responsible
for ensuring that messages are not continually retransmitted from and to failed nodes .

For the parallel protocol we expect that there is a method to learn whether a given node
is available or has failed. On our test systems, we emulate a RAS system at the user-level.
This consists of a table which rMPI consults, and the RAS system updates, when a node’s
status changes. It could also be an event mechanism that informs rMPI whenever the RAS
system detects a failed node.

10.6.2 Evaluation

10.6.2.1 Methodology

From the discussion in the previous sections it should be clear that rMPI will add overhead
and lengthen the execution time of an application. To measure this overhead we ran multiple
tests with applications on the Cray Red Storm system at Sandia National Laboratories
compiled with both rMPI and the original unmodified Cray MPI library. Red Storm is a
XT-3/4 series machine consisting of over 13,000 nodes, with each compute node containing
a 2.2 GHz quad-core AMD Opteron processor and 8 GB of main memory.

To ensure leader and replica are on separate physical nodes, and to avoid memory band-
width bottlenecks on the nodes themselves, we only used one core on each of the CPU
sockets. Note, this memory bandwidth bottleneck can be removed from rMPI by having the
NIC duplicate messages rather than the host CPU at the cost of the libraries portability.

We used four applications tested on up to 2,048 application-visible nodes (4096 total nodes
in the case of replication): CTH [44], SAGE [74], LAMMPS [115, 124], and HPCCG [125].
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These application represent a range of computational techniques, are frequently run at very
large scales, and are key simulation workloads for the US DOD and DOE. These four applica-
tions represent both different communication characteristics and compute-to-communication
ratios. Therefore, the overhead of rMPI affects them in different ways.

Because a given node allocation may impact the performance of an application, we ran
our tests in three different modes. The first mode, called forward, assigns rank n/2 as a
redundant node to rank 0, rank n/2+1 to rank 1, and so on resulting in a mapping like this:
ABCD|A’B’C’D’. Reverse mode is ABCD|D’C’B’A’, and shuffle mode is a random shuffle
(Fisher/Yates) such as ABCD|C’B’D’A’.

10.6.2.2 LAMMPS

Figure 10.3 shows the performance impact of rMPI with both the mirror and parallel protocol.
The impact of each redundancy protocol is less than 5%, independent of the nodes used,
while the baseline overhead for each is negligible.
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Figure 10.3: LAMMPS rMPI performance comparison. For both mirror and parallel baseline
performance overhead is equivalent. For this application the performance of forward, reverse,
and shuffle fully redundant is equivalent.

10.6.2.3 SAGE

Figure 10.4 shows the rMPI performance for SAGE. Similar to LAMMPS, the baseline perfor-
mance degradation is negligible. Also similar to LAMMPS, the parallel protocol performance
remains nearly constant and performance decrease is negligible in the tested node range; with
performance overhead generally less than 5%. In contrast, full redundancy for the mirror
protocol loses about 10% performance over native, with performance increasing with scale.
We attribute the performance degradation for SAGE to the factor of two increase of large
network messages sent by SAGE and the limited available network bandwidth.

104



E
x
e

c
u

ti
o

n
 t

im
e

D
if
fe

re
n

c
e

 t
o

 n
a

ti
v
e

Nodes

Native

mirror redundant

mirror redundant %

parallel redundant

parallel redundant %

parallel and mirror base

parallel and mirror base %

0.0  s

200.0  s

400.0  s

600.0  s

800.0  s

1.0 ks

1.2 ks

4 8 16 32 64 128
256

512
1,024

2,048

0 %

20 %

40 %

60 %

80 %

100 %

Figure 10.4: SAGE rMPI performance comparison. For both mirror and parallel baseline
performance overhead is equivalent. For this application the performance of forward, reverse,
and shuffle fully redundant is equivalent.

10.6.2.4 CTH

In Figure 10.5 we see the impact of our consistency protocols for CTH at scale. Again,
baseline for both mirror and parallel shows little performance difference. For CTH, mirror
has the greatest impact on performance with full redundancy. This impact, which is nearly
20% at the largest scale, is due to CTH’s known sensitivity to network bandwidth [110]
(the greatest of each of the applications tested) and the increased bandwidth requirements
of the mirror protocol. Interestingly, the parallel protocol version of CTH runs slightly
faster then the native versions (around 5-8%) for forward, reverse, and shuffle replica node
mappings. Though further testing is needed, current performance analysis results suggest
this decrease in application runtime is due to parallel reducing the number of unexpected
messages received.
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Figure 10.5: CTH rMPI performance comparison. For both mirror and parallel baseline
performance overhead is equivalent. For this application the performance of forward, reverse,
and shuffle fully redundant is equivalent.
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10.6.2.5 HPCCG

Figure 10.6 shows the performance impact of rMPI on the HPCCG mini-application. In con-
trast to the other results presented in this section we present the mirror and parallel results
separately. Though the results presented in Figure 10.6(a) and Figure 10.6(b) represent the
same computational problem, the native results of each vary due to different node allocations
between the two plots. Allocation issues aside, we see that mirror has very little impact.
Parallel on the other hand shows a significant impact at higher node counts, with slowdowns
of around 10% at 1,024 nodes. Also, in contrast to all the other applications tested, impact
from the parallel protocol is greater than that of mirror. This is because unlike other appli-
cations, HPCCG stresses the system’s message rate and parallel’s synchronization messages
are causing it to reach the maximum messaging rate of a node.
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Figure 10.6: HPCCG rMPI performance comparison. Varying performance for native and
baseline between mirror and parallel protocols is due to different node allocations.

10.6.3 Analysis and Summary

Our results evaluating the runtime overhead of state machine replication show that the
runtime costs of implementing state machine replication for a wide range of production
HPC applications at significant scale is minimal. In particular, for each application, either
the parallel or mirror protocol provides almost negligible performance impact. Examining
the best protocol for each application, SAGE has the highest net overhead, 2.2% at 2048
application-visible nodes, using the best protocol.

To project these overheads to future systems, we take a basic curve-fitting approach.
We expect communication overheads to be sublinear because replication’s communication
overheads are proportional to the application’s communication demands, and scalable ap-
plication must keep communication overheads sublinear with increasing node counts. This
analysis shows that a logarithmic curve, shown in Equation 10.2, can be used to characterize
the overhead for the worst-case application, SAGE.

g(S) =
1

10
log S + 3.67 (10.2)
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This curve would result in a 4.9% additional overhead on a projected exascale system
with 200,000 sockets.

Note, however, that this analysis assumes the absence of hardware bottlenecks such as
observed for the mirror protocol for HPCCG. More sophisticated techniques, for example
ones based upon the simulation of exascale networking hardware, would be necessary to
account for such bottlenecks. Based on our experience so far, however, we expect that either
the mirror or parallel protocol could avoid such bottlenecks.

10.7 Simulation-Based Analysis

10.7.1 Overview

In this section, we use a simulation-based approach to verify, integrate, and expand the
results from the previous sections into a more complete analysis of the costs and benefits
of state machine replication for HPC systems. This approach allows us to examine real
failure distributions derived from studies of failures of real HPC systems in addition to the
exponential distributions assumed in analytical models such as those of the Daly model or
the birthday problem. We also use it to examine additional machine parameters and their
impact on the viability of state machine replication, particularly variations in available I/O
system bandwidth and failure rates of components.

In the remainder of this section, all results assume software runtime overheads as shown
in Equation 10.2; efficiency results also include a factor of two reduction for replication
because of the required redundant hardware. Unless otherwise stated, we also continue to
assume checkpoint and restart times of 15 minutes as in previous sections.

10.7.2 Combined Hardware and Software Overheads

As a first study, we reexamine state machine replication under exponential failure distribu-
tions with a 5 year per-socket MTTI as in Sections 10.2 and 10.5, but this time including
projected software runtime overheads from Section 10.6. As can be seen in Figure 10.7,
these results are similar to those of Figure 10.1, with the break-even point for state machine
replication shifted to a somewhat higher socket count due to the additional software run-
time overheads. Despite this, state machine replication still outperforms traditional check-
point/restart at socket counts currently projected for use in exascale systems.
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Figure 10.7: Simulated application efficiency with and without replication including rMPI
run time overheads. Shaded region corresponds to possible socket counts for an exascale
class machine [17].

10.7.3 Scaling at Different Failure Rates

While the 5 year per-socket MTBFs used above are based on well-known studies of large-scale
systems, the challenges of exascale systems make changes to these reliability statistics likely.
For example, more reliable nodes could be deployed to address fault tolerance concerns,
or power conservation, miniaturization, or cost concerns could lead to a reduced per-socket
MTBF. Because of this, we also examined the viability of state machine replication over a
range of per-socket MTBFs.

This evaluation focuses on determining the break-even point in number of system sock-
ets for state machine replication compared to traditional checkpoint/restart. This is the
number of sockets above which state machine replication is more efficient than traditional
checkpoint/restart even accounting for replication’s software and hardware overheads. At
socket counts greater than or MTBFs less than this break-even point, replication is prefer-
able; at socket counts less than this or MTBFs above it, traditional checkpoint/restart is
preferable.

Figure 10.8 shows these results for per-socket MTBFs up to 100 years; socket counts and
per-socket MTBF commonly discussed for exascale systems (socket counts above 25,000 and
MTBFs between 4 and 50 [17]) are shaded; the shaded area above and to the left of the
break-even curve represents the portion of the exascale design space in which state machine
replication is beneficial.

These results show that state machine replication is viable for a large range of socket
MTBFs and node counts in the exascale design space, but not the entire space. In particular,
state machine replication performs worse that traditional checkpoint/restart for low socket-
count systems with MTBFs greater than about 10 years. For socket MTBF above 50 years,
state machine replication is outperformed by traditional checkpoint/restart at all expected
socket counts.
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Figure 10.8: Simulated replication break-even point assuming a constant checkpoint time
(δ) of 15 minutes. Shaded region corresponds to possible socket counts and MTBFs for an
exascale class machine [17]. Areas of the shaded region where replication uses less resources
are above the curve. Areas below the curve are where traditional checkpoint/restart uses
lower resources.

10.7.4 Scaling at Different Checkpoint I/O Rates

We also examined the viability of replication at a wide range of checkpoint I/O rates. Be-
cause checkpoint I/O is an area of active study, including work on a wide range of hardware
and software techniques to improve its performance for exascale systems (as in [55]), un-
derstanding the potential impact of this research on exascale fault tolerance approaches is
critical.

For this analysis, we used recent modeling work which extends Daly’s checkpoint modeling
work to account for how variations in checkpoint system throughput impact checkpoint
times and system utilization [102]. We assume each socket in the system has 16 GB of
memory associated with it, and again examine the break-even point for replication over
checkpoint/restart at a range of checkpoint I/O bandwidths and socket MTBFs. We choose
an aggressive range of such bandwidths ranging from 500 GB/sec to 30 TB/sec to fully
understand the impact of dramatic increases in I/O rates on the viability of replication.

Figure 10.9 shows the results of this analysis. Replication outperforms checkpointing for
the vast majority of the exascale design space at checkpoint I/O bandwidths of 1 TB/sec or
less. However, beginning at I/O bandwidths of approximately 5 TB/sec, checkpoint/restart
becomes competitive for a substantial fraction of the design space, particularly systems with
high per-socket MTBFs and low numbers of sockets. At checkpoint bandwidths of 30 TB/sec
or higher, several orders of magnitude faster than current I/O systems, checkpoint/restart
is preferable across a large majority of the design space.
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Figure 10.9: “Break even” points for replication for various checkpoint bandwidth rates. The
shaded region corresponds to possible socket counts and socket MTBFs for exascale class ma-
chines [17]. State machine replication is a viable approach for most checkpoint bandwidths,
but with a checkpoint bandwidth greater than 30TB/sec, replication is inappropriate for the
majority of the exascale design space. Areas of the shaded region where replication uses less
resources are above the curve. Areas below the curve are where traditional checkpoint/restart
uses lower resources.

10.7.5 Non-Exponential Failure Distributions

Finally, we also examine the viability of replication with more realistic failure distributions.
For failure information, we use numbers from a recent study of failures on two BlueGene
supercomputer systems, a 16,384 node system at Rennesseler Polytechnic Institute (RPI)
and a 4,096 node system at École Polytechnique Fédérale de Lausanne (EPFL) [63].

This study shows that failures in these systems are best described by a Weibull distri-
bution with MTBFs of 6.6 hours (11.7 years/socket) and 8.4 hours (3.9 years/socket), and
shape (β) values of 0.156 and 0.469, respectively. These β values (β < 1.0) describe distri-
butions that decrease in probability over time; in HPC systems, this indicates that failures
are more likely to happen at the start of a system’s lifetime or an application run and reduce
in frequency as the system runs.

To examine the impact of these failure distributions, we build on the results of the
previous subsection and examine how the efficiency of replication and checkpoint/restart
change under Weibull failures assuming a fixed 1 TB/sec checkpoint bandwidth and 16 GB
of memory per socket. Note that the systems from which these distributions were measured
experienced a significant number of I/O system failures, and it is unclear how these failures
should be properly scaled up to larger systems. As a result, we use the failure data from
the larger of the two systems (the RPI system), and focus on how Weibull distributions
change the efficiency of replication and checkpoint/restart approach as opposed to the specific

110



efficiency crossover point.

Figure 10.10 presents impact of these failure distributions on both a replication-based
approach and a purely checkpoint-based approach. These results show that Weibull fail-
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Figure 10.10: Comparison of simulated application efficiency with and without replication,
including rMPI run time overheads, using a Weibull and Exponential fault distribution. In
both these figures we assume a checkpoint bandwidth of 1TB/sec. The shape parameter (β)
0.156 and MTBF corresponds to the RPI BlueGene system [63]. Shaded region corresponds
to possible socket counts for an exascale class machine [17].

ures experienced by real-world systems result in a much more challenging fault tolerance
environment, reducing the effectiveness of both replication and traditional checkpointing
approaches. However, replication is less severely impacted than traditional checkpointing,
again pointing to the potential viability of a replication-based fault tolerance approach for
exascale systems.

10.8 Conclusions

In this chapter, we evaluated the suitability of replication, an approach well-studied in other
fields, as the primary fault tolerance methods for upcoming exascale high performance com-
puting systems. A combination of modeling, empirical evaluation, and simulation were used
to study the various costs and benefits of state machine replication over a wide range of
potential system parameters. This included both the hardware and software costs of state
machine replication for MPI applications, and covered different failure distributions, system
mean time to interrupt ranges, and I/O speeds.

Our results show that a state machine replication approach to exascale resilience out-
performs traditional checkpoint/restart approaches over a wide range of the exascale system
design space, though not the entire design space. In particular, state machine replication
is a particularly viable technique for the large socket counts and limited I/O bandwidths
frequently anticipated at exascale. However, replication-based approaches are less relevant
for designs that have per-socket MTBFs of 50 years or more, less than 50,000 sockets, and
checkpoint bandwidths of 30 terabytes per second.
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Outside of its performance benefits, using replication as the primary exascale fault tol-
erance method provides a number of other advantages. First among these is that it can
be used to detect and aid in the recovery from faults that corrupt system state instead of
crashing the system, sometimes referred to under the banner of silent errors. Checkpoint-
based approaches, on the other hand, potentially preserve such errors. In addition, the extra
hardware nodes needed to support replication-based approaches can also be used to increase
the capacity of exascale systems when it runs more but smaller (e.g. 1-10 petaflop-scale)
jobs.
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Chapter 11

Enabling Dynamic Resource-Aware
Computing

Abstract: Improved application performance and resource utilization can be achieved
through better matching of application tasks to resource capabilities. Potential use-cases
range from better initial application placement, based on application communication pro-
files and current network utilization, to dynamic application reconfiguration based upon
contention for resources or upon detection of failing or degrading resources. Such modes
of operation, which we call Resource-Aware Computing, rely on capabilities for 1) run time
assessment of application needs 2) run time assessment of resource state 3) evaluation and
feedback of application-to-resource mapping fit and 4) dynamic remapping of application pro-
cesses to resources. Monitoring and assessment capabilities must have minimal contention
with application needs, scale to large numbers of processes, and perform on timescales that
can benefit applications during their run-times. We have designed and developed lightweight,
scalable, interacting capabilities in these areas and demonstrated them on Cielo, proving the
feasibility of and providing an infrastructure for Dynamic Resource-Aware Computing.

11.1 Introduction

The amount of work, communication, and memory access of each process in a distributed
parallel application can vary significantly across processes during the course of a long lived
application. Additionally resources allocated to processes over the lifetime of an application
run may not be homogeneous (e.g. may be shared with system processes, affected by other
applications or processes, etc.). Thus the ability to perform run-time assessment of resource
efficacy for the processes using them and the process workload is key to efficient and effec-
tive dynamic run-time management of resources, process to resource mappings, and process
work allocation. The necessary monitoring, assessment, and dynamic re-allocation must not
adversely impact application performance and should, either through better understanding
and more informed initial allocations or via run-time dynamic modification, yield better
application performance (e.g. shorter run times, less power consumption, more efficient use
of platform resources, etc.).

Currently, system resources are assigned to applications at launch time and are fixed for
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the duration of a run. While information from fine grained performance profiling tools such
as Open|SpeedShop [108] and CrayPat [37] can be used to intelligently map processes to
resources, these types of profiling tools are typically highly intrusive (from an application
perspective), with high over-head (e.g. 5% to 15% for Open|SpeedShop [108]) and low
scalability, and may not account for the actual workload on the machine at run time. While
dynamic load balancing is well-studied (see, for example [33] and references therein), in
production implementation, it is not necessarily tied to capabilities for providing detailed
run-time data about resource state; for example, the applications targeted in this work in
practice rely on no or limited information about resource state (e.g., balancing based on
number of elements or upon run-time).

In contrast, we have developed tools for resource/application monitoring, run-time anal-
ysis, and dynamic run-time application feedback. Our scalable tools provide run-time re-
source utilization, resource-state, and coarse grained application profiling information with
low (< 0.01%) overhead. The intent is that this information be used to inform and/or trig-
ger appropriate and available system responses, such as better initial application placement
based on application communication profiles determined via profiling, dynamic task place-
ment based on resource availability, and dynamic application reconfiguration triggered by
discovery of contention for resources or upon detection of failing or degrading resources.

In this work, we have developed a dynamic evaluation and feedback mechanism for the
Zoltan partitioner, triggering dynamic repartitioning of Sierra applications on Cielo, with no
required changes to the application code. This work demonstrates the feasibility of provid-
ing an infrastructure for Dynamic Resource-Aware Computing. It addresses the need called
out by an NNSA Workshop on Exascale Computing Technologies tools working group [129]
to “enable run-time application optimization in the face of changing application needs and
platform state” and targets the identified development of capabilities for “scalable collection
and analysis of performance data”, “ability to feed analysis results back to the applica-
tion and/or system software”, and “analysis results to be used by applications for run-time
optimization”.

We describe our tools and present preliminary experimental results in this chapter1.

11.2 Infrastructure Components

In this section we describe the components we have developed for enabling Resource-Aware
Computing, with respect to architecture and overhead. The various components’ relation-
ships to each other are shown in Figure 11.1.

1More details of this work can be found in [20].
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Figure 11.1: Integration of capabilities for Low Impact Monitoring, Transport and Storage,
Analysis, and Feedback to enable Resource-Aware Computing

11.2.1 Low Impact Monitoring

In order to minimize the impact of monitoring on running applications we have created
a lightweight on-node data collection and transport infrastructure (called lightweight dis-
tributed metric service, or LDMS) with the following characteristics: 1) both RDMA and
socket based transports are available if supported by the platform, 2) kernel modules interact
with the linux scheduler to only collect data during what would otherwise be idle cycles, 3)
no data processing is performed on compute nodes, 4) collection rate is controlled externally
and may be dynamically modified, and 5) facility for maintaining a node local pool of remote
peer data in order to minimize remote peer data access latency. Overhead for utilizing our
monitoring infrastructure with various user mode collection components with respect to both
CPU and memory footprint is shown in Figure 11.2.

11.2.1.1 Data collection

LDMS allows for zero CPU overhead when gathering data from compute nodes through the
RDMA transport (if RDMA is supported by the platform), however, there is still overhead
associated with gathering the data at the sampled node. Data of interest is kept in many
different places on a Linux system. Some data is maintained by user-mode programs, for
example, Zoltan, or MPI rank and job data; other data is kept in the kernel, for example
scheduler and VM data; and still other data is kept by hardware itself such as hardware
performance counters.
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Figure 11.2: Monitoring infrastructure overhead with respect to CPU and memory footprint.
Impact on CPU resources with respect to the total available on this 16 core per node system
are shown in the upper left while that for running on a dedicated core (using corespec
(Section 11.3.3.1) is shown in the upper right. Memory footprint in MiB is shown in the
lower left while that as a fraction of the 32GB available is shown in the lower right. Note
that these figures show overhead on a per component basis and that the total is shown in
parentheses in the X-axis label.

In order to be used, data has to be gathered into a Metric Set where it can be fetched by
the sampling node. For user-mode data, this can be trivially accomplished by either keeping
the data natively as a LDMS Metric Set, or by gathering the data of interest and writing it
to an LDMS Metric Set. For kernel data, there is the problem of accessing the data itself.
Some data is accessible trivially by kernel modules because the containing data structure is
exported, e.g., vmstat data. Other data, however, is “hidden” by virtue of being declared
static in C and can only be accessed through a user-mode /proc filesystem interface; e.g.
schedstat. Finally hardware performance counter data can be accessed with the kernel
perfctr API. In all cases, however, there is the problem of introducing scheduler jitter when
sampling. For kernel data gathering, this can be avoided by using a kernel work-queue and
only gathering data during I/O wait or otherwise idle cycles. In user-mode, this can be
accomplished by scheduling the sampler thread with very low priority.

11.2.1.2 Node-local Transport

Node local transport is performed via Unix domain socket on the node. This provides a
low latency path for an application to acquire both local data and/or data from a pool of
designated remote peer nodes. The difference between this and the remote data transport
is that node-local data cannot utilize the RDMA transport and hence potentially utilizes
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more CPU resources. However, node-local transport is expected to be utilized relatively
infrequently (e.g. when an application is requesting data in order to evaluate a load balancing
response) and hence will introduce insignificant overhead and/or jitter to the application as
a whole.

11.2.2 Remote Transport and Storage

Remote transport of data is desirable for several reasons: 1) analysis of aggregations of
data to understand statistical distributions, anomalous situations, and overall headroom for
improvement, 2) storage for comparison against data from other application runs, and 3)
enabling low latency acquisition of a statistically meaningful set of peer node data for use
in load balancing and scheduling decisions.

11.2.2.1 Remote transport

In order to minimize the impact of remote data transport on application processes running
on a node LDMS supports remote distributed memory access (RDMA) where hardware and
software permit. Thus a remote entity may access another node’s data as often as desired
with no impact on running applications past an initial RDMA registration which may stay
active over the uptime of a node. Remote transport of data is performed using a pull model
in which the owning entity, whether it is the node on which the data is being collected or an
intermediate transport node, is either completely passive (as in the case when using RDMA)
or only sends a segment of data when it is requested (in the case where socket based transport
is being used). Metadata and data generation numbers are used to ensure that information
being stored is both new and correct. In order to support socket based transport of data
across asymmetric network boundaries we support two socket setup methods for accessing
remote data. In order to describe these we define the “top” of a data stream to be the
node on which the data is collected and originates and the “bottom” to be the endpoint
from which the request for data is made. In this context “upstream” denotes closer to the
data source, or top, and “downstream” denotes closer to the data requester, or bottom. If
a downstream LDMSD (LDMS daemon) entity is allowed to initiate a socket connection
with his upstream neighbor LDMSD entity it is called “active” and does so directly. If,
however, security profiles are such that a connection between two such entities can only be
initiated from upstream to downstream, then we utilize a “passive” LDMSD entity on the
downstream node which listens for a connection request from its upstream neighbor which
we refer to as a “bridge” entity. Once the socket connection has been established the passive
LDMSD entity makes its requests for data from its upstream neighbor over this connection
in the same way an active LDMSD entity does. Note that these are persistent connections
due to the desire to minimize overhead i.e., we don’t want the overhead of negotiation for
every data request as these are expected to occur on sub- to few-second intervals.
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11.2.2.2 Remote Storage

Constraints on storage on the remote host(s) include not only the ability to ingest data
at run-time rates, but also to represent that data in a way suitable for analysis. We have
developed a database backend, consisting of multiple, non-replicated databases. Analyses
are performed on the databases in parallel, with the results aggregated to a common front
end. Details of the storage implementation are beyond the scope of this work, but can be
found in [19]. In the exploratory phase of this work, we ingested samples of 1012 variables per
node from 556 compute nodes at a rate of 5 samples per second into 4 distributed databases.
We expect that, after analysis, the necessary number of collected variables can be reduced
such that an application run on the full Cielo system could be handled at the necessary
rate by the same 4 databases. For example 122 variables per node collected on 10 second
intervals across the whole Cielo system would require the same data ingestion rate as the
experimental work presented here.

11.2.3 Analysis

Our data analysis serves several functions: 1) provides understanding of how an application
as a whole is utilizing the resources allocated to it in order to enable optimal matching of
application needs to resource requests on subsequent but similar application runs, 2) enable
dynamic resource to load mapping over the course of an application run, and 3) comparison of
resource utilization/contention across processes, resources including nodes, and application
runs to understand runtime variability and how utilization of data, analysis, and response
has impacted both system resource utilization and application run time. We describe both
run-time and post processing use of the data in the following subsections. Additionally we
briefly describe the analysis role of our visualization component.

11.2.3.1 Post-processing

Before trying to dynamically adjust how an application is utilizing available resources it
needs to be determined if any adjustment is needed (i.e., is there a problem?) and, if so,
what measurements should be taken into account, how each should be weighted, and what
functional aggregation should be performed. After these things are determined and imple-
mented, application runs incorporating dynamic adjustment based on the implementation
should be compared against the baseline case to determine if there was improvement and if
there might be room for more. Post-processing analysis of system state profiles related to
application runs is used to address these use cases.
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11.2.3.2 Run-time

Run-time analysis using our framework can be done in a node-local manner taking into
account information about both the local node and a peer node pool or remotely at the
data storage nodes as both locations have access to the same information. The tradeoffs
for these two modes of run-time analysis are latency, processing impact on application pro-
cesses, and compute node memory footprint. While performing run-time analysis remotely
minimizes processing impact on application processes and compute node memory footprint
it also presents a high latency path for response. Thus for low-latency response we perform
small computations on node, using the on-node data collection and local transport API to
access data. In this work our run-time analysis was done in the context of dynamic load
partitioning. Utilizing information gained in the post-processing analysis (Section 11.2.3.1),
we determined a subset of variables to use in determining load imbalance and functional
forms for evaluating relative balance with respect to those variables. We then wrote small
functions that accessed only the necessary data to calculate the imbalance measures. Those
resultant relative measures of load imbalance were then used in the run time repartitioning
algorithms (Section 11.2.4.2).

11.2.3.3 Visualization

Our visualization tool is useful for imparting qualitative understanding of balance and/or
contention in a running system. It enables a user to directly view raw measurables, such as
CPU utilization, memory utilization, interrupts, context switches, etc., as a color-mapped
value on a component. Simultaneously viewing these over all components being utilized by
an application (including the operating system) provides a qualitative evaluation of how far
out of balance a particular measurable is across all components and how that unfolds over
time. We also provide methods for rendering the time history of a small subset of values and
for statistical computations over ranges of time and components. This tool can be used for
both run-time and post data capture viewing of such information. Figure 11.3 is an example
of using this tool for visualizing where system processes are running.

11.2.4 Application Feedback Methods

Our goal is that monitoring and analysis information be used to inform and/or trigger
appropriate available system responses. Analysis or response mechanisms can call the node
local transport API for acquisition of both node local and peer node pool metrics of interest
or use the remote analysis results. In this work we utilized both static and dynamic forms
of feedback described in this section. Note that in this work all compute node and core
allocations are static for the duration of an application run and that in the context of this
work dynamic feedback results in process load re-allocation.
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Figure 11.3: Screenshot of visualization tool showing system processes across the 576 nodes
of Cielo Del Sur (Cray XE6) with no application running. Each horizontal row represents
data values for each of 16 cores on each of 6 nodes (separated by fine bands). Note that
white stripes represent nodes for which data was not being collected (e.g. service nodes or
out of service). The color scheme highlights system process utilization with red being zero
ticks and blue being three.

11.2.4.1 Static feedback mechanisms

We define static feedback as the use of knowledge gained through analysis of resource utiliza-
tion/contention characteristics from one application run to drive how resources are allocated
in subsequent application runs. In this work we identified two potential mechanisms for in-
voking static feedback: 1) Cray’s “core specialization” utility to bind system processes to
a particular core and 2) specification at job submission time how many and which cores to
use on a per node basis. The first mechanism enables the user to ensure that there is no
contention between system processes and application processes while the second enables the
user to adjust how many processes share resources such as cache, main memory, network
bandwidth, etc. In this work we only utilized the first of these mechanisms because from
the data we were able to collect we could not infer whether or not contention for resources
shared by cores was occurring.
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11.2.4.2 Dynamic feedback mechanisms

We define dynamic feedback as the use of knowledge gained through analysis of resource
utilization/contention characteristics from both current and previous application runs to drive
run-time resource allocation (including work to process allocation) for the current application
run. In order to enable dynamic workload to resource mapping, we targeted applications
with facilities for redistribution of their workload during their runtime. In this work we
chose applications in the Sierra [45] suite, which periodically call the Zoltan partitioner [40]
to determine a new partitioning and which also have the facility to relocate data accordingly.

Zoltan contains a number of algorithms which assign objects to partitions, taking into
account specified object weights and partition sizes. Examples of the former include number
of elements or particles. In this work, we sought to define partition sizes, reflective of the
relative ability of a resource to handle the workload assigned to it. We enhanced Zoltan to, at
the time of a partitioning calculation, make the appropriate calls to obtain variable data via
our on-node data collection API and calculate the partition sizes via the defined functional
form. These partition sizes were then used in the partitioning calculation as described in
Section 11.2.3.2. The data movement to adjust the workload in response to the determined
partitioning is handled by Sierra itself.

11.3 Applying the Infrastructure to Enable Resource-

Aware Computing

In this section we describe results of applying our infrastructure and tools as an integrated
capability to targeted application runs on several Cray XE6 systems including LANL’s Cielo.
Here we describe characteristics of two applications we used and how our feedback mecha-
nisms influenced dynamic run-time partitioning of their workload to process mapping.

11.3.1 Applications characteristics and experimental setup

In this work we targeted two codes: Aria [99] and Fuego [43, 42]. Aria is a thermal code
and thus the per-processor computational load is dependent on the number of elements in
the computation and less tied to the physical dynamics of the computation. As a result,
significant dynamic load imbalance is not expected, however the Aria example code has
been shown to scale well to large numbers of processors. Fuego is a particle code whose per-
processor computational load changes throughout the computation as particles move, are
injected, split, and/or removed. Repartitioning throughout the runtime thus redistributes
the mapping of particles to processors and rebalances the load. Rebalancing capabilities for
such codes may potentially have significant benefit, however the particular Fuego example
utilized here is limited in its scalability without significant additional tuning/investigation
which was beyond the scope of this work.
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The applications were run 1) on Cielo, with node-local analysis and feedback via Zoltan,
and remote transport over DISCOM, an ASC wide-area high speed network, with remote
analysis and storage on the ASC TLCC Whitney cluster at Sandia CA and 2) on a Cray XE
platform at Sandia NM, again with node-local analysis and feedback via Zoltan, with remote
transport to desktop machines at Sandia CA for analysis and storage. The Aria example
was run with a process count of up to 10,112 while the Fuego example only scaled to the 64
processes represented in this work.

11.3.2 Methodology used to search for appropriate indicators

Because we specifically targeted load imbalance and contention we were looking for data that
indicated evidence of wide variation of related metric values over processes of an application.
This suggested that we target things with a large statistical variance. A problem with just
computing mean and higher order moments on this type of data is that even for a single
process there is large variance on most dynamic metrics (CPU utilization, non-voluntary
context switches, interrupts, etc.) over our sampling intervals of 5 to 10 seconds. Thus
we summed these values, on a per processor basis, over time windows commensurate with
the applications rebalancing interval, rather than our sampling interval, and examined the
distribution of these sums over all processes.

11.3.3 Aria measures of interest, feedback, and results

Due to the aforementioned static nature of Aria’s per process workload we first looked for
indication of contention for resources. Analysis of several runs of our Aria example indicated
that there were indeed metrics for which there was a wide distribution across processes, low
variance for each particular process, and a high degree of correlation between system process
core affinity and application processes with large numbers of these metrics (non-voluntary
context switches, interrupts, idle CPU, etc.). The ones which directly implied contention
were non-voluntary context switches and interrupts. Since these would adversely impact the
time hardware resources are dedicated to the Aria application, we targeted these for use
in the repartitioning calculation. (Note that the magnitude of counts of these are vastly
different and the impact of any occurrence on the application run time and memory eviction
was beyond the scope of this work.) This discovery drove the nature of the feedback and
run-time analyses utilized in conjunction with this application and described below.

11.3.3.1 Static feedback with Aria

In this case we utilized Cray’s “core specialization” (aka “corespec”) feature [38] which en-
ables the user to specify that no system processes will be run on cores dedicated to application
processes. This comes at the expense of having to give up a core per node (the default of
core 15 was used in this case, but any core can be specified for this use) to host system
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processes. We ran the same number of processes (8310) over 12% more nodes to accommo-
date the loss of one core per node. The results show that non-voluntary context switches for
application processes drop to zero and, though we expected slightly worse run-times given
more inter-node communication, we obtained similar run-times presumably due to the higher
cost of more inter-node communication being offset by better per-node performance. While
in this case we utilized all cores available for application use per node, indication of process
contention for shared cache, main memory, or network resources would be indicators that
sparser use of cores, to reduce the sharing of resources for which contention has been seen,
would be in order.

11.3.3.2 Dynamic feedback with Aria

We utilized the Zoltan partitioner to implement dynamic feedback to both codes. As de-
scribed in Section 11.2.4.2, Zoltan assigns objects to partitions, taking into account specified
object weights and partition sizes. In practice, in the targeted codes, the partition size is
uniform. In contrast, in this work, we sought to define partition sizes, reflective of the relative
ability of a resource to handle the workload assigned to it.

From an analysis perspective the measures of imbalance had to additionally be expressed
in terms commensurate with the object weights. In this work we selected the number of non-
voluntary context switches and the number of rescheduling interrupts to be used as measures
of contention in an expression for relative imbalance. We not only needed to determine a
functional form in which a greater number of non-voluntary context switches would result in
a smaller partition size but also one scaled appropriately to still achieve a reasonable relative
distribution across all the partitions.

Using functional forms for partition sizes based on our post-run profiling, we ran our
applications, with Zoltan repartitioning the workload per processor based on the data values
exhibited at run time.

We first utilized the following function of two contention related metrics (non-voluntary
context switches and rescheduling interrupts) to drive partitioning decisions in Aria for
a 10,112 processor run on Cielo: for measures of contention c1 and c2 partitionsize =
(c1 + c2) ∗ (100)/max(c1 + c2) with a floor of 1 and a ceiling of 100. The measures of
contention are evaluated from values after the previous rebalancing step to the current re-
balancing calculation. At run time, non-voluntary context switches and interrupts occurred
preferentially on cores 0 and 9 across all nodes. Our run-time feedback thus resulted in
smaller partitions on those cores, however our functional form resulted in too great a range
of partition sizes to derive benefit in this particular run. Additional tuning of the parameters
of the functional form would be required in order to reduce the range appropriately.

Likewise we utilized the following function of CPU related metrics to drive partitioning
decisions as a result of imbalance in CPU utilization by an 8310 processor Aria run on San-
dia’s Cielo Del Sur (CDS): partitionsize = [(usertime+systemtime+idletime)/(usertime+
systemtime)]. The times are measured in ticks between after the previous rebalancing step to
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the current rebalancing calculation. Partitioning with inclusion of the partition size slightly
broadened the distribution of partition sizes beyond that based on object weights alone.
Again, the degree of application benefit is dependent upon tuning of the functional form
used for feedback. However, for this function, when the partitioning became too broad,
resulting in increased imbalance, the partitioning feedback criteria adjusted the distribution
in the correct direction in later iterations as seen in Figure 11.4.

Figure 11.4: Partition Distributions for selected timesteps for an 8310 processor run of an
Aria example on CDS. Processors exhibiting larger ratio of idle cycles to total cycles utilized
since the last partitioning are assigned a larger partition size. Uniform partition sizes (left)
results in tighter distributions than those without feedback. In the feedback case, when too
broad a partitioning occurs early (right, green), the partitioning feedback criteria will adjust
the distribution (right, blue and magenta).

These two cases illustrate that run time evaluation and feedback are feasible at the
targeted scale. The performance benefit of this work to an application is contingent upon
reasonable determination of the variables and the functional form for contention, imbalance,
and resulting partition sizes. Such tuning is necessarily an iterative process.

11.3.4 Fuego measures of interest, feedback, and results

As with the Aria application described above, for our Fuego example we examined process to
process metric differences across multiple runs, examining CPU resource utilization, context
switches, and interrupts in particular. Again we saw the contention due to context switches
and interrupts but further saw a wider distribution of workload across processes as evidenced
by the distribution of idle CPU cycles across processors. This distribution was also seen to
vary over time due to the dynamic nature of the Fuego simulation application as described
in Section 11.3.1.
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11.3.4.1 Dynamic feedback with Fuego

We again used feedback to Zoltan to rebalance a 64 processor Fuego example run. In this case
the object weights were the particle numbers and, for partition size, we used the imbalance
function of Section 11.3.3.2. As particles move in time the particle-to-partition mapping
changes and the distribution is spread out, thus triggering a rebalancing. Figure 11.5 shows
the resultant particles per processor distribution at various stages in the problem evolution
with and without feedback.

Figure 11.5: Particle Distributions in the Partitioning Evolution in a Fuego problem (a)
after a rebalance (top) (b) after a few timesteps before the next rebalance (middle) (c)
after the next rebalance (bottom) (d) without feedback (left column) (e) with feedback
(right column). Rebalancing in general seeks to provide an even distribution but is not in
practice completely uniform (top and bottom). As the problem evolves and particles move
the distribution widens triggering the need for rebalancing (middle).

Figure 11.6 shows total fractional utilization of available CPU cycles for each core used in
the computation. This figures shows that 1) that even without feedback (green), when parti-
cle number is used as object weight for partitioning, there is still imbalance of computational
cycles across processes during the run and 2) in this case, even in the absence of significant
imbalance and without fine tuning there is a resultant 1% improvement in computational
cycles dedicated to the application for each of the processors involved. There is a corre-
sponding 1% decrease in run-time for the entire application. Again, detailed determination

125



of the functional form for the repartitioning calculation was beyond the scope of this work.

Figure 11.6: Simple demonstration of resource evaluation and feedback shows improvement
in computational cycles across all processors involved. Greater fractional utilization of CPU
cycles is achieved with feedback than without (green) Note: Y axis is the fractional utilization
of available CPU cycles and goes from 0.9 to 1.0. X axis is a core unique identifier.

11.4 Conclusion

We have developed tools to enable new capabilities for Dynamic Resource-Aware Computing
that require no changes to existing application codes. These tools provide resource/applica-
tion monitoring, run-time analysis, and dynamic run-time application feedback and satisfy
the constraints of low resource impact, scalability, and responsiveness.

In this work we demonstrated a system to not only enable understanding of how appli-
cations are utilizing platform resources, but to also enable run-time modification of their
use. Fine tuning of the rebalancing was beyond the scope of this work. These monitoring,
analysis, and feedback mechanisms can be used to evaluate any system measurables (we are
currently investigating memory and communication subsystems) and inform and/or trigger
any system responses available.

Additional potential use cases include better initial application placement based on ap-
plication communication profiles determined via profiling, which would leverage work in
Chapter 5, and dynamic application reconfiguration triggered by discovery of contention
with other applications for resources or upon detection of failing or degrading resources,
which would build upon our previous research work in triggering virtual machine migration
response [18] as part of Sandia’s ASC Resilience efforts and which could leverage work in
Chapter 12.

Finally, better understanding of application needs and the appropriateness of resource
fit that can be obtained via this work can also be used to drive better design for future
platforms.
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Chapter 12

A Scalable Virtualization
Environment for Exascale

Abstract: Hardware-accelerated virtualization support has become ubiquitous on mod-
ern computing platforms, driven primarily by the requirements of the data center and cloud
computing industries. This technology also has compelling use-cases for exascale computing,
such as using guest operating systems to deploy specialized compute node functionality on-
the-fly (e.g., for visualization or in-transit data analysis), providing backwards-compatibility
to existing MPI applications running on exascale systems via “legacy” virtual machine en-
vironments, and leveraging the full-system view of the virtualization layer to facilitate the
mapping of abstract machine models to the available physical hardware. As a step towards
realizing these use-cases and others, we have been developing a scalable virtual machine
monitor that augments the traditional fixed software stack provided by vendors. We have
deployed this system on Red Storm and evaluated the performance of the CTH and Sage
applications running inside of a virtual machine on up to 4096 compute nodes. The results
show that the overhead induced by our virtualization layer is low, typically less than 5%,
proving the feasibility of running communication intensive, tightly coupled applications in a
virtual machine environment.

12.1 Introduction

Current supercomputers provide a fixed software environment that is typically limited in
its functionality for performance and scalability reasons. Examples include the Red Storm
system at Sandia and the BlueGene/L system at LLNL, which both use custom lightweight
kernel (LWK) operating systems that provide only the functionality needed to support scal-
able parallel applications. If an application requires more functionality than is available, it
must be reworked to eliminate the dependencies or not be able to make use of the system.

Together with collaborators at Northwestern University and the University of New Mex-
ico, we have been working to address this issue by developing a virtual machine monitor
(VMM) that can be embedded in a traditional LWK operating system. Specifically, we have
embedded the Palacios VMM developed at Northwestern inside of Sandia’s Kitten LWK
(Figure 12.1). The VMM capability enables users to dynamically replace the normal fixed
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software environment with an environment of their choosing, without rebooting the system.
Users with applications that require more functionality than what the LWK provides can
use the VMM to “boot” a more full-featured “guest” operating system underneath (nested
within) the native LWK. The application can then be launched inside of the guest environ-
ment and make use of the additional functionality it provides. From the LWK’s perspective,
the guest OS looks much the same as a native LWK process or thread.

Hardware

User Space

Kernel Space

Palacios
Virtual Machine

Monitor

Kitten
Lightweight Kernel
Operating System

Guest
Operating System

 

(RedHat, Catamount, Windows)

User Application
 

(Running Natively)

User Application
 

(Running in Virtualized
Environment)

Figure 12.1: Block diagram of Kitten LWK running a user application natively alongside a
user application running inside a virtualized environment.

We believe this combination provides a good balance of performance and flexibility. Ap-
plications that require the highest level of performance and scalability can continue to use
the native LWK environment as they do today without penalty. When the native LWK
environment does not provide enough functionality, if for example a compute node needs
to have specialized system software available for visualization or in-transit data analysis, a
guest operating system can be launched on-demand to provide the missing functionality. The
added flexibility provided by the VMM mitigates one of the most frequently cited weaknesses
of the LWK model – limited functionality.

The VMM capability enables other interesting use cases as well. System administrators
could potentially test a new operating system release without having to take the target
system out of production. Likewise, system software developers could perform large-scale
testing without having to request dedicated system time. Security researchers could boot
up many thousands of different commodity guest operating systems and, in effect, simulate
the Internet. In the context of exascale computing, the VMM layer could be used to provide
a “legacy” virtual machine environment to support unmodified MPI applications designed
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for prior-generation supercomputers. The extra layer of indirection provided by the VMM
layer makes it a powerful tool for mapping abstract machine models, such as a “legacy”
distributed memory massively parallel machine model, to the available underlying physical
hardware, which may be substantially different than what is exposed to software.

12.2 Application Results

The price of the added flexibility afforded by the VMM is increased overhead in the vir-
tualized environment compared to native execution. The extra level of indirection in the
VMM and virtualization hardware necessarily adds some overhead. In order to evaluate this
overhead we performed experiments on 2048 nodes of Red Storm with two real applications
– the CTH [44] hydrocode and Sage [74] adaptive grid Eulerian hydrocode – comparing per-
formance executing natively to performance executing within the virtualized environment
provided by Kitten and Palacios. To the best of our knowledge, these are the only virtual-
ization experiments performed on a peta-flop class architecture – Cray XT – and are by far
the largest scale experiments performed to-date. Previous studies have used a maximum of
128 nodes and have only considered benchmarks, not real applications.

Figure 12.2 compares the performance of CTH and Sage executing natively on Red Storm,
in the Catamount LWK, to their performance executing within Catamount running as a
guest operating system on top of Kitten and Palacios. The results show that the virtualized
environment adds less than 5% overhead in all cases, even at the highest scales tested. This
demonstrates for the first time the feasibility of running communication intensive, tightly
coupled applications such as these within a modern virtualized parallel environment.

Additionally, we evaluated two memory management schemes for the virtualized envi-
ronment. With shadow paging, the Palacios VMM is responsible for memory management
(memory management is performed in software). With nested paging, virtualization hard-
ware in the host processor performs memory management. The results indicate, counter
intuitively, that software memory management is slightly faster than hardware memory
management for these HPC workloads. This was found to be due to extra overheads in the
processor’s translation lookaside buffer (TLB) when using nested paging.

12.3 Conclusion

The end goal of this research is to provide users with a more flexible supercomputer en-
vironment without requiring the most scalable applications – those that work best in a
LWK environment – to sacrifice performance. Given the promising results on Red Storm,
we hope to deploy this technology in future capability supercomputer platforms. For more
information about Kitten and Palacios, see [78].
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Figure 12.2: Comparison of CTH (top) and Sage (bottom) applications running natively vs.
in a virtualized environment with shadow (software) paging memory management vs. in a
virtualized environment with nested (hardware) paging memory management. The results
show that the virtualized environment introduces less than 5% overhead in all cases.
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Chapter 13

Goofy File System for
High-Bandwidth Checkpoints

Abstract: The Goofy File System, a file system for exascale under active development,
is designed to allow the storage software to maximize quality of service through increased
flexibility and local decision-making. By allowing the storage system to manage a range
of storage targets that have varying speeds and capacities, the system can increase the
speed and surety of storage to the application. We instrument CTH to use a group of
RAM-based GoofyFS storage servers allocated within the job as a high-performance storage
tier to accept checkpoints, allowing computation to potentially continue asynchronously of
checkpoint migration to slower, more permanent storage. The result is a 10-60x speedup in
constructing and moving checkpoint data from the compute nodes.

13.1 Introduction and Motivation

GoofyFS is a peer-to-peer-inspired file system for exascale under active development. It is
part of a multi-year effort among Sandia National Laboratories, the University of Alabama at
Birmingham, Clemson University, and Argonne National Laboratory. The motivation behind
GoofyFS is that, as HPC systems (and their storage systems) grow, increasing component
counts will imply a growth in the number of device failures. The storage system will be in
some sort of failure mode at all times, requiring it to adapt dynamically to its own health.
Peer-to-peer systems are well known for their ability to provide resilience by handling client
turnover [131], and provide a ripe area of exploration to improve large scale storage systems.

Resilience and performance concerns influence the design of GoofyFS in a number of
ways. First, data should be automatically migrated and replicated through the system to
maintain data integrity. For example, if data is replicated among three servers, and one
fails, data may be replicated immediately without central coordination to another server or
set of servers, ensuring that at least three copies remain. Second, data may be relocated
or replicated for performance reasons, including to and from a set of compute nodes that
hold data in RAM as the fastest tier in a caching model. Finally, clients may write data
to any server that provides the client with high quality of service quantified by bandwidth,
reliability, I/O operations per second, latency, and so on.
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Many DOE applications checkpoint frequently to defend against job failure. This is often
a synchronous operation to disk-based storage, requiring all nodes to stop computing until
the checkpoint has been placed in its ultimate location. Today’s parallel file systems are
not able to accept data at the speed compute nodes can produce it, so the application must
spend significant time waiting for the checkpoint to complete. To improve performance, the
storage system could recruit compute nodes to provide an intermediate fast store that can
migrate checkpoints back to disk asynchronously, improving checkpoint performance for the
job.

For this report, we demonstrate running GoofyFS storage servers on compute nodes as a
first tier of fast storage. We deploy the GoofyFS nodes alongside a compute job running CTH,
with CTH writing checkpoint data to GoofyFS. This experiment demonstrates the promise
of GoofyFS: As development continues, this first tier will transfer the checkpoint data to
slower, disk-based storage asynchronously as necessary, allowing bursty write patterns to
experience higher performance than the underlying disk-based storage can provide.

13.2 Related Work

The tiered storage approach can be seen as a blend of several functionalities offered by
other projects. These projects augment the underlying storage system to improve apparent
performance or address shortcomings.

IOFSL [5] is an I/O forwarding layer that decreases the number of clients a file system
must handle simultaneously. This is done by dedicating nodes to the task of accepting file
system requests and performing them on behalf of the compute nodes. IOFSL does not pro-
vide asynchronous checkpoint transfer to the parallel file system, but operates synchronously.

SCR [92] is a library that provides a range of checkpoint strategies to applications. This
includes having each node within a job checkpoint its data to the memory of a neighboring
node, among other arrangements. SCR includes a notion of tiered checkpoints where only
some checkpoints are stored to the parallel file system, while others remain resident in other
storage tiers.

The PLFS-enabled burst buffer [16] is another piece of software that has similar goals.
The burst buffers are special-purpose servers distributed throughout an HPC platform, e.g.
one per compute rack. Each burst buffer server is filled with enough flash memory to accept
a small number of checkpoints from nearby compute nodes. The data is asynchronously
drained from the burst buffers to the parallel file system. PLFS [15] is used to maintain a
consistent view of data regardless of its location.
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13.3 The GoofyFS Storage Server and Client

The GoofyFS storage server provides an object-based storage API. Each object has a 128-bit
identifier and a 64-bit address space. The storage server supports sparse objects and con-
flict resolution of objects via update identifiers. The API is RDMA-based, as the network
layer (Single-Sided Messaging, or SSM [51]) is heavily influenced by the Portals 4.0 specifi-
cation [120]. For this experiment, SSM used an MPI-based transport layer, but others are
under active development.

No generally useful POSIX-like client exists for GoofyFS. While a FUSE-based client has
been demonstrated as a proof-of-concept, it is not meant for use by applications. Instead, a
simple custom client was crafted for CTH that stores checkpoint data with a file per object,
with a one megabyte local buffer to ensure that larger messages are sent to the storage server
as needed. Because CTH’s checkpoints have predictable names based on the iteration and
rank of the process, a job ID and rank can be used to derive a unique object ID. A more
friendly POSIX client for HPC is under development.

13.4 Instrumenting CTH

To give CTH access to GoofyFS servers in the Cielo application environment, we launched
extra processes within the CTH allocation specifically dedicated to GoofyFS. Where CTH
calls MPI Init, we inserted a call to our own initialization routine that created a global com-
municator, splitting the nodes between a CTH group and a GoofyFS group. The GoofyFS
processes were instructed to enter an event loop to satisfy storage requests, while the CTH
nodes were released to participate in the compute job normally. A number of operations CTH
performed over and within MPI COMM WORLD had to be changed to use the new communicator.

Other changes were less invasive. To have CTH use GoofyFS’s storage protocol, we
leveraged syncio, an alternative I/O infrastructure already present in CTH. Syncio optionally
coordinates I/O from nodes so that storage servers in certain previous platforms would not
be overloaded from many simultaneous I/O requests from CTH. Syncio’s API includes read,
write, open, and close, creating a straightforward mapping of common I/O tasks. As Cielo
does not require syncio functionality, we created simple replacements of those routines that
would interact with the GoofyFS storage servers directly. A small number of further changes
had to be made to routines that were not written to use syncio.

We evenly distributed nodes running GoofyFS processes throughout the CTH job. Specif-
ically, we treat the nodes in the job in groups of five, where each group k contains the process
IDs between k × 80 and (k + 1) × 80 − 1, inclusive. The lowest 16 ranks, which are located
in the first node of the group, run GoofyFS server instances. The highest 64 ranks, which
comprise the other four nodes of the group, run CTH processes.

The CTH processes are directly mapped to the GoofyFS processes in the first node of
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Figure 13.1: Average checkpoint time for GoofyFS versus PanFS. All points include error
bars indicating a 99% confidence interval, but may not be visible for data points that had
little variance. Both axes use log values.

its group. For example, if a GoofyFS process in node n has rank n × 16 + i, it will service
the CTH processes found in ranks (n + 1) × 16 + i, (n + 2) × 16 + i, (n + 3) × 16 + i, and
(n + 4) × 16 + i.

13.5 Application Impact

All tests were conducted on Cielo, a Cray XE6 that is used as a capability platform at Sandia
National Laboratories, Lawrence Livermore National Laboratory, and Los Alamos National
Laboratory. The job was run with the shaped charge example problem at scales varying from
256 to 32,768 cores. Baseline runs were completed with CTH writing checkpoints directly to
the 10PB Panasas storage, which uses PanFS as the file system. The GoofyFS runs require
extra cores for storage servers, so each GoofyFS run included 25% more nodes than the
CTH job required. For example, the 256 core job had 320 cores requested in the allocation,
with 64 cores used exclusively as GoofyFS storage servers. All tests were run through at
least four checkpoints, and we recorded the average of the first four checkpoints. The time
interval between checkpoints was specified to be small, but varied between thirty seconds to
two minutes among different batches of runs.

Figure 13.1 gives the results of this experiment. Checkpoint performance was increased
by at least 10x, with larger jobs demonstrating up to a 60x performance increase. One
significant feature of Figure 13.1 is the variance experienced by each storage platform. These
benchmarks were run while the machine was in general use, so it is likely that there was
occasional significant contention for PanFS I/O services. The GoofyFS partition, because it
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is dedicated to a single job, displayed almost no variance.

While these jobs used a rather large 25% increase in allocation of nodes per job, this
was a decision made to ensure that each node had enough space available for checkpoint
storage. CTH compresses its checkpoints, causing some processes to write much more data
than others. With a good mechanism for load balancing, and implementation of data mi-
gration capability, it may be possible to exploit a much smaller fraction of servers with good
performance.

13.6 Conclusion

This demonstration of early GoofyFS functionality shows a significant benefit for a real I/O
workload, checkpointing, in a real application, CTH. By running GoofyFS storage servers
within a job as RAM-only stores, CTH was able to store checkpoints 10-60x faster than
storing to PanFS, allowing the job to continue computing sooner. While this prototype
did not include automatic data migration, the checkpoint was available to be pushed or
pulled to disk-based storage as needed after the compute nodes continued computing. Future
developments include the ability to dynamically spawn GoofyFS nodes to absorb checkpoints,
expanding this mechanism to other fast tiers of storage like flash memory, and sharing of
dynamic GoofyFS nodes between multiple jobs as needed.
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Chapter 14

Exascale Simulation - Enabling
Flexible Collective Communication
Offload with Triggered Operations

Abstract: In addition to software techniques, it is also possible to provide improved ca-
pabilities in the system architecture to allow more efficient application execution, without
requiring code changes. One area where this is possible is in the network interface con-
troller (NIC) architecture. Specifically, it is possible to offload collective communications
to the NIC, providing both lower latency and higher tolerance to system noise, which will
both lead to better application performance and scaling. We used the Structural Simulation
Toolkit (SST) to simulate the performance of the MPI Allreduce() collective using seman-
tic building blocks of the Portals 4 communications API. The simulations (run up to 32,768
nodes in size) show that offloading the collective to the NIC provides for a nearly 40% re-
duction in latency, and more importantly, provides for a much higher degree of tolerance to
varying types of system noise (simulated using varying durations and frequencies of noise).
These benefits are seen across a wide range of network performance parameters.

14.1 Introduction

Collective communications are widely used in MPI applications, because applications fre-
quently perform global computations using data from all of the nodes. When the result
must be distributed to all nodes (e.g. MPI Allreduce()), synchronization is introduced that
can expose the application to OS interference[114] (also called OS noise or OS jitter). As
system sizes increase, collective communications inherently take longer due to more compu-
tation steps, communication steps, and time of flight across the physically larger machine.
Unfortunately, applications become even more sensitive to scalability challenges as the sys-
tem size increases. Improvements in the performance of collectives will clearly be needed for
future systems.

One approach to accelerating collectives is the use of offload onto the network interface
controller (NIC). In addition to accelerating the collective operation itself, offloading can
reduce the impact of OS interference during collective execution. While offload has many
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attractive aspects, current implementations show some drawbacks as well. Network adapters
are typically not easy to program to experiment with new collective algorithms. In many
cases, the programmable resources that are available have significantly lower performance
than the host processor[93, 136]. Rather than adding fixed-function hardware to implement
a single collective algorithm, it is desirable to expose a semantic building block that can
implement multiple collective algorithms for multiple upper-level libraries, including MPI.
Given all of the potential factors used in determining an optimal collective algorithm, such
as process arrival[50], the ability to implement the algorithm on the host while offloading a
collective can be advantageous.

We recently incorporated the concept of triggered operations, including triggered remote
writes and triggered remote atomic operations, into the Portals 4[121] network programming
interface. Triggered operations allow an application to setup a communication operation that
will be issued in the future by the NIC when a trigger condition is met. Triggered operations
require a new type of event to provide efficient tracking of message completion to use as
a trigger condition. We introduce counting events that can be used in combination with a
threshold to trigger operations. As soon as an application initiates a collective communica-
tion, the MPI library on each node can set up all message transactions that will be required
for the entire collective operation and then simply wait for completion of all of the message
requests. This approach allows the application to provide the algorithm and higher-level
functions, while the NIC offloads the message processing and arithmetic operations. The
flexibility of host-based algorithms and the host-based development cycle are maintained
with the performance advantages of collective offload.

One commonly used collective operation is MPI Allreduce()[136, 93]. MPI Allreduce()

is frequently used for a small number of data items (often only one) with a simple arithmetic
operation (often minimum or maximum). This paper describes the triggered operations
needed to implement MPI Allreduce() and how MPI Allreduce() is implemented using
those operations. A performance analysis is used to explain how the use of triggered oper-
ations can impact collective algorithm design. In addition, simulations are used to present
the performance impact of collective offload using triggered operations, including how the
tolerance to OS noise of the collective operation is impacted by offload.

14.2 Triggered Operations in Portals 4

Portals 4[121] added two semantic building blocks to support the efficient offload of col-
lectives. Counting events enable lightweight tracking of operation completion. Triggered
operations leverage counting events to defer the start of an operation until a threshold is
reached. Together, these constructs allow software on the host to chain new outgoing oper-
ations as responses to incoming operations.

The semantics of counting events are simple: when an operation completes, a counter is
incremented in application memory. Counting events can be associated with any operation.
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Triggered operations leverage counting events to allow the application to create dependency
chains through several operations. The standard form of a triggered operation is to add a
counting event handle and threshold value to the standard arguments for the corresponding
Portals call. A triggered operation can be passed from the application to the network
interface when the triggered operation call occurs, but the network interface does not retrieve
the data from memory and send the message until the associated counting event reaches the
specified threshold.

14.3 Evaluation Methodology

The Structural Simulation Toolkit (SST) v2.0 was used to simulate both a host-based and an
offloaded version of two algorithms that implement MPI Allreduce(). A torus network of up
to 32K nodes (32×32×32) was simulated. Simulations were run with and without simulated
OS interference to determine the success of offloaded implementations in eliminating noise.

14.3.1 Algorithms for Allreduce

Many applications use MPI Allreduce() to perform a global operation on floating-point
inputs. Unfortunately, floating-point numbers are not associative. As such, there are two
algorithms that are prevalently used for MPI Allreduce() to insure that all participants
receive the same result: a tree-based algorithm and a recursive doubling algorithm.

The classic allreduce implementation is a reduction followed by a broadcast, using a tree-
based communication topology. We used a binomial tree, in which nodes toward the top of
the tree do more work than nodes toward the bottom of the tree. The binomial tree proved
more efficient in both host-based and triggered implementations than a strict binary tree.

The recursive doubling allreduce algorithm [116] uses a butterfly communication pattern
and redundant calculations to reduce the number of communication steps compared to a
tree algorithm. The recursive doubling algorithm is an optimization for small input vectors,
where the cost of communication is latency dominated and outweighs the cost of redundant
calculations. Whereas the binomial tree algorithm has 2log(N) communication steps with
each step involving a smaller number of processors, the recursive doubling algorithm performs
log(N) steps, with each step involving every node.

14.3.1.1 Implementation with Triggered Operations

Figure 14.1 illustrates the functions used in the pseudo-code examples. Only the subset of
the standard Portals arguments that are most relevant are shown in Figure 14.1. As shown
in the figure, data movement operations take a source memory descriptor (a handle to a local
memory region). The “Portal Table Index” is used like a protocol switch — conceptually
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PtlTriggeredAtomic(
source md h, //source of data on local node
destination, //target node ID
pt index, //Portal table index (target buffer)
op, dtype, //operation and datatype
trigger ct h,//counting event to trigger on
threshold); //trigger threshold

PtlTriggeredPut(
source md h, //source of data on local node
destination, //target node ID
pt index, //Portal table index (target buffer)
trigger ct h,//counting event to trigger on
threshold); //trigger threshold

PtlAtomic(
source md h, //source of data on local node
destination, //target node ID
pt index, //Portal table index (target buffer)
op, dtype); //operation and datatype

PtlTriggeredCTInc(
modify ct h, //counting event to increment
increment, //increment value
trigger ct h, //counting event to trigger on
threshold); //trigger threshold

PtlCTWait(
wait ct h, //counting event to wait on
threshold);//wait until this threshold

Figure 14.1: Function definitions for Portals pseudo-code

similar to a TCP/IP port — in Portals and is used to segregate phases of an algorithm.
Atomic operations take an operation and datatype argument, which includes such things
as double precision floating-point. Finally, triggered operations require arguments for the
counter to be monitored and the threshold at which it triggers.

Figure 14.2 shows implementations of the tree-based and recursive doubling allreduce
algorithms using triggered operations. In the tree-based algorithm, Leaf nodes push con-
tributions directly to their parent node and wait for an answer to arrive. Other nodes
atomically add their local contribution to a temporary buffer, and when data is received
from all children, send the aggregated contribution to their parent node. In the recursive
doubling algorithm, each pair of participants at level A add their contributions in bounce
buffer A, and a triggered operation atomically adds that answer to bounce buffer A + 1 for
the next iteration. After log(N) iterations, each node has the final result of the allreduce.

14.3.2 Structural Simulation Toolkit v2.0

The Structural Simulation Toolkit v2.0 (SST) [133] provides a component-based simulation
environment designed for simulating large-scale HPC environments. The simulator is de-
signed to be flexible enough to simultaneously provide both cycle-accurate and event-based
simulation environments. The simulations presented utilize a cycle-accurate router network
model, based on the Cray SeaStar router, combined with a high-level, event-driven network
interface and host processor model.

14.3.3 Simulated Architecture

The network interface architecture that was simulated is shown in Figure 14.3. Portions of
Portals processing is offloaded to the network interface, including the processing of incoming
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// compute parent node and list of child nodes
num children = 0
for (i = 1 ; i <= num nodes ; i ∗= radix) {

parent = (id / (radix ∗ i)) ∗ (radix ∗ i);
if (parent != id) break;
for (j = 1 ; j < radix ; ++j)

children[num children++] = id + i + j;
}
// push data up tree
if (num children == 0) {

// leaf node: send data up tree
PtlAtomic(user md h, parent, 0, op, dtype);

} else {
PtlAtomic(user md h, id, 0, op, dtype);
if (0 == my id)

// setup trigger to move data to right place,
// then send down tree
PtlTriggeredPut(up tree md h, my id, 1,

up tree ct h, num children);
else

// setup trigger to move data up the tree when
// have enough updates
PtlTriggeredAtomic(up tree md h, parent, 0,

op, dtype,
up tree ct h, num children);

// reset counter
PtlTriggeredCTInc(up tree ct h, −num children,

up tree ct h, num children);
}
// push data back down tree
for (i = 0 ; i < num children ; ++i)

PtlTriggeredPut(user md h, children[num children],
1, user ct h, 1);

// wait for local data buffer to be updated
PtlCTWait(user ct h, 1);

// push local data to local and remote buffer
PtlAtomic(user md h, id, 0, op, dtype);
PtlAtomic(user md h, id ˆ 0x1, op, dtype);
// setup butterfly communication pattern
for (i = 1, level = 0x1 ; level < num nodes ;

level <<= 1, ++i) {
remote = id ˆ level;
// when data arrives in buffer A − 1, copy into both
// local buffer A and current peer’s buffer A
PtlTriggeredAtomic(level md hs[i − 1], id, i, op,

dtype, level ct hs[i − 1], 2);
PtlTriggeredAtomic(level md hs[i − 1], remote, i, op,

dtype, level ct hs[i − 1], 2);
// reset counter for buffer A
PtlTriggeredCTInc(level ct hs[i − 1], −2,

level ct hs[i − 1], 2);
}
// copy the answer into user buffer
PtlTriggeredPut(level md hs[levels − 1], id, 1,

level ct hs[levels − 1], 2);
// reset counter for final buffer
PtlTriggeredCTInc(level ct hs[levels − 1], −2,

level ct hs[levels − 1], 2);
// wait for completion
PtlCTWait(user ct h, 1);

Tree Recursive Doubling

Figure 14.2: Pseudo-code for allreduce algorithms based on Portals 4 triggered operations.

floating-point atomic operations. Triggered operations are enqueued on the NIC, where
they await their triggering threshold. As new messages complete, the counting events are
incremented on the NIC and these increments cause pending triggered operations to issue
into the network. The key to the performance of triggered operations is the ability to
service floating-point operations with low latency and to issue pending triggered operations
at extremely high rate when their triggering threshold is reached. Since this set of capabilities
does not exist on modern network interfaces, we simulate an architecture with an embedded
floating-point unit and a NIC-side unit to manage the queuing and issuing of triggered
operations.

14.3.4 Simulation Parameter Definitions

We used a range of simulation parameters to represent the relevant space for near-term
networks. Specifically, “back-to-back” message latencies were simulated at 1 µs, and 1.5 µs,
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Figure 14.3: High level NIC architecture annotated with key portals simulation timings.
Timings are shown as a percentage of back-to-back latency along with absolute values for
1000 ns latency.

not including router time, to cover the range from current network latencies to the most
aggressive latency targets. The latency is divided between transmit side and receive side
with 50% going to each. Unidirectional message rates of 2.5, 5, and 10 million messages were
simulated representing realistic message rates today[11] to the largest practical message rate
for a single core1. We assume that the message rate is bound by overhead (software time),
and place this overhead on both the transmit and receive sides. The various latencies used
by the simulation model are shown as annotations of the high level NIC architecture in
Figure 14.3.

Setup time for the collective operation — time needed by MPI before communication
starts to setup the algorithm — is set at 200 ns. In addition, two other assumptions about
the system do not appear directly in the simulation, but do affect the choice of internal
simulation parameters. The cache line size is 64 bytes, and the cache miss penalty is 100 ns.
The parameters used in the simulation are summarized in Table 14.1.

In addition to “no noise” scenarios, we evaluate three noise signatures to assess the
impact of offload on noise sensitivity. Previous research into the effects of OS noise suggest
two forms of “long noise at infrequent intervals” [54]. Our work adds a third signature to
assess the finer-grained uncertainty in the system. In the baseline model, the node is perfectly
deterministic with no variability in timing. Modern CPUs are not perfectly deterministic
when the processor interacts with I/O, so we add a very fine-grained noise signature to
explore the potential impact of such variability.

1Assuming modern network interface architecture, where each command requires an sfence() memory
flush operation.
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Table 14.1: Summary of Simulation Parameters

Property Range

Message Latency 1000 ns, 1500 ns
Message Rate 2.5 Mmsgs/s, 5 Mmsgs/s, 10 Mmsgs/s

Overhead 1
MsgRate

NIC Message Rate 62.5 Mmsgs/s
Router Latency 50 ns

Setup Time 200 ns
Cache Line 64 Bytes

Cache Miss Latency 100 ns
Noise Signatures 25 µ, 2.5 ms @ 10Hz

14.4 Results

Results from the simulation of several configurations with no noise plus one configuration
with three noise profiles are shown here. For each configuration, the recursive doubling
algorithm for both the host and triggered operations is compared to four tree configurations:
host-based at the optimal host radix, host-based at the optimal triggered operation radix,
triggered operation-based at the optimal host radix, and triggered operation-based at the
optimal triggered operation radix. While only one configuration is presented for the three
noise profiles, all of the configurations exhibit similar behavior under noise.

14.4.1 Impact of Triggered Operations

Figures 14.4 and 14.5 show two additional interesting impacts of the relationship between
latency and message rate. First, they clearly illustrate that the ratio of message rate to
latency is the driver that determines whether a tree-based algorithm or a recursive doubling
algorithm is best. Second, the rate of posting messages is a much bigger contributor to the
performance of the recursive doubling algorithm over triggered operations than it is on the
host. This is both because the effective latency of the triggered operation is substantially
lower and because the collective over triggered operations has one extra message per step in
the algorithm (the triggered operation to self).

14.4.2 Impact of Offload on Noise Sensitivity

Figure 14.6 compares the various algorithms using a latency of 1000 ns and a message rate
of 10 million messages per second at the optimal radix for each implementation under two
noise profiles. Each profile corresponds to 2.5% interference from noise, but the profiles
represent different combinations of duration and frequency[54]. The most striking result in
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Figure 14.4: Allreduce time for 1000 ns message latency. Simulation results show that
triggered operations provide approximately 30% better allreduce latency over host based
implementations.
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Figure 14.6: Allreduce performance under varying noise signatures. Simulation results
show that offloaded triggered operations are much less sensitive to various types of noise
than comparable host based algorithms.

these graphs is that the recursive doubling algorithm is highly susceptible to interference
from noise. While the shortest noise duration has almost no impact on the tree algorithms,
the recursive doubling algorithm is noticeably slower. As the length of the noise duration
increases to 25 µs, the impact on the recursive doubling algorithm becomes dramatic. These
impacts arise from the fact that the recursive doubling algorithm involves every node in
every step of the algorithm, which makes the time for each step dependent on every node.

Triggered operations improve the noise resistance of the algorithms, but they do not
eliminate the noise impacts. Noise resistance is improved by reducing the involvement of the
host processor in the communication as well as shortening the total time for the collective.
This does not eliminate the noise impact, since the host spends a substantial amount of its
time posting messages to be transmitted. There are two particularly notable points. First,
with a 25 µs noise duration, the triggered operation-based algorithms appear to reach a
plateau in their noise response, while the host-based time continues to rise. Second, with a
noise interval of 2.5 ms, the host-based collectives first encounter noise impact at system sizes
16× smaller than the triggered operations. The minimum and maximum times are graphed
to show that at large scale, every host collective is impacted by noise and some receive three
noise interrupts. In contrast, even at the largest scale, some triggered collectives are not
interrupted by noise and none receive more than two noise interrupts. It is possible that
adding an ability to aggregate triggered operation requests would decrease the time they
spend posting messages sufficiently to further reduce noise sensitivity.
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14.5 Conclusions

This section presents the triggered operations that were added to the Portals 4.0 API. Al-
gorithms using those triggered operations were illustrated and implemented in simulation.
The results highlight how changes in underlying assumptions can impact the choice of al-
gorithm. Specifically, the increased operation rate that can be achieved using offload can
increase the radix of a tree algorithm and make it more competitive with recursive doubling
algorithms. The impact of noise on the collective algorithms is also striking. Recursive dou-
bling is clearly more sensitive to noise, with the noise time dominating the collective time
in many cases. Triggered operations are able to reduce, but not eliminate, the sensitivity of
collective operations to OS interference.
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Chapter 15

Application Scaling

Two application codes, representative of a broad set of application configuration strategies,
provided us with a means for identifying some performance-limiting characteristics that we
expect to be issues as machine and applications scale to exascale.

CTH is implemented using a Bulk Synchronous Parallel (BSP[134]) programming model
for regular, nearest neighbor communication. Charon solves a sparse linear system of equa-
tions, sending many relatively small messages across an unstructured mesh.

As the number of processors increases to the scale of interest in this report, we find that
applications can expect to encounter performance issues related to the computing environ-
ment, system software, and algorithms. Careful profiling of runtime performance will be
needed to identify the source of the issue, in strong combination with knowledge of system
software and application source code.

15.1 Boundary Exchange with Nearest Neighbors

CTH is a multi-material, large deformation, strong shock wave, solid mechanics code de-
veloped at Sandia National Laboratories [66]. CTH has models for multi-phase, elastic
viscoplastic, porous and explosive materials, using second-order accurate numerical methods
to reduce dispersion and dissipation and produce accurate, efficient results. Written using
the Fortran programming language, parallelism is enabled by MPI.

Computation is characterized by regular memory accesses, and is fairly cache-friendly,
with operations focusing on two dimensional planes. Inter-process communication aggregates
internal-boundary data for all variables into user managed message buffers, subsequently sent
to up to six nearest neighbors.

We begin the analysis with a case study of an important simulation at problem scales pre-
viously unavailable. Experiences from this work then informs a deeper dive on performance
issues using a miniapp from the Mantevo suite, and then an additional study considering a
hybrid MPI + OpenMP implementation.
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15.1.1 A Case Study at High Processor Counts

Within the context of a CCC project, titled “Critical Asset Protection Security: Lightweight,
Blast Resistant Structure Development”, we examined the performance of a 32K core CTH
simulation. The simulation helps designers at Sandia understand the response of structures
under severe blast loading conditions so that the robustness of these structures may be
improved. As shown in Figure 15.1, a structure composed of sheet metal is loaded by an

Figure 15.1: CTH: Multilayered thin-walled structure torn apart by an explosive blast

explosive blast. The plot gives the velocities of various components of the structure as they
are torn apart. Accurately resolving these thin parts required a very fine mesh resolution
which can presently be achieved using only very large scale computing platforms.

Figure 15.2(a) plots the “simulation performance” from a 400 hour run on the mesh
(simulation performance is defined as “microseconds of simulation time achieved per hour of
walltime”). The average simulation performance over the 400 hours was 2.5 microseconds
of simulation time achieved per hour of walltime. This problem is configured to use AMR
to refine on specified indicators with defined criteria, so runtime performance is expected to
decrease as the mesh refines to higher levels of resolution and the calculation advances.

We collected basic default CTH messaging information over the course of the 400 hour
simulation to investigate CTH inter-process communication behavior. This is a production
version of CTH and was not instrumented for more in-depth metrics. Figure 15.2(b) plots a
sampling of Maximum Message Length (bytes) and Total Message Length (bytes) on a per
cycle basis. The Maximum Message Length (bytes) per cycle gradually increases over the
course of the simulation from approximately 8 MBytes to approximately 30 MBytes. Total
Message Length (bytes) per cycle, however, remains relatively constant at 715 MBytes.

The simulation performance illustrated that improvements in code performance (algo-
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(a) Runtime: microseconds of simulation time achieved per hour of
walltime

(b) Message traffic

Figure 15.2: CTH performance by time steps (cycles) at 32k processor cores
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rithms, inter-process communication/messaging, etc.) and platform performance (on-node,
interconnects, file system, etc.) will be necessary to achieve better simulation performance,
especially at very large core counts.

15.1.2 A deeper dive

MiniGhost, a mini-app from the Mantevo miniapps project1, provides a tractable means for
studying the scaling characteristics of the CTH interprocess communication requirements.
The communication patterns for two distinct CTH problems and miniGhost are shown in
Figure 15.3. The x-axis represents the destination process, the y-axis represents the source

(a) CTH shaped charge (b) CTH mesoscale (c) miniGhost

Figure 15.3: CTH and miniGhost ommunication patterns.

process. That is, the processor in row i is sending to the processor in row j. Color represents
relative volume of data, with red higher than green.

We examined two common problems modeled by CTH. The meso-scale impact in a
confined space problem is computationally well-balanced across the parallel processes. This
problem involves 11 materials, inducing the boundary exchange of 75 variables. The shaped
charge problem involves four materials, inducing the boundary exchange of 40 variables.
(This problem was used in the acceptance testing for Cielo[41].)

For the shaped charge problem, each time step CTH makes 90 calls to MPI collective func-
tionality (significant, but about seven times fewer than Charon), 19 calls to exchange bound-
ary data (two dimensional “faces”), and three calls to propagate data across faces (in the
x, y, and z directions). Collective communication is typically a reduction (MPI Allreduce)
of a single variables, though some are of fairly large sizes. Each boundary exchange aggre-
gates data from 40 three dimensional arrays, representing 40 variables. Message buffers are
constructed from faces, approximately one third of which are contiguous, one third of which
are stride y, and one third of which are stride x × y.

1http://software.sandia.gov/mantevo
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The space-time runtime profiles2 for the two CTH problems and miniGhost, shown in
Figure 15.4, illustrate the very large message aggregation scheme in the BSP model, which
induces a strong separation of computation and communication. Given this runtime profile,

(a) CTH shaped charge

(b) CTH mesoscale

(c) miniGhost

Figure 15.4: CTH and miniGhost space-time runtime profiles

CTH performance will be most strongly impacted by the exchange of very large messages
between nearest neighbors, preceded by the accumulation of that data into message buffers
and succeeded by the unpacking of the messages into the appropriate arrays.

We compared performance of miniGhost with CTH on a Cray XT5, the most recent
evolutionary ancestor of Cielo. Results are shown in Figure 15.5. Run in weak scaling mode
on up to 1,024 processor cores (this XT5 is a dual-socket AMD Opteron Istanbul hex-core
node based machine with SeaStar interconnect, details in [135]), miniGhost tracks CTH
performance reasonably well. Combined with the above runtime profiles, we are confident
that miniGhost may be used as a proxy for CTH in the sense of the nearest neighbor and
collective communication behavior.

MiniGhost was run, in weak scaling mode, on Cielo, on 2i processor cores, for i =
1, . . . , 18, so the largest run was on 131,072 cores. Performance is shown in Figure 15.6.
Configured to mimic the shaped charge problem, and applying a 7-point and 27-point dif-

2Generated using CrayPAT and visualized using Apprentice2.
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(a) (b) with reductions

Figure 15.5: CTH and miniGhost performance comparison on a Cray XT5.

(a) Linear plot (b) Log plot

(c) Communication requirements

Figure 15.6: miniGhost weak scaling on Cielo

In the top two graphs, the blue line represents performance of the nearest neighbor only
configuration; the red line includes the grid summary (MPI Allreduce case.
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ference stencil on the three dimensional domain, we see very nice scaling behavior up to
2,048 cores. Then at 4,096 cores, the collective communication (MPI Allreduce(sum)) per-
formance begins to degrade, and at very high scales becomes a significant problem. Per-
haps even more troubling, nearest neighbor communication performance begins degrading
at 16,384 cores, developing into a significant problem. Inexplicably, performance improves
for all tests at the highest core count.

The decrease in parallel efficiency for the no-sum case is related to the increasing load
imbalance due to message transfer time differences. Load imbalance grows steadily with in-
creasing core counts. The tools register this as increase in MPI Waitany time in the miniGhost
routine (MG UNPACK) that moves the aggregated incoming data to the individual faces of the
40 three dimensional data arrays. When including a global summation across each data
array immediately following the stencil computation on it, an additional overhead impacting
parallel efficiency can be traced to MPI Allreduce(sum) SYNC time. This is again a direct
consequence of the above mentioned differences in message time between the slowest pair
and the fastest pair in the communication exchanges.

Some additional observations:

• Small improvements in GFLOPs/PE were observed for 8k, 16k, 32k, and 64k proces-
sor core runs with resource manager MOAB allocation of required number nodes as
opposed to running under the 8192 node allocation. This suggests that node topology
has an effect, but the scaling trend seen in the plots is still very valid.

• This is probably the first time runs were conducted by us with CrayPat at this large
scales. CrayPat has bugs that we need to share with Cray, but gave useful data.

• Future work includes analyzing the MPI task to node mapping.

15.1.3 A Hybrid MPI+OpenMP exploration

An Cielo node is configured as two Magny-Cours oct-core processors. Further, each processor
is configured into two NUMA regions (called NUMA nodes), each containing four cores.
Illustrated in Figure 15.7, trends show that this sort of node memory hierarchy will probably
continue as computers increase the number of processor cores. Results of this work are shown
in Figure 15.8. The above work induced us to consider an on-node OpenMP implementation.
Placing one MPI rank on each NUMA node, where OpenMP then spawned four threads,
one per processor, performance exceeded that of the MPI everywhere model. Once the
OpenMP region spanned more than one NUMA node, performance degraded such that it
was worse than the MPI everywhere mode. While this does not definitively prove that a
full CTH MPI+OpenMP implementation will result in a similar performance improvement,
it can help guide further explorations. Additionally, this work illustrates the importance of
understanding the intra-node memory hierarchy, a characteristic that is expected to continue
and increase on future architectures.
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Figure 15.7: The XE6 compute node architecture. Images courtesy of Cray, Inc.
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Figure 15.8: miniGhost configured for MPI and OpenMP.
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15.2 Implicit Finite Element solver

Charon is a semiconductor device simulation computer program3 developed at Sandia Na-
tional Laboratories. It is a transport reaction code used to simulate the performance of
semiconductor devices under irradiation. Using a finite element method (FEM), it solves
a coupled system of nonlinear partial differential equations (PDEs) in three dimensions de-
scribing the drift-diffusion model,

Finite element discretization of these equations in space on an unstructured mesh pro-
duces a sparse, strongly coupled nonlinear system. These equations are solved using a method
based on a Jacobian-free Newton-Krylov approach, resulting in a large sparse linear systems.

The linear systems are solved either using TFQMR [56] (typically when the system is
reasonably well-conditioned) or GMRes [123], without restart, when the system is poorly
conditioned. A multigrid preconditioner [59] significantly improves scaling and performance
[82]. This is based on a Schwarz method, with some form of local incomplete factorization
applied.

The code, written using C++, is configured for parallel computation using the MPI-
everywhere model. The linear systems are solved using functionality from the Trilinos library
[64], with preconditioning from the ML package [60].

Figure 15.9(a) illustrates Charon’s inter-process communication pattern, with the x-axis

(a) Point-to-point commu-
nication pattern.

(b) Runtime trace profiles, for 1 Newton iteration

Figure 15.9: Charon run time profiles, illustrated using 64 processor cores

representing the destination process and the y-axis representing the source process. Color
represents volume of data, with red higher than green. Figure 15.9(b) illustrates Charon’s
runtime profile, with the horizontal axis representing time, the vertical axis representing
individual cores. Black represents point-to-point communication, gray is computation, green
is send, blue is receive, red is synchronization, and pink is reduce.

3http://charleston.sandia.gov/Charon/
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File system issues prevented running Charon at large scale on Cielo. However, issues
identified at scale on the IBM BlueGene/P platform (named Dawn) at Lawrence Livermore
National Laboratory revealed an issue at large scales that is also expected to be an issue on
other platforms, including Cielo.

Figure 15.10 demonstrates the weak scaling of Charon on up to 64k (65,536) cores and

Figure 15.10: Charon on Dawn

two billion degrees of freedom (DOF) on Dawn for a steady-state simulation of a transistor
[81]. The vertical axis plots the linear solution time per Newton step; this calculation
typically takes 7-8 Newton steps to achieve convergence. The green line (labelled “baseline”)
denotes the multigrid method we were typically using when we were running problems in
the 1k-4k core range. However, once we had the opportunity to scale the calculations up to
64k cores, the scaling was not as good as we would have hoped, which led us to evaluate
alternative multigrid approaches. The black line (labelled “improved: split bubble”) denotes
a promising alternative approach. It scaled well up to 16k cores, but then scaled extremely
poorly beyond that, even worse than the baseline approach. We were ready to give up on
this initially promising alternative approach, when further examination determined that the
problem was not with the multigrid algorithm, but with the MPI implementation. The
alternative approach relied on MPI Comm split, but the MPI implementation employed a
bubble sort, which scales as the number of MPI processes squared. After the MPI developers
replaced the bubble sort by quicksort (which scales as O(p ∗ logp) where p is the number
of MPI processes), the linear solution time scaled as the red curve (labelled “improved:
split quick”). At 64k cores, one can see that the choice of bubble sort compared with
quicksort in MPI Comm split increased the total solve time by a factor of three. And with
quicksort, the alternative approach scaled much better than the baseline approach. This
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demonstrates that a poor algorithmic choice in system libraries such as MPI can really
destroy the performance of algorithms in an application code. Typically MPI developers
work independently of application code developers, but this example demonstrations that
more interaction could be beneficial. Other MPI implementations such as Cray MPI were
based on the MPI implementation which used the bubble sort for MPI Comm split. So the
change to quicksort significantly improved the scaling of MPI Comm split on the Cielo Cray
XE6 machine.

15.3 Conclusions and Summary

Executing application codes at significantly increased scale can result in performance degra-
dation. The root cause(s) can be many and varied: hardware, system software, and algo-
rithmic. Collective communication is expected to present a natural scaling issue due to the
known algorithms for supporting this functionality, and we do see this. What is somewhat
unexpected is that the nearest neighbor communication exacerbates this as the number of
processors increases, due to the increasing probability of load imbalances induced by issues
other than the computation.

We are further investigating the use of the on-node OpenMP threading model, which for
some relatively small test cases we find may be useful for improving on-node performance.
At the full application source code complexity the level of effort required to achieve this
relatively modest performance may be prohibitive.
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Chapter 16

Conclusion

The purpose of this report is to prove that the team has completed milestone 4467–Demonstration
of a Legacy Application’s Path to Exascale. As a review, we provide the milestone text below.

Cielo is expected to be the last capability system on which existing ASC
codes can run without significant modifications. This assertion will be tested to
determine where the breaking point is for an existing highly scalable
application. The goal is to stretch the performance boundaries of the
application by applying recent CSSE RD in areas such as resilience, power,
I/O, visualization services, SMARTMAP, lightweight LWKs, virtualization, sim-
ulation, and feedback loops. Dedicated system time reservations and/or CCC
allocations will be used to quantify the impact of system-level changes to
extend the life and performance of the ASC code base. Finally, a sim-
ulation of anticipated exascale-class hardware will be performed using
SST to supplement the calculations.

The bolded text represents the actions to be completed in order to complete the milestone
itself. We will address each phrase individually.

Determine where the breaking point is for an existing highly scalable applica-
tion: Chapter 15 presented the CSSE work that sought to identify the breaking point in two
ASC legacy applications–Charon and CTH. Their mini-app versions were also employed to
complete the task. There is no single breaking point as more than one issue was found with
the two codes. The results were that applications can expect to encounter performance issues
related to the computing environment, system software, and algorithms. Careful profiling of
runtime performance will be needed to identify the source of an issue, in strong combination
with knowledge of system software and application source code.

Stretch the performance boundaries of the application by applying recent
CSSE R&D: Chapters 2 through 14 all presented CSSE R&D work that stretched the
performance boundaries of applications. All areas enumerated in the milestone description
were covered. Resilience milestone documentation is in chapter 10, power in chapter 6, I/O in
chapters 7 and 13, visualization services in chapter 8, SMARTMAP in chapter 4, lightweight
kernels in chapters 2, 3 and 12, virtualization is also in chapter 12, simulation in chapter 14,
and finally, feedback loops in chapter 11.
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Simulation of anticipated exascale-class hardware will be performed using
SST: Chapter 14 describes the SST simulation that was done on anticipated exascale hard-
ware.

Quantify the impact of system-level changes to extend the life and perfor-
mance of the ASC code base: All of the chapters quantified the impact based on metrics
appropriate to the area. It is not possible to provide a single number that represents the net
improvment demonstrated by this milestone work. The measures included reduced runtime,
improved job throughput, improved user productivity, and reduced power consumption. See
Table 16.1 which lists the preformance improvement area(s) addressed by each area. The
unit of measure is different in most cases and cannot be summed. In most cases, the CSSE
work has benefit for future systems. The work provides lessons learned on what worked
well and what worked adequately. As typically happens, all efforts offer opportunities for
enhancement and/or to explore new questions prompted by the work. Lastly, there is data
that was collected strickly for future co-design work and design making as we continue on
our path to exascale.
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Table 16.1: Summary of Contributions by Performance Improvement Area

R&D Contribution Improvement Area

Red Storm Catamount En-
hancements to Fully Utilize
Additional Cores per Node

Improved Job Throughput

Fast where: A Utility to
Reduce Debugging time on
Red Storm

Increased User Productivity

SMARTMAP Optimization
to Reduce Core-to-Core
Communication Overhead

Reduced Runtime

Smart Allocation Algo-
rithms

Reduced Runtime

Enhancements to Red
Storm and Catamount
to Increase Power Effi-
ciency During Application
Execution

Reduced power consump-
tion; Data for Co-Design

Reducing Effective I/O
Costs with Application-
Level Data Services

Reduced Runtime

In situ and In transit Visu-
alization and Analysis

Improved Job Throughput;
Increased User Productiv-
ity; Data for Co-Design

Dynamic Shared Libraries
on Cielo

Increased User Productivity

Process Replication for Re-
liability

Improved Job Throughput;
Data for Co-Design

Enabling Dynamic Re-
source Aware Computing

Reduced Runtime; Data for
Co-Design

A Scalable Virtualization
Environment for Exascale

Increased User Productiv-
ity; Data for Co-Design

Goofy File System for High-
Bandwidth Checkpoints

Reduced Runtime

Exascale Simulation - En-
abling Flexible Collective
Communication Offload
with Triggered Operations

Reduced runtime; Data for
Co-Design

Application Scaling Data for Co-Design
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[96] José E. Moreira, Michael Brutman, José Castaños, Thomas Engelsiepen, Mark Gi-
ampapa, Tom Gooding, Roger Haskin, Todd Inglett, Derek Lieber, Pat McCarthy,
Mike Mundy, Jeff Parker, and Brian Wallenfelt. Designing a highly-scalable operating
system: The blue gene/l story. In Proceedings of the ACM / IEEE Supercomputing
SC’2006 conference, 2006.

[97] Kenneth Moreland, Ron Oldfield, Pat Marion, Sebastien Joudain, Norbert Podhorszki,
Venkatram Vishwanath, Nathan Fabian, Ciprian Docan, Manish Parashar, Mark
Hereld, Michael E. Papka, and Scott Klasky. Examples of in transit visualization.
In Proceedings of the PDAC 2011 : 2nd International Workshop on Petascale Data
Analytics: Challenges and Opportunities, November 2011. Submitted.

[98] Kenneth Moreland, Ron Oldfield, Pat Marion, Sabastien Jourdain, Norbert Pod-
horski, Venkatram Vishwanath, Nathan Fabian, Ciprian Docan, Manish Parashar,
Mark Hereld, Michael E. Papka, and Scott Klasky. Examples of in transit visualiza-
tion. In Proceedings of the 2nd International Workshop on Petascale Data Analytics,
2011.

[99] P. Notz, S. Subia, M. Hopkins, H. Moffat, and D. Noble. Aria 1.5 User Manual.
Technical Report SAND2007-2734, Sandia National Laboratories, 2007.

[100] Ron A. Oldfield. Lightweight storage and overlay networks for fault tolerance. Technical
Report SAND2010-0040, Sandia National Laboratories, Albuquerque, NM, January
2010.

171



[101] Ron A. Oldfield, Sarala Arunagiri, Patricia J. Teller, Seetharami Seelam, Rolf Riesen,
Maria Ruiz Varela, and Philip C. Roth. Modeling the impact of checkpoints on next-
generation systems. In Proceedings of the 24th IEEE Conference on Mass Storage
Systems and Technologies, San Diego, CA, September 2007.

[102] Ron A. Oldfield, Sarala Arunagiri, Patricia J. Teller, Seetharami Seelam, Maria Ruiz
Varela, Rolf Riesen, and Philip C. Roth. Modeling the impact of checkpoints on next-
generation systems. In MSST ’07: Proceedings of the 24th IEEE Conference on Mass
Storage Systems and Technologies, pages 30–46, Washington, DC, USA, 2007. IEEE
Computer Society.

[103] Ron A. Oldfield, Arthur B. Maccabe, Sarala Arunagiri, Todd Kordenbrock, Rolf
Riesen, Lee Ward, and Patrick Widener. Lightweight I/O for scientific applications. In
Proceedings of the IEEE International Conference on Cluster Computing, Barcelona,
Spain, September 2006.

[104] Ron A. Oldfield, Patrick Widener, Arthur B. Maccabe, Lee Ward, and Todd Ko-
rdenbrock. Efficient data-movement for lightweight I/O. In Proceedings of the 2006
International Workshop on High Performance I/O Techniques and Deployment of Very
Large Scale I/O Systems, Barcelona, Spain, September 2006.

[105] Ron A. Oldfield, Andrew Wilson, George Davidson, and Craig Ulmer. Access to
external resources using service-node proxies. In Proceedings of the Cray User Group
Meeting, Atlanta, GA, May 2009.

[106] Ron A. Oldfield, David E. Womble, and Curtis C. Ober. Efficient parallel I/O in seismic
imaging. The International Journal of High Performance Computing Applications,
12(3):333–344, Fall 1998.

[107] A. J. Oliner, R. K. Sahoo, J. E. Moreira, and M. Gupta. Performance implications of
periodic checkpointing on large-scale cluster systems. In Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop
18, page 299.2, 2005.

[108] Open|SpeedShop User’s Guide. Technical Report 2.0.1 Release, Open|SpeedShop,
2011.

[109] Hewlett Packard. HP NonStop computing. http://h20338.www2.hp.com/

NonStopComputing/cache/76385-0-0-0-121.html.

[110] Kevin T. Pedretti, Courtenay Vaughan, Karl Scott Hemmert, and Brian Barrett. Ap-
plication sensitivity to link and injection bandwidth on a Cray XT4 system. In Pro-
ceedings of the 2005 Cray User Group Annual Technical Conference, Helsinki, Finland,
May 2008.

[111] Tom Peterka, Hongfeng Yu, Robert Ross, and Kwan-Liu Ma. Parallel volume render-
ing on the IBM Blue Gene/P. In Proceedings of Eurographics Parallel Graphics and
Visualization Symposium 2008, 2008.

172



[112] Tom Peterka, Hongfeng Yu, Robert Ross, Kwan-Liu Ma, and Rob Latham. End-to-end
study of parallel volume rendering on the IBM Blue Gene/P. In Proceedings of ICPP
’09, pages 566–573, September 2009. DOI=10.1109/ICPP.2009.27.

[113] Fabrizio Petrini, Darren Kerbyson, and Scott Pakin. The Case of the Missing Super-
computer Performance: Achieving Optimal Performance on the 8,192 Processors of
ASCI Q. In Proceedings of SC, 2003.

[114] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. The case of the missing su-
percomputer performance: Identifying and eliminating the performance variability on
the ASCI Q machine. In Proceedings of the 2003 Conference on High Performance
Networking and Computing, November 2003.

[115] Steve J. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J
Comp Phys, 117(1):1–19, 1995.

[116] Rolf Rabenseifner. Optimization of collective reduction operations. In Computational
Science - ICCS 2004, 2004.

[117] Mahesh Rajan, Courtenay T. Vaughan, Doug W. Doerfler, Richard F. Barrett, Paul T.
Lin, Kevin T. Pedretti, and K. Scott Hemmert. Application-drivern analysis of two
generations of capability computing platforms: The transition to multicore processors.
Concurrency and Computation: Practice and Experience, to appear, to appear.

[118] Charles Reiss, Gerald Lofstead, and Ron Oldfield. Implementation and evaluation of
a staging proxy for checkpoint I/O. Technical report, Sandia National Laboratories,
Albuquerque, NM, August 2008.

[119] Rolf Riesen, Ron Brightwell, Patrick Bridges, Trammell Hudson, Arthur Maccabe,
Patrick Widener, and Kurt Ferreira. Designing and implementing lightweight kernels
for capability computing. Concurrency and Computation: Practice and Experience,
21(6):793–817, August 2008.

[120] Rolf Riesen, Ron Brightwell, Kevin Pedretti, Brian Barrett, Keith Underwood,
Arthur B. Maccabe, and Trammell Hudson. The Portals 4.0 message passing interface.
Technical Report SAND2008-2639, Sandia National Laboratories, Albuquerque, New
Mexico 87185 and Livermore, California 94550, April 2008.

[121] Rolf E. Riesen, Kevin T. Pedretti, Ron Brightwell, Brian W. Barrett, Keith D. Un-
derwood, Trammell B. Hudson, and Arthur B. Maccabe. The Portals 4.0 message
passing interface. Technical Report SAND2008-2639, Sandia National Laboratories,
April 2008.

[122] R B Ross, T Peterka, H-W Shen, Y Hong, K-L Ma, H Yu, and K Moreland. Visu-
alization and parallel I/O at extreme scale. Journal of Physics: Conference Series,
125(012099), 2008. DOI=10.1088/1742-6596/125/1/012099.

[123] Yousef Saad and Martin H. Schultz. GMRes: a generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856–869, 1986.

173



[124] Sandia National Laboratory. LAMMPS molecular dynamics simulator. http://

lammps.sandia.gov, Apr. 10 2010.

[125] Sandia National Laboratory. Mantevo project home page. https://software.

sandia.gov/mantevo, Apr. 10 2010.

[126] F. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys, 22(4):299–319, 1990.

[127] Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in high-
performance computing systems. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN2006), June 2006.

[128] Bianca Schroeder and Garth A Gibson. Understanding failures in petascale computers.
Journal of Physics: Conference Series, 78(1):012022, 2007.

[129] M. Schulz, A. Arowojolu, J. Blanchard, J. Brandt., S. Futral, J. Mellor-Crummey,
B. Miller, D. Montoya, M. Rajan, K. Roche, and Zosel. M. Tools and tool support for
the exascale era from the nnsa workshop of exascale computing technologies. LLNL-
TR-472494, 2011.

[130] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed col-
lective I/O in Panda. In Proceedings ofSupercomputing ’95, San Diego, CA, December
1995. IEEE Computer Society Press.

[131] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. SIGCOMM
Comput. Commun. Rev., 31:149–160, August 2001.

[132] K. Uhlemann, C. Engelmann, and S.L. Scott. JOSHUA: Symmetric active/active
replication for highly available hpc job and resource management. In Proceedings of
the 2006 IEEE International Conference on Cluster Computing, Los Alamitos, CA,
USA, 2006. IEEE Computer Society.

[133] Keith D. Underwood, Michael Levenhagen, and Arun Rodrigues. Simulating Red
Storm: Challenges and successes in building a system simulation. In 21st International
Parallel and Distributed Processing Symposium (IPDPS’07), March 2007.

[134] Leslie G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM,
33:103–111, August 1990.

[135] C.T. Vaughan, M. Rajan, R.F. Barrett, D.W. Doerfler, and K.T. Pedretti. Investigat-
ing the Impact of the Cielo Cray XE6 Architecture on Scientific Application Codes.
In Workshop on Large Scale Parallel Processing, at the IEEE International Parallel &
Distributed Processing Symposium (IPDPS) Meeting, 2011. SAND 2010-8925C.

[136] Adam Wagner, Darius Buntinas, Ron Brightwell, and Dhabaleswar K. Panda.
Application-bypass reduction for large-scale clusters. In Proceedings 2003 IEEE Con-
ference on Cluster Computing, December 2003.

174



[137] Peter Walker, David P. Bunde, and Vitus J. Leung. Faster high-quality processor allo-
cation. In Proceedings of the 11th LCI International Conference on High-Performance
Clustered Computing, 2010.

[138] Deborah Weisser, Nick Nystrom, Chad Vizino, Shawn T. Brown, and John Urbanic.
Optimizing job placement on the Cray XT3. In Proceedings of the Cray User Group
Annual Technical Conference, 2006.

[139] Fang Zheng, Hasan Abbasi, Ciprian Docan, Jay Lofstead, Scott Klasky, Qing Liu,
Manish Parashar, Norbert Podhorszki, Karsten Schwan, and Matthew Wolf. PreDatA -
preparatory data analytics on Peta-Scale machines. In Proceedings of the International
Parallel and Distributed Processing Symposium, pages 1–12, April 2010.

[140] Ziming Zheng and Zhiling Lan. Reliability-aware scalability models for high perfor-
mance computing,. In Cluster’09: Proceedings of the IEEE conference on Cluster
Computing, 2009.

175



DISTRIBUTION:

MS ,

,

1 MS 0899 RIM-Reports Management, 9532 (electronic copy)

176



v1.28




