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Abstract

In this report, we present issues associated with performing in situ analysis of simulation data.
Because high-performance compute platforms are able to increase compute intensity much less
expensively than disk bandwidth and because the reliability of components in the platform is
relatively constant while the number of components is growing exponentially, it is becoming
increasingly desirable to reduce the amount of data written to disk. This impacts the fidelity
and usability of visualizations and other analysis produced ex post facto using large results
files. Integrating analysis into each simulation that must run at scale on a case-by-case basis is
not feasible. Instead, our goal is to create a general-purpose framework for in situ analyses that
can be quickly adapted to simulation codes as required and this report outlines the first step of
that process – defining issues that must be addressed by such a framework.
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1 Introduction

In this report, we present issues associated with performing in situ analysis (see Figure 1) of sim-
ulation data. Because high-performance compute platforms are able to increase compute inten-
sity much less expensively than disk bandwidth and because the reliability of components in the
platform is relatively constant while the number of components is growing exponentially, it is be-
coming increasingly desirable to reduce the frequency of writing data to disk. This impacts the
fidelity and usability of visualizations and other analysis produced ex post facto using large results
files. Integrating analysis into each simulation that must run at scale on a case-by-case basis is not
feasible. Instead, our goal is to create a general-purpose framework for in situ analyses that can be
quickly adapted to simulation codes as required and this report outlines the first step of that process
– defining issues that must be addressed by such a framework.

These issues may be broken down into 3 categories:

• hardware architecture,

• interfacing with a simulation, and

• interfacing with users.

The remainder of the report covers each category in its own section. Each section presents general
issues and also addresses particular simulation codes and platforms of interest to Sandia. Simula-
tion codes such as CTH, S3D, and Presto are considered. They are targeted at machines such as
Red Storm, Jaguar, Sequoia, and Roadrunner. Because all of these simulations address temporal
phenomena by advancing state forward in time using a series of time steps, the rest of the report
will discuss analysis as occurring between time steps. However, most of the issues we discuss will
arise whatever the work units of a simulation or task being performed; the fact that some analysis
must be executed on each work unit in order to avoid the cost of writing more to disk does not vary.

In this report, we’ll make a distinction between checkpoint data – used for restarts when a job
fails – and results data – used for analysis of the simulation. Some codes (e.g., S3D1) rely on
checkpoint data for both post-processing and checkpointing while others (e.g., CTH, Presto) write
both checkpoint and results data.

1Actually, S3D writes checkpoint data plus auxiliary results, but the auxiliary results are typically used in combi-
nation with the checkpoint data during post-processing.
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Figure 1. Flow of execution for simulations.
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2 Hardware Architecture

Many high-performance compute (HPC) platforms use lightweight kernels and system libraries
that do not offer traditional Unix services. In particular, sockets and threads are not provided on
catamount [KB05]. Lightweight kernels run on parallel computers place constraints on threads
because they seek to minimize any discrepancies in the timing of message passing interface (MPI)
collective operation calls. One school of thought posits that small discrepancies in timing can
account for much of the degradation from linear speedups encountered as the number of processes
grows into the thousands.

Both the absence of sockets and threads means that – whether it is wise to do so or not2 – direct
user interaction with a running simulation is hard to impossible on many HPC platforms. One way
to circumvent some of these restrictions on catamount deployments is to use I/O or other service
nodes. These nodes typically run a different operating system but have access to the high-speed
interconnect used by MPI jobs running on the HPC nodes. If these nodes can take part in a job
as the rank 0 node of a heterogeneous MPI run, they may open socket connections for desktop
delivery and other user interaction. Otherwise, users must be content to examine files created by
running jobs.

Using HPC nodes for analyses typically performed as post-processing presents other challenges.
Some HPC platforms, such as Blue Gene/L [EGT04] provide a relatively small amount of memory
per processor and no local disk for page swapping so if a simulation requires a large amount of
memory and is unable or unwilling to release some of it in between time steps, other analyses must
run with extremely limited memory. While modern FORTRAN codes allow dynamic array allocation,
it is unrealistic to expect simulation developers to free and reallocate memory after each time step.

Finally, we know of no HPC platform that includes hardware designed for rasterization with each
processor. This means that rendering images for later inspection must be done using software
rasterization. Software rasterization can be many orders of magnitude slower than its hardware
counterpart but if rendering hardware is available, it typically (1) is much smaller in capacity
than the HPC platform it is coupled to and (2) requires data be transferred over a network from
the HPC platform running the simulation. As HPC machines continue to increase in size, we do
not expect hardware rendering to remain separate from the HPC; either hardware for rendering
will become ubiquitous because this hardware also provides an architecture useful for general-
purpose computing or software rendering will be used because it is not economically efficient
to buy special-purpose rendering hardware and additional network resources in quantities large
enough to scale with HPC platforms.

2The wisdom of interacting with running simulations is discussed in the next section.
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3 Interfacing with a Simulation

The interface between a simulation and some set of analysis tasks to perform in between time steps
is fraught with peril. Or at least mild apprehension. Just ask any simulation developer about it and
watch his face crumple. In order to build an application that includes both simulation and analysis,
you must be able to link object files created with different compilers (§3.1), share memory between
the two (§3.2), provide information in at least one direction – from the simulation to the analysis
(§3.3), and determine an appropriate balance between time spent on each (§3.4).

3.1 Linking

Several mentions of FORTRAN in the previous section have indicated one issue integrating simula-
tion and analysis codes: linking. Many simulations are written in FORTRAN while analysis (espe-
cially visualization software) is typically written in C++. There is a standard for linking FORTRAN
and C code in a cross-platform way, but it was not established until 2003 [Don06]. As a result,
many legacy FORTRAN codes (not easily compiled using newer FORTRAN compilers or running on
platforms where a newer compiler is unavailable) rely on vendor-specific conventions for passing
arguments and return values. Inter-language linking is also hampered by the fact that C++ com-
pilers typically mangle the names of functions to force type safety but no mangling scheme is in
the specification – so compilers from different vendors (or even different versions from the same
vendor!) will name functions differently. Interface functions must be placed inside an extern "C"
{ . . . } block in C++.

Beyond argument and return-value conventions, linking FORTRAN and C++ can present other prob-
lems. Frequently, system libraries need not be explicitly specified when linking code compiled
with either C++ or FORTRAN because these libraries are added by the language-specific compiler
stage. However, when linking code that requires both types of system libraries, either the C++ or
the FORTRAN compiler will be invoked and system libraries from whichever one is not invoked will
be missing from the list of libraries sent to the linker.

3.2 Memory

As mentioned in §2, the amount of physical memory available to each process may be small. If
a simulation can not or will not free any memory in between time steps to allow for analysis, it
is up to the analysis to be as accommodating as possible. One way to accomplish this is to use
memory during the analysis that is provided by the simulation. For example, S3D is a FORTRAN
code that has a large amount of space used to store intermediate computations during a time step
that is otherwise unused between time steps. The address of this storage is fixed for the entire
length of the simulation. S3D provides the address of this space to post-processing code and fills
part of it with variable values of interest after each time step. Any analysis may write data into
this scratch space with the caveat that it will be trampled during the next time step calculation.
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A library such as VTK could take advantage of this by overriding memory allocation for large
arrays (such as the vtkDataArrayTemplate subclasses) to use storage in the scratch space for
array values. See Figure 2 for an example. Clever allocation might even allow post-processing
class instances to stay allocated for the entire length of a simulation as long as their persistent
(but hopefully small) state was allocated from a separate pool of non-volatile memory. Note that
care must be taken when dealing with multidimensional arrays that are passed between C and
FORTRAN code as the storage order will be reversed between the two. Where the simulation
provides data interleaved in a different order than the analysis requires (and it cannot be reordered
for performance or code maintenance reasons), either a deep copy will have to be made or some
special subclass of vtkDataArray that uses iterators will have to be implemented3.

Figure 2. The system memory map is shown in blue to the left. To
the right are examples of how FORTRAN variables (orange) and
C++ instance members (green) might reference memory to share
portions that may be volatile between time steps.

For the applications we are interested in, memory consumption is not yet an issue, but that will
only continue to be true if relatively simple analysis is performed. On machines at Oak Ridge,
S3D consumes approximately 30% of the 1 GiB per process that is available. The S3D executable
is 15 MiB in size.

3This may not be possible without rewrites of VTK filters that retrieve pointers to array data and work
with it directly. An example would be image data filters that use voxel, row, and plane strides obtained with
vtkImageData::GetIncrements().
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3.3 Sharing information

Because analysis tasks are performed on data provided by the simulation, the simulation must
be modified in some way to provide at least a minimal API to its data and (hopefully) metadata
such as field names and the role data arrays play in a simulation. There are already some efforts
underway to provide analyses access to simulation data, including the Interoperable Technologies
for Advanced Petascale Simulations (ITAPS) mesh interface [CFD+07] and the Adaptable I/O
System (ADIOS) [LKS+08]. In general, and assuming the simulation will be communicating with
a reusable framework for analysis tasks as opposed to a one-off analysis code with pre-existing
knowledge of the simulation, the simulation should:

Optional Pass control to the analysis tasks at the beginning and end of a job in order to allow for
initialization and finalization code to be run. Any configuration information must either be
provided here or after each and every time step.

Mandatory Provide pointers to information for further analysis, plus information about the size,
type, and stride. If the address will not change over the course of the simulation, this may be
done once at initialization.

Optional With the above, also provide information about the purpose or intent of the informa-
tion. One example would be to indicate that a pointer references mesh connectivity, mesh
coordinates, or field data.

Mandatory Pass control to the analysis task(s) after each time step (or other unit of work) is
complete.

Optional With the above, also provide information about the current simulation time (or time
step).

Optional Provide the analysis task(s) with pointers to data or functions for accepting the results
of analysis.

Common configuration information passed during initialization includes (1) MPI state (such as
a communicator that should be used), (2) any constraints on the amount of memory (or other
system resources) that analysis tasks may consume, and (3) per-job configuration information from
a simulation’s input deck.

3.4 Balancing simulation and analysis workload

Once the simulation and analysis tasks have been integrated into a single executable, you must
decide (or be able to control) the amount of time spent simulating vs. analyzing. This is not a
simple decision to make, nor is it easy to enforce once you decide on a balance between the two.
Let’s call B the ratio of simulation time Ts to the total job time Tj = Ts +Ta +Tio,s +Tio,a where Ta
is the time required for all analysis tasks, Tio,s is the time required by the simulation for I/O such
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as checkpointing, and Tio,a is the time required by the analysis tasks for I/O such as saving results.
In general

B =
Ts

Ts +Ta +Tio,s +Tio,a

if both checkpointing and analysis are performed in addition to simulation. In the case where no
analysis is performed but both checkpoints and results are saved separately (perhaps at different
rates) then Ta will be zero but both Tio,s and Tio,a will be positive.

Some checkpoint I/O strategies attempt to overlap Tio,s and Ts by performing an in-memory copy
and writing to disk from that so that the next time step can proceed while asynchronous I/O is
occurring however it is not clear that this provides a significant advantage for simulations of the
type Sandia runs [Pla93]. This strategy may need to be revisited for the case when analysis might
be performed on an in-memory copy and the results of this analysis written to disk.

3.4.1 Determining a balance

In situations where checkpoints were previously used for post-processing (as opposed to dedicated
results files), one way to approach the decision for B is to try to keep it constant as you transition
from frequent checkpointing required to maintain the fidelity of any post-processing to sparse
checkpointing to allow recovery on job failure. If you had to perform N0 checkpoints before and
N1 checkpoints after, with each checkpoint consuming time Tc, then T ′io,s = N1Tc < N0Tc and

Ta +Tio,a = (N0−N1)Tc.

Of course, this only works if N0 > N1.

Depending on (1) how much more slowly disk bandwidth D grows than theoretical operating speed
in the next years, (2) the size of a checkpoint sc, and (3) whether the number of components in the
system expected to fail per unit of time E f stops increasing4, it may not be possible to checkpoint
a simulation at all. If E f

sc
D ≥ 1, then at least one failure is expected during the interval of time

required by a single checkpoint. Given the trends of the last decade, sc and E f will continue to
increase at a much faster rate than D due to slower growth in bandwidth and the prohibitive cost
of increasing bandwidth by increasing the number of active disks. For instance, Schroeder and
Gibson [SG07] see peak theoretical operating speeds continuing to grow at 100% per year while
disk bandwidth grows at 20% per year.

Consider the case where no checkpointing may be performed. No state is written out at the conclu-
sion of the job and only the results of the analysis are available for inspection. If a failure occurs
during the job, the entire simulation must be recalculated. In this case Tio,s = 0. For no checkpoint-
ing to be a viable strategy, E f N (Ts +Ta +Tio,a) < 1. Note that many simulations already operate in
the regime where E f NTs > 1 – hence the need for checkpoints. These simulations simply cannot
work without checkpointing of some sort and either D must be increased no matter how costly

4Note that the expectation of a particular single component failing per unit time E f ,c is modeled as a constant but
because the total number of components in HPC platforms is increasing rapidly, the effect is that E f is increasing.
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or some sort of robustness to component failure must be written in to the simulation and/or HPC
kernel if it is to scale up. Note that increasing D generally involves adding many more components
to the system and thus increases E f .

Assuming D remains prohibitively expensive but that some technique such as job migration makes
it possible to survive a component failure, then B should be chosen so that the time required to
perform the analysis is less than the time required to checkpoint the state and obtain reasonable
fidelity results by performing the analysis as a post-processing step. In this case, we know that
Tio,s ≥ Ta +Tio,a so that

B =
Ts

Ts +Ta +Tio,a
≥ Ts

Ts +Tio,s

and the time spent checkpointing is simply replaced by the time spent on analysis plus any I/O
required to save the analysis results for later inspection. However, this neglects the cost of job mi-
gration or any other strategy to accommodate component failure. When the cost of job migration is
included, B may decrease as migration may differentially affect compute-intensive tasks (analysis)
compared to I/O intensive tasks (checkpointing).

3.4.2 Achieving a balance

There are many strategies for achieving a given ratio B. Generally, these strategies are aimed at
limiting either Ta or Tio,a:

Ta The fidelity of the analysis might be reduced by performing it less frequently than once per
timestep.

Ta The fidelity of the analysis might be reduced by performing it on a reduced-resolution version
of the simulation data5.

Ta The analysis might only be performed on a subset of the simulation data specified by a person
(either in a fixed manner – such as a spatial region of interest – or in a programmatic manner,
when a certain condition is met in a region of simulation space-time).

Ta The analysis might be offloaded to service nodes with specialized hardware (such as video
cards for rendering). Note that offloading generally only works if a subset of the data is
offloaded since service nodes tend to be much less numerous than HPC nodes and network
bandwidth will not accommodate transferring all the data in a reasonable amount of time.

Tio,a The results of the analysis might be saved at a reduced resolution or subsetted.

Tio,a The end product of the analysis might be put in a different form (e.g., Tio,a could be reduced
by writing a single rendered image of the simulation instead of writing a subset of simulation
data for later rendering).

5This is simple for simulations on regular spatial grids where subsampling can be employed.
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Of course, then the size of the analysis output is proportional to the size of the input, any of the
approaches above that reduce Ta will also reduce Tio,a as a side effect.
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4 User Interface

First, it is important to note that users are stupid, greedy, lazy slobs. System administrators are
thus forced to restrict the information and power available to them. As a consequence, they don’t
know when their job will start running on an HPC platform. They are too feckless to sit in front of
a terminal while it runs. And they are too easily frustrated by latency to tolerate the framerates that
remote visualization can currently provide. This means they are not around to poke at the screen
and choose interesting simulation data to save or choose a type of analysis to perform.

Since we are these very creatures, it is clearly a moral imperative for us to do the minimum required
by the job6. That generally means we will have little (if any) control over the simulation and
analysis while they are running and leaves us with the what-would-I-do-if-I-were-Bob approach
to in situ analysis: scripting (i.e., Bob decides in advance what he is willing to do) and machine
learning (i.e., Bob thinks the machine is more likely to figure out what he would do). In practice,
both scripting and machine learning will always be employed to some degree since almost any
configuration information that would be used to prepare machine learning could be called a script
and almost any script that performs analysis could be considered some sort of machine learning.
However, it is convenient to discuss the two separately below.

4.1 Scripting

Scripting is most useful when the results of the simulation are relatively predictable and we know
what we want to measure, as opposed to needing some way to explore the results to find new
behavior.

One promising technique for generating scripts is to use an interactive tool such as ParaView [MRG+08]
to perform some analysis task on a small dataset similar to the output of a large simulation to be
run. The set of operations created by the user can then be saved to a script and quickly adapted by
the user to work on an in situ analysis. In order for this approach to be effective,

• the output of visualization tools must be easily read by humans,

• the script created must be trivially portable to a batch environment on a different architecture,
and

• must easily scale to the required job size.

One open issue with scripting is how analysis scripts for a particular run should be specified: they
might be called out by filename in the input deck, or they might encompass the input deck. The
former is much simpler to implement and allows existing tools that read and write input decks
in legacy formats to continue working with minimal changes. The latter is clearly more flexible

6Anything else would fail to be lazy, and laziness is an approach that has worked well to date.
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but does involve more work and might altogether prevent GUI tools from parsing input decks for
presentation.

4.2 Machine Learning

Machine learning is most useful when the results of the simulation are unpredictable and we want to
explore the results rather than compute some pre-determined quantity. The term machine learning
can refer to a wide variety of tasks including feature recognition, feature tracking, classification,
and hypothesis testing.

One expected use for machine learning is the automatic selection of subsets. As a simulation is
scaled up to the point where saving the full results for later inspection is not possible, saving a
very small subset might still be feasible. Static methods for subset selection (such as requesting
certain elements or a particular set of grid extents) typically select much more data than is required,
and this becomes increasingly unacceptable as the scale increases. Selecting blocks based on
information such as gradient magnitudes might be more useful but not robust to situations where
multiple scalar fields are interacting. Thus, feature detection (which might be based on parametric
statistical modeling or parameter-free classification) could be an alternative that selects acceptably
small subsets.

4.3 The Last Mile

Even assuming we are able to use machine learning and scripting to good effect, the results of a
simulation analysis must be accessible to users. Because HPC platforms are expensive, there are
few locations with direct (low-latency, high-bandwidth) access to the disks holding results. Even
small subsets of of an exascale simulation may be too large to transmit across the internet for local
inspection. On the other hand, the latency of the internet can leave image delivery techniques
unusable. One solution is the use of lumigraph rendering [BBM+01]. In this approach, images
rendered on the remote server are accumulated, along with their camera parameters, by the client
(instead of being rendered once and then discarded). While waiting for more images to be delivered
from the server in response to camera motion, the set of accumulated images is used to synthesize
an image matching the new camera parameters.
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5 Conclusion

We have presented a set of issues that must be addressed when developing visualization and other
post-simulation analysis tools for HPC platforms over the next several years. They make a strong
case for in situ analysis performed in lock step with a simulation, and given that human input cannot
be required during simulation leaves us with a need for better scripting and feature recognition
and analysis tools. Where humans do enter into the problem, greater physical distances, higher
latencies, and lower bandwidths will be encountered. Running a large-scale simulation on a distant
machine is not unlike directing an exploratory mission to the outer planets of the solar system from
Earth; days or more may elapse before results are available, instructions must be pre-programmed,
and results must be carefully selected before transmission back to humans who must be able to
gain some insight from them.
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