
Oh, $#*@! Exascale! The Effect of Emerging
Architectures on Scientific Discovery

Kenneth Moreland∗
∗Sandia National Laboratories, Albuquerque, NM 87185-1326

Fig. 1: This 1988 rocket-sled test has nothing to do with exascale computing per se, but it makes for an effective metaphor
for the “brick wall” we anticipate our high-performance computing code to collide with.

Abstract—The predictions for exascale computing are dire.
Although we have benefited from a consistent supercomputer
architecture design, even across manufacturers, for well over
a decade, recent trends indicate that future high-performance
computers will have different hardware structure and program-
ming models to which software must adapt. This paper provides
an informal discussion on the ways in which changes in high-
performance computing architecture will profoundly affect the
scalability of our current generation of scientific visualization
and analysis codes and how we must adapt our applications,
workflows, and attitudes to continue our success at exascale
computing.

I. INTRODUCTION

Thanks to recent advances in parallel visualization algorithms
and frameworks, we currently benefit from production large-
scale scientific-visualization applications such as ParaView [4]
and VisIt [18], which are shown to be very scalable up to our
current generation of petascale computers [11]. Although the
development of these tools comes from the successful scaling
of techniques originally pioneered over ten years ago [2], [36],
recent trends indicate that future high-performance computers
will have different hardware structure and programming mod-
els to which software must adapt.

These grave predictions come from multiple work-
shops [12], [29], [33] where experts convened to discuss the
roadmap to building exascale computers (that is, computers
capable of performing 1018 floating point operations per sec-
ond). Table I gives a summary comparison between an existing
petaFLOP computer and the expected system performance of
a future computer capable of an exaFLOP. Note that there is
uncertainty in what type of computer architecture will be used
to achieve an exaFLOP (and it is possible different architec-

tures may be used in different instances). To compensate for
this uncertainty, experts use the term design “swim lanes” that
capture these different approaches. Two likely swim lanes are
captured in Table I.

If all the components of supercomputers were to be scaled
uniformly, then the “Factor Change” column in Table I would
have uniform values. However, the factor of change varies
wildly from very small changes to five orders of magnitude.
The main cause for most of this variability comes from
compromises made to achieve the desired system peak (the
first column of Table I) with the constraints of a limited power
budget (the second column of Table I). DOE has established
a power budget for the exascale machine at 20 MW [33]. The
reason for this budget is very pragmatic. The operating cost of
a supercomputer is roughly $1 million per megawatt per year.
As such, DOE determines that it cannot afford more than $20
million per year to operate a single supercomputer. Thus, the
challenge of exascale computing is getting about three orders
of magnitude improvement in computation rate using not much
more power than we do today.

Using the predictions in Table I, this paper provides an
overview of the changes required to our scalable code and how
we use our applications. In particular, we will note the contrast
between the factor change of related system parameters and
discuss the implications. This paper provides an informal
discussion of these issues. For a more formal discussion,
consult the report from the DOE ASCR 2011 Workshop on
Exascale Data Management, Analysis, and Visualization [1].

II. CONCURRENCY

Let us first compare the amount of memory expected on our
exascale machine with the amount of concurrency programs

TABLE I: Comparison of a petascale supercomputer to an expected exascale supercomputer [1].

Exascale (Prediction)
System Parameter Petascale Swim Lane 1 Swim Lane 2 Factor Change

System Peak 2 Pf/s 1 Ef/s 500
Power 6 MW ≤20 MW 3
System Memory 0.3 PB 32–64 PB 100–200
Total Concurrency 225K 1B×10 1B×100 40,000–400,000
Node Performance 125 GF 1 TF 10 TF 8–80
Node Core Count 12 1,000 10,000 83–830
Network BW 1.5 GB/s 100 GB/s 1000 GB/s 66–660
System Size (nodes) 18700 1,000,000 100,000 50–500
I/O Capacity 15 PB 300–1000 PB 20–67
I/O BW 0.2 TB/s 20–60 TB/s 10–30

will have to exhibit at scale. The system memory of the
machine will grow by a factor of about a hundred, which
is an order of magnitude lower than than the growth of the
computational power.

The reason for this low growth of memory is that memory
tends to be power hungry. Thus, we simply cannot afford to
grow the amount of memory in the system at a rate equal
to the computation. Furthermore, additional memory does not
directly contribute to the computational rate of the system. Of
course, by that logic we could create an even cheaper exascale
machine by not adding or perhaps even removing some system
memory. However, doing so would render the machine useless,
and neither DOE nor any other organization is willing to spend
millions of dollars on a useless machine. So, the amount of
memory to be added to an exascale machine is an engineering
decision to maximize the utility of the system while keeping
everything in budget.

In contrast, the total concurrency required by the system
will grow by up to five orders of magnitude. The reason
for this staggering increase in concurrency is twofold. First,
although Moore’s law still holds for the scaling of the number
of transistors (so far), this scaling is no longer contributing to
the faster operation of processing cores [12]. Instead, increased
computing power is achieved by adding more cores to a
processor. Given this fixed calculation rate per core, we can
predict that we will need roughly a billion cores to sustain a
rate of 1018 floating point operations per second.

Of course, the change in Moore’s law only accounts for
an increase of three orders of magnitude. The second factor
that is increasing total concurrency is the interface between
the processor and the memory holding the data it operates on.
Because the latency to off-chip memory is not expected to
improve substantially, practical applications will likely have
to run 10 to 100 threads per core (depending on the type of
processor) to hide this latency by swapping threads during
memory fetches [33]. Consequently, a program could require
up to 100 billion concurrent threads to maintain an exaFLOP.

A. Scalability of Current Applications

This combination of low memory growth and high concur-
rency growth represents serious scaling issues for our parallel
high-performance computation code. Our current production
scientific-visualization applications use a distributed memory

model with a message passing interface, embodied in the
use of MPI [32], to implement concurrent processing and
communication. Although this simple but effective model has
served well to the petascale era of supercomputing, it fails
to capture important emerging features in high-performance
computing, and it is thus doomed to break down unless major
restructuring efforts are enacted.

To understand why our parallel production applications
will fail to scale, let us consider a simple and artificial but
realistic and representative example of performing scientific
visualization on a regular grid of cells. For a capability run on
the petascale machine represented in Table I we could expect
a grid of 1 trillion cells [11]. On the exascale machine, having
about 100 times more memory, we could expect a grid of 100
trillion cells.

Our current production scientific-visualization applications
use MPI to represent all concurrency, and MPI uses operating
system processes to represent concurrent execution. Thus, to
run on the entirety of a petascale machine, an application
would need about 200 thousand processes whereas an exascale
machine could require up to 100 billion processes. One
problem with an operating system process is that it is a heavy
weight object. Associated with each one is an entire program
state including a copy of the machine instructions to be
executed. A library of general-purpose scientific visualization
algorithms could be expected to run at least 20 MB, and
these 20 MB would have to be replicated on each process.
Replicating this data 200 thousand times on the petascale
machine yields 4 TB, which is reasonable at less than 2%
of the overall memory in the system. However, replicating
this data 100 billion times on the exascale machine yields
2 EB, well over the amount of memory available on the entire
machine (and, incidentally, all of its storage). Thus, we cannot
even start our application on the exascale machine, and that
is before we even load any data.

But let us say we get around that problem, which is an
active area of research [6]. Another problem that we run into
is the breakdown of Gustafson’s law. Scientific visualization
code, as well as most modern high-performance parallel code,
gets around the limits of parallel efficiency proposed by
Amdahl [3] by scaling up the problem size along with the
concurrency [15]. By considering a scaled speedup, we can

allow the problem size to be an increasing function of the
number of processes [27]. However, limiting the growth of
memory limits the scale to which we can grow problems.

Back to our example, assuming that our visualization algo-
rithm uses data parallelism, which most modern visualization
algorithms do [22], our 1 trillion cell petascale problem
will be broken into partitions of 5 million cells for each
thread. Experience shows 5 million cells per thread to be an
efficient amount to drive a visualization pipeline thread [21].
In contrast, the equivalent exascale mesh of 100 trillion cells
would be divided into partitions of 1000 cells, a ridiculously
small and inefficient amount to overcome the overhead of a
parallel program.

But even ignoring this problem, others abound. Consider
the issue of adding ghost cells (or sometimes called halo cells)
to our partitions. Ghost cells are critical to the operation of
our current parallel scientific visualization algorithms; they
limit the communication required in the algorithms to make
the parallel overhead manageable. Assuming our petascale
problem is broken into 5 million cell partitions that are roughly
1713 blocks, each block would require 6 × 1712 or about
175 thousand ghost cells. All total, this is 35 billion ghost
cells, which amounts to about 3.5% of the original data size.
In contrast, our exascale mesh would be broken into 1000
cell partitions of 103 blocks, and each block would require
6 × 102 = 600 ghost cells. All total, this is 60 trillion ghost
cells, which amounts to about 60% of the original data size.
Growing the memory overhead by 60% is simply not feasible
in most serious applications.

B. Exascale Programming Challenges

These problems and many others plague our efforts to achieve
scientific discovery at exascale. Simply put, at some point our
current approach of domain decomposition fails. Eventually
we require too many ghost cells, too much communication,
or simply have too fine of partitions to be efficient. What this
means is that a significant portion of our code needs to be
redesigned and reimplemented.

In addition to revisiting and reengineering our scientific
visualization code, we must also cope with new, emerging,
and conflicting architectures and programming models. The
most blatant challenge is the proliferation of compiler and
libraries used to program these new multithreaded proces-
sors. Currently popular technologies include OpenMP, CUDA,
OpenCL, Intel Threading Building Blocks, and OpenACC
with many others also proposed and available. None of these
solutions is universally available for all hardware and all
development environments, nor are any likely to become a
universal solution. Thus, if a developer wants broad access
to his or her application, the code must be ported across
significantly different programming environments.

Furthermore, different hardware environments have their
own idiosyncrasies that must be taken into account above
any basic compiler porting issues. For example, a typical
multicore CPU processor has a cache structure optimized to
provide independent memory access to each core. This means

that memory must be divided along cache lines among cores
to prevent inefficiencies associated with issues such as false
sharing [28]. In contrast, a GPU accelerator typically has cores
grouped together in blocks in which threads group memory
fetches and share cache [30]. This differing organization of
threads requires equally different organization of scheduling
and memory access within a program.

Eventually, scientific-visualization code must be reengi-
neered using to use an efficient shared-memory execution
model (or more specifically, allow a hybrid shared-distributed
execution [10]). Although we have been successful at im-
plementing efficient, scalable distributed-memory algorithms,
writing algorithms in this threaded shared-memory environ-
ment poses many challenges. It is a common misconception
that threaded shared-memory programming is easier because
it does not require the data partitioning and message passing
typically required for distributed-memory programming. This,
however, is untrue because although distributed-memory pro-
gramming has a larger up-front cost of determining memory
management and communication, this design process inher-
ently leads us to efficiently structured code. Proper partitioning
is as important in shared memory as in distributed memory,
but threaded programming generally does not provide the
programmatic constraints to simplify and control the parti-
tioning. Furthermore, distributed memory models’ isolation
of memory spaces helps prevent read-write collisions and
deadlocks whereas any errant memory access anywhere in a
threaded program can lead to incorrect code that is difficult to
debug.

Research is already underway to advance the state of the art
in scientific visualization to finely threaded algorithms. The
most successful approaches in terms of ease of programming,
portability, and maintainability isolate the parts of code re-
sponsible for parallel scheduling, communication, and critical
sections using techniques like functors [5] and using basic
parallel algorithms as building blocks [9].

C. Emerging Frameworks for Scientific Discovery at Exascale

DOE is currently addressing many of the programming chal-
lenges for exascale through funding of various projects ad-
dressing different aspects of the problem. The first project,
PISTON [19], facilitates the development of visualization
and analysis operators with highly portable performance. As
noted previously, there is a wide variety in the hardware and
development environments for multithreaded environments,
and PISTON provides mechanisms both to compile across
these development environments and to run efficiently on
many different devices. It does this using a data parallelism
model and basic parallel operations much like that proposed
by Blelloch [9].

The second project, Dax [23], simplifies the development of
parallel visualization algorithms. It does so by allowing devel-
opers to build algorithms out of worklets, which are functions
that implement an algorithm’s behavior on an element of a
mesh or a small local neighborhood. Worklets are designed in
serial but can be concurrently scheduled on an unlimited num-

Computation
8 EB/s

Interconnect (10% Staging Nodes)
10 PB/s

Node Memory
400 PB/s

Storage
60 TB/s

O�-Line
Visualization

Co-Scheduled
Visualization

Embedded
Visualization

Fig. 2: Visual depiction of the relative bandwidth of exascale system components [1].

ber of threads without the complications of memory clashes
or other race conditions. Dax also provides many of the basic
topology structures and common operations on them to better
facilitate algorithm development. It also allows algorithms to
adapt to memory structures of external applications without
having to copy to a different data structure [24].

The third project, EAVL [20], updates the traditional data
model for modern simulation codes and investigates how
the updated model can achieve computational and memory
efficiency. EAVL defines more flexible mesh structures, which
more efficiently support many non-traditional types of data
such as for graphs, mixed data types, high-order fields, and
adaptive meshes.

See Sewell et al. [31] for a more in depth description of
these and other exascale-related projects. The good news from
these projects is that they provide good introductory steps to
implementing high-performance visualization at exascale. If
successful, these changes should produce few negative or even
noticeable changes to the abilities of production visualization
software.

III. RECORDING RESULTS

Let us consider a different aspect of the exascale machine.
Consider the change in the bandwidth to and from the
storage system (bottom row of Table I). Although the peak
performance of the computer should rise by three orders of
magnitude, the bandwidth to the storage only increases by
one order of magnitude. The consequence is that a smaller
fraction of results can be recorded when a simulation is run.

This is not a new trend in supercomputing. For the last
20 years one could expect each generation of supercomputer
to have more floating point operations per second and more
concurrency, but comparatively less storage and I/O band-
width. That is not to say that the storage systems have not
been improving; they have just been improving at a much
slower rate than the rest of the system. As an example, two
generations ago ASCI Purple, a 100 teraFLOP machine, had
a peak bandwidth of 140 GB/s to its parallel storage. One
generation ago, JaguarPF, a petaFLOP machine, had a peak
bandwidth of 200 GB/s to its parallel storage, which is not

a dramatic improvement. To exacerbate the issue, few real
applications are capable of achieving anywhere near peak
performance, and all applications must sometimes deal with
file system contention with jobs both on and off the computer.

Thus, as simulations are scaled up on larger machines and
perform calculations at faster rates, there comes a time when
it is impractical to write results at a fast enough rate to do
a proper analysis. When this time comes, we must become
smarter about what gets written out and we must move analysis
closer to the data because there is no point in running a
simulation in the first place if we do not get the proper analysis
out of it.

A. Relative Data Bandwidth

Figure 2 provides a Minard plot depicting the bandwidths of
different I/O components by the proportional width of their
respective blue bars. (See Tufte [34] for a longer description
of Minard plots and their merits.) Not shown on this plot is the
rate at which data can be computed. At 1018 double precision
floating point operations per second, the exascale computer
on aggregate will produce 8 EB per second. On this plot that
would be almost 4 yards across. The aggregate bandwidth of
the local memory — that is, the speed at which data can be
pulled from memory to a local process summed over the entire
machine — is 400 PB/s. This is as fast as we can reasonably
expect to access data on the system, but it is only available in
the same job space as the running simulation. If we were to
offload that data to another job, say a staging job running on a
generous allocation of 10% of the overall nodes, then we could
stream the data to this job at 10 PB/s, which is pretty fast but
only 2.5% the local access rate. Furthermore, one must worry
about the limited memory available on the staging nodes. To
move the data entirely to disk storage, the bandwidth drops
way down to 60 TB/s. This is only 0.015% the rate at which
data can be written to local memory and only 0.00075% the
rate at which data can be computed. So, only an extremely
small fraction of data can ever hope to be captured on disk.

The problem, of course, is that the majority of visualization
and analysis done today is performed “off-line” after the
data has been written to disk. Off-line visualization offers

TABLE II: List of visualization solutions with respect to coupling with a running simulation and their respective properties.

Capability Coupling Footprint Transfer Interactive

Tightly Integrated Low Tight Low None No
Embedded High Tight High Possible memcopy No
Hybrid High Tight Medium Subset High-Speed Transfer Yes
Co-Scheduled High Loose Extra Nodes High-Speed Transfer Yes
Off-Line High Loose None Slow Persistent Storage Cost Yes

many advantages that make it the easiest way to perform
visualization. First, it makes the interface between simulation
and visualization simple. The visualization needs only to
understand the format used when the simulation writes the
data to disk. Second, it makes scheduling and performing
the visualization, particularly when done by a human, much
easier. The visualization job can be scheduled completely
independently of the simulation and at a time most convenient
to the user. Third, the results data are placed in persistent
storage, so any analysis not performed immediately can be
done at a later time if they are later deemed necessary.

None of these advantages mean anything, however, if it is
not possible to get the necessary data to the storage system.
In the case where there is not sufficient bandwidth to store
raw results from the simulation, then the visualization must
be moved “closer” to the visualization (upwards in the Minard
plot of Figure 2). You could co-schedule a visualization job
at the same time as the simulation job and set up a transfer
mechanism over a high speed network. If that still is not
enough bandwidth, you could embed the visualization directly
in the simulation so that the visualization has direct access to
the data while it is still in local memory.

B. Gamut of Coinciding Visualization Solutions

Given the fact that the bandwidth to results data increases
as we move closer to the visualization, it is reasonable to
ask why we would not always choose to embed directly
with the simulation. Although this would certainly optimize
the bandwidth to the data, moving visualization closer to
simulation comes at a cost.

The first cost is that of complexity in development. Creating
a visualization that can be co-scheduled requires a complex
connection between the simulation and visualization and gen-
erally requires a fully featured I/O system to manage it.
The co-scheduled visualization also requires added complexity
in the job scheduler of the parallel computer. Embedding a
visualization in a simulation requires a complete integration of
simulation and visualization codes. In practical terms, it means
that both development teams must work together, which tends
to involve crossing several cultural barriers.

The second cost is that of loss in functionality. Once
we move our visualization away from off-line, the data we
work with becomes transient. A co-scheduled visualization
has access only to data that is locally available, which may
be no more than one snapshot in time. Once the visualization
moves on to another snapshot in time, or if the simulation
passes a snapshot in time before the visualization is ready, that

data is lost forever. An embedded visualization has the further
constraint that whatever operations are to be performed, they
have to already be declared when the simulation is ready to
invoke them.

Consequently, there is no simple single solution that can
address all of our current or projected visualization coupling
needs. Our group has experimented with an entire spectrum
of solutions and found each one to have its own advantages
and disadvantages as summarized in Table II.

On one end of the spectrum we can have a very tightly
integrated visualization component built from the ground up
for a specific need in a simulation. Such a targeted solution
can have a very small footprint as it can make specialized
optimizations for the particular data types and representations
used. Such a solution can be perfect for an analysis team
that wants a specific, targeted, and fairly simple functionality.
However, in our experience a successful integration usually
begets further requests for new features, which would be
readily available in a more general-purpose library. Hence,
the tightly integrated approach often spirals into a large
duplication of efforts between projects, and we try to avoid
it.

A preferred method, from the visualization software devel-
oper’s standpoint, is to embed a general-purpose visualization
library into a simulation [14], [35]. Once integrated, the
simulation now has access to all the visualization capabilities
of the visualization library as well as possible integration with
already familiar visualization tools. The disadvantage of such
an approach is that the footprint of such a library tends to
be high, especially when dynamic selection of visualization
capabilities is supported. Also, it means that any visualization
algorithm used must scale to the same job size as the simula-
tion it is embedded in, which can be challenging [13] although
also useful outside the simulation.

Co-scheduled visualization (also often called in transit
visualization) alleviates some of the problems of embedded
in situ [8], [17], [25]. The coupling between visualization and
simulation can be simplified by connecting them indirectly
through an I/O layer although general-purpose I/O layers are
still in development. Also, the co-scheduled visualization job
can provide an entire suite of visualization tools without di-
rectly adding to the footprint of the simulation although it does
require a sufficiently large separate allocation of nodes on the
same computer or nearby. A disadvantage of the co-scheduled
method is that an overhead is incurred for transferring the
data from simulation job to visualization job, but once that is
done the two processes can execute asynchronously, further

eliminating some of the overhead in the simulation.
In some circumstances we have found a hybrid method

between embedded and co-scheduled visualization is useful. In
this method, a visualization component is directly embedded
in the simulation, but the visualization can also connect and
transfer data to a separate and smaller visualization job [25].
The intention here is to provide a tightly coupled and highly
scalable algorithm directly in the simulation code that can
quickly extract salient information and pass this reduced data
to another process. This second process can then be used to
serve an interactive visualization to a user without blocking
the large simulation.

IV. OTHER EXASCALE CHALLENGES

So far we have considered some of the most urgent problems
facing us for exascale computing and the ones we are di-
rectly working on at Sandia National Laboratories. There are,
however, many more challenges that face us as we approach
exascale, and this section gives a brief overview of some other
important issues.

A. Resilience

Although our production scientific-visualization tools are de-
signed to provide reliable operation, resilience has not been
the primary concern for their development. Should a problem
occur during visualization, such as a hardware failure, that
causes a catastrophic interruption, it is of relatively little
consequence to simply restart the visualization and reload
the data when running in off-line mode. However, things can
change dramatically for exascale. When running in situ at the
exascale, it is vital that the visualization components be robust.
It is not looked upon favorably when visualization brings down
a large simulation job.

At exascale we expect failures to occur more frequently
as well. The exascale computer comprises significantly more
hardware components. More components means a greater
chance that one will fail, which means that the mean time to
failure goes down. When the mean time to failure drops low
enough, even independent visualization jobs need to consider
resiliency.

In addition to more likely catastrophic failures, high-
performance computing may need to be adept at handling soft
errors, which are errors such as small data corruption that are
never detected. Soft errors are more likely at the exascale not
only due to the greater number of components but also because
some error detecting hardware may be removed in an effort
to reduce the power consumed.

Ultimately, the operation of an exascale computer may
be less deterministic than what we currently expect of a
petascale computer. Not only must our code be able to operate
under uncertainty, but it must also be able to characterize the
uncertainty in the data that it produces.

B. Compression and Extraction

As described in Section III, less results data can be captured
from a simulation. Ultimately, this means that we must make

better use of the bandwidth that we do have available by pro-
viding more information with less data. One straightforward
way to do this is to compress the data. Data compression
has a long and fruitful history, but scientific analysis and
visualization provides several new challenges. Scientific data
tends to be of floating point numbers with well defined but
possibly complicated and irregular structure, which is different
from most other uses of compression. Furthermore, we could
benefit from both lossless and lossy compression, but for
lossy compression it is very important to be able to both
constrain and characterize the inaccuracy introduced by lossy
compression.

Another approach to reducing the amount of data returned
is by extracting exactly the information desired. One direct
method of extraction is to perform a feature characterization
and write out properties of features. The challenge of this
approach is that feature characterization is very specific to a
particular scientific domain and analysis. Furthermore, features
are often difficult to specify let alone extract, and often feature
identification is an expensive operation.

C. Provenance

Provenance provides a record of what operations and parame-
ters produced a given set of data. Recent works of provenance
in scientific visualization systems record the set of parameters
used to build a visualization and the history of exploration to
get there [7], [16].

With the added focus of in situ visualization at the exascale,
provenance takes on a new and important role. Because data is
transient, it becomes impossible to revisit old data and verify
old visualization results. To maintain confidence in the data
analysis without the original data, it is important to capture
what methods were used to draw any set of conclusions.

D. Uncertainty Quantification

As the computational power of supercomputers increases,
we expect greater efforts to be made in tracking uncertainty
and quantifying the uncertainty in simulations. However, this
uncertainty quantification is of little use if the analysis can
provide no insight into the envelope of possible values. Vi-
sualization systems need to incorporate uncertainty in their
visual representation of data [26].

V. FINAL REMARKS

The transition from petascale to exascale computing is an
exciting time for all aspects of high-performance computing.
A fundamental shift in the basic computer architecture of
our machines presents a great many challenges for scientific
visualization as well as all other large-scale applications, but
it also presents us with numerous opportunities as well. Exas-
cale promises major advances in computing ability, which, if
properly harnessed, can provide major advances in science.

One interesting upshot of the exascale challenge is that it
brings researchers from different disciplines together. Because
the engineering decisions for the design of every part of the

system from the hardware to the application are so intercon-
nected, the study of exascale has lead to several codesign
centers that share system problems and solutions to mutually
design the entire system. More pervasively, we find that
moving to exascale requires us to transition from a technology-
driven science, where one focuses on the computational tools,
to a discovery-driven science. Discovery-driven science dic-
tates that the primary focus of a scientific endeavor be the end
goal and the scientific discoveries we need to make. With it,
we holistically consider the entire computational experiment
design rather than a series of mutually exclusive steps.

ACKNOWLEDGMENTS

This report is a summary of ongoing work by a great number
collaborators over many institutions. In particular, I would
like to thank the following: Nathan Fabian and Ron Oldfield
from Sandia National Laboratories; Kwan-Liu Ma, Robert
Miller, and Yecong Ye from the University of California
at Davis; Berk Geveci, Utkarsh Ayachit, Robert Maynard,
Brad King, Andrew C. Bauer, Pat Marion, Sebastien Jourdain,
David DeMarle, and David Thompson at Kitware, Inc.; James
Ahrens and Jonathan Woodring at Los Alamos National Lab-
oratory; Scott Klasky and Norbert Podhorszki at Oak Ridge
National Laboratory; Venkatram Vishwanath, Mark Hereld,
and Michael E. Papka at Argonne National Laboratory; Michel
Rasquin and Kenneth E. Jansen at the University of Colorado
at Boulder; Ciprian Docan and Manish Parashar at Rutgers
University.

This work was supported in part by the Director, Office of
Advanced Scientific Computing Research, Office of Science,
of the U.S. Department of Energy under Contract No. 12-
015215, through the Scientific Discovery through Advanced
Computing (SciDAC) Institute of Scalable Data Management,
Analysis and Visualization.

This work was supported in part by the DOE Office of Sci-
ence, Advanced Scientific Computing Research, under award
number 10-014707, program manager Lucy Nowell.

Sandia National Laboratories is a multi-program laboratory
operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration.
SAND 2013-0180C

REFERENCES

[1] S. Ahern, A. Shoshani, K.-L. Ma et al., “Scientific discovery at the
exascale,” Report from the DOE ASCR 2011 Workshop on Exascale
Data Management, Analysis, and Visualization, February 2011.

[2] J. Ahrens, C. Law, W. Schroeder, K. Martin, and M. Papka, “A par-
allel approach for efficiently visualizing extremely large, time-varying
datasets,” Los Alamos National Laboratory, Tech. Rep. #LAUR-00-1620,
2000.

[3] G. M. Amdahl, “Validity of the single processor approach to achiev-
ing large scale computing capabilities,” in Proceedings of the Spring
Joint Computer Conference (AFIPS ’67), April 1967, pp. 483–485,
DOI 10.1145/1465482.1465560.

[4] U. Ayachit et al., The ParaView Guide: A Parallel Visualization Appli-
cation, 4th ed. Kitware Inc., 2012, ISBN 978-1-930934-24-5.

[5] C. G. Baker, M. A. Heroux, H. C. Edwards, and A. B. Williams, “A
light-weight API for portable multicore programming,” in Proceedings
of the 18th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), February 2010, pp. 601 – 606,
DOI 10.1109/PDP.2010.49.

[6] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar,
E. Lusk, R. Thakur, and J. L. Träff, “Mpi on millions of cores,” Parallel
Processing Letters, vol. 21, no. 1, pp. 45–60, March 2011.

[7] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger,
C. T. Silva, and H. T. Vo, “VisTrails: Enabling interactive multiple-view
visualizations,” in Proceedings of IEEE Visualization, October 2005, pp.
135–142.

[8] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J.-G. Piccinali,
“Parallel computational steering for HPC applications using HDF5 files
in distributed shared memory,” IEEE Transactions on Visualization
and Computer Graphics, vol. 18, no. 6, pp. 852–864, June 2012,
DOI 10.1109/TVCG.2012.63.

[9] G. E. Blelloch, Vector Models for Data-Parallel Computing. MIT Press,
1990, ISBN 0-262-02313-X.

[10] L. Chen and I. Fujishiro, “Optimization strategies using hybrid
MPI+OpenMP parallelization for large-scale data visualization on earth
simulator,” in A Practical Programming Model for the Multi-Core Era.
Springer, 2008, vol. 4935, pp. 112–124, DOI 10.1007/978-3-540-69303-
1 10.

[11] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, Prab-
hat, G. H. Weber, and E. W. Bethel, “Extreme scaling of produc-
tion visualization software on diverse architectures,” IEEE Computer
Graphics and Applications, vol. 30, no. 3, pp. 22–31, May/June 2010,
DOI 10.1109/MCG.2010.51.

[12] J. Dongarra, P. Beechman et al., “The international exascale software
project roadmap,” University of Tennessee, Tech. Rep. ut-cs-10-652,
January 2010.

[13] N. Fabian, “In situ fragment detection at scale,” in Proceedings of
the IEEE Symposium on Large-Scale Data Analysis and Visualization,
October 2012, pp. 105–108, DOI 10.1109/LDAV.2012.6378983.

[14] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P. Marion,
B. Geveci, M. Rasquin, and K. E. Jansen, “The ParaView co-
processing library: A scalable, general purpose in situ visualiza-
tion library,” in Proceedings of the IEEE Symposium on Large-
Scale Data Analysis and Visualization, October 2011, pp. 89–96,
DOI 10.1109/LDAV.2011.6092322.

[15] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications
of the ACM, vol. 31, no. 5, pp. 532–533, May 1988,
DOI 10.1145/42411.42415.

[16] T. Jankun-Kelly, K.-L. Ma, and M. Gertz, “A model for the visualiza-
tion exploration process,” in Proceedings of IEEE Visualization 2002,
October 2002, pp. 323–330.

[17] S. Klasky et al., “In situ data processing for extreme scale computing,”
in Proceedings of SciDAC 2011, July 2011.

[18] VisIt User’s Manual, Lawrence Livermore National Laboratory, October
2005, technical Report UCRL-SM-220449.

[19] L.-T. Lo, C. Sewell, and J. Ahrens, “PISTON: A portable cross-platform
framework for data-parallel visualization operators,” Los Alamos Na-
tional Laboratory, Tech. Rep. LA-UR-12-10227, 2012.

[20] J. S. Meredith, R. Sisneros, D. Pugmire, and S. Ahern, “A distributed
data-parallel framework for analysis and visualization algorithm de-
velopment,” in Proceedings of the 5th Annual Workshop on General
Purpose Processing with Graphics Processing Units (GPGPU-5), March
2012, pp. 11–19, DOI 10.1145/2159430.2159432.

[21] K. Moreland, “The ParaView tutorial, version 3.12,” Sandia National
Laboratories, Tech. Rep. SAND 2011-8896P, 2011.

[22] ——, “A survey of visualization pipelines,” IEEE Transactions on
Visualization and Computer Graphics, 2012, (preprint).

[23] K. Moreland, U. Ayachit, B. Geveci, and K.-L. Ma, “Dax toolkit:
A proposed framework for data analysis and visualization at ex-
treme scale,” in Proceedings of the IEEE Symposium on Large-
Scale Data Analysis and Visualization, October 2011, pp. 97–104,
DOI 10.1109/LDAV.2011.6092323.

[24] K. Moreland, B. King, R. Maynard, and K.-L. Ma, “Flexible analysis
software for emerging architectures,” in Petascale Data Analytics:
Challenges and Opportunities (PDAC-12), November 2012.

[25] K. Moreland, R. Oldfield, P. Marion, S. Jourdain, N. Podhorszki,
V. Vishwanath, N. Fabian, C. Docan, M. Parashar, M. Hereld, M. E.
Papka, and S. Klasky, “Examples of in transit visualization,” in Petascale

Data Analytics: Challenges and Opportunities (PDAC-11), November
2011.

[26] K. Potter, P. Rosen, and C. R. Johnson, “From quantification to vi-
sualization: A taxonomy of uncertainty visualization approaches,” in
Uncertainty Quantification in Scientific Computing, ser. IFIP Advances
in Information and Communication Technology Series, vol. 377, 2012,
pp. 226–249.

[27] M. J. Quinn, Parallel Programming in C with MPI and OpenMP.
McGraw-Hill, 2004, ISBN 978-0-07-282256-4.

[28] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-
core Processor Parallelism. O’Reilly, July 2007, ISBN 978-0-596-
51480-8.

[29] M. Richards et al., “Exascale software study: Software challenges in
extreme scale systems,” DARPA Information Processing Techniques
Office (IPTO), Tech. Rep., September 2009.

[30] J. Sanders and E. Kandrot, CUDA by Example. Addison Wesley, 2011,
ISBN 978-0-13-138768-3.

[31] C. Sewell, J. Meredith, K. Moreland, T. Peterka, D. DeMarle, L. ta Lo,
J. Ahrens, R. Maynard, and B. Geveci, “The SDAV software frame-
works for visualization and analysis on next-generation multi-core and
many-core architectures,” in Proceedings of the Ultrascale Visualization
Workshop, November 2012.

[32] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI:
The Complete Reference, 2nd ed. MIT Press, 1998, vol. 1, The MPI
Core, ISBN 0-262-69215-5.

[33] R. Stevens, A. White et al., “Architectures and technology for extreme
scale computing,” ASCR Scientific Grand Challenges Workshop Series,
Tech. Rep., December 2009.

[34] E. R. Tufte, The Visual Display of Quantitative Information, 2nd ed.
Graphics Press, 2001, ISBN 0-9613921-4-2.

[35] B. Whitlock, “Getting data into VisIt,” Lawrence Livermore National
Laboratory, Tech. Rep. LLNL-SM-446033, July 2010.

[36] B. Wylie, C. Pavlakos, V. Lewis, and K. Moreland, “Scalable rendering
on PC clusters,” IEEE Computer Graphics and Applications, vol. 21,
no. 4, pp. 62–70, July/August 2001.

	Introduction
	Concurrency
	Scalability of Current Applications
	Exascale Programming Challenges
	Emerging Frameworks for Scientific Discovery at Exascale

	Recording Results
	Relative Data Bandwidth
	Gamut of Coinciding Visualization Solutions

	Other Exascale Challenges
	Resilience
	Compression and Extraction
	Provenance
	Uncertainty Quantification

	Final Remarks
	References

