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Abstract 
 
The 9/30/2009 ASC Level 2 Scalable Analysis Tools for Sensitivity Analysis and UQ (Milestone 
3160) contains feature recognition capability required by the user community for certain 
verification and validation tasks focused around sensitivity analysis and uncertainty 
quantification (UQ). These feature recognition capabilities include crater detection, 
characterization, and analysis from CTH simulation data; the ability to call fragment and crater 
identification code from within a CTH simulation; and the ability to output fragments in a 
geometric format that includes data values over the fragments. The feature recognition 
capabilities were tested extensively on sample and actual simulations. In addition, a number of 
stretch criteria were met including the ability to visualize CTH tracer particles and the ability to 
visualize output from within an S3D simulation. 
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1. EXECUTIVE SUMMARY 
Sandia has met the requirements of the 9/30/2009 ASC Level 2 Scalable Analysis Tools for Sensitivity 
Analysis and UQ (Milestone 3160). All feature recognition functionality required by the user community is 
present and has been tested extensively. Feature recognition capabilities provided and/or tested by the user 
community for this milestone include crater detection, characterization, and analysis from CTH simulation 
data; the ability to call fragment and crater identification code from within a CTH simulation; and the ability 
to output fragments in a geometric format that includes data values over the fragments. The capabilities were 
tested extensively on sample and actual simulations. In addition, a number of stretch criteria were met 
including the ability to visualize CTH tracer particles and the ability to visualize output from within an S3D 
simulation. Significant progress was made towards characterizing the efficiency of the fragment detection 
code at high numbers of processors and a plan is in place to enable feature recognition and fragment 
characterization operations on simulation data other than CTH. In addition, first steps were taken towards 
integrating the ParaView in-situ module with the Alegra and Sierra simulation codes. All SNL tasks are 
documented in the ASC 2009 Level II Scalable Analysis Tools for Sensitivity Analysis and UQ Success and 
Stretch Criteria (WFS1030938) document. All results are documented in this document (WFS1030939).  

 
2. MOTIVATION 

Modeling and simulation problems of importance to Sandia’s NW program produce 
results that are large, complex, and difficult to investigate.  These data contain 
interrelated quantities, features, and anomalies that are of interest to analysts - things 
that at best are difficult to find.  Post processing tools that promote interactive 
analysis of these results rely on data residing on disk, which is typically only a 
fraction of the data computed during a simulation.  As we advance to compute 
platforms such as Zia and Trinity, there will be an increasing disparity between 
compute power and I/O speeds, so it will be increasingly challenging to rely on a 
post-processing workflow to capture and understand the science behind these 
simulations. 
 
Much better than simply post-processing data is providing methods and libraries for 
analyzing and visualization the data in conjunction with the simulation – spending 
part of a compute cycle performing operations such as fragment identification, crater 
identification, and creating images on the fly.  Other artifacts, such as reduced 
geometry for features of significance, computed quantities that are not present in the 
simulation, and statistics can also be computed during the simulation, for exploration 
later.  The benefits of this approach are clear – a higher fraction of relevant 
information can be written to disk, while optimizing the I/O bandwidth available to a 
simulation.  In addition, data written in conjunction with the simulation can achieve 
higher temporal fidelity than is practical when simply post-processing.  Images, raw 
data, and reduced geometry can be written every time step, if necessary, and because 
analysis algorithms have access to the simulation’s entire runtime dataset, it becomes 
possible to achieve things such as feature tracking, which would be impossible with 
low temporal fidelity data. 
 



8 

Codes such as CTH currently implement useful tools to perform these functions, 
utilizing an effective scripting API that analysts can use to great effect.  However, this 
capability is currently tied to CTH.  A common analysis and visualization capability – 
one that could be accessed from different codes, and provide a common way of 
performing important operations – would be of significant value to the modeling and 
simulation community at Sandia, and elsewhere. 
 
To address this need, Sandia’s Data Analysis and Visualization department is 
working closely with a small set of important customers to implement a general 
capability that provides a flexible analysis capability to a range of problems.  This 
capability should be useable by a broad range of users, be adaptable to current and 
future workflows, and build upon the tools, experience, and expertise of developers 
and analysts who use the current generation of these tools. 
 
Of critical importance to any general capability is the requirement to scale to Zia-
sized processor numbers in a way that does not unnecessarily interfere with the 
computation.  As part of the effort to deliver a general capability, we have pursued 
ASC Level II Milestones in FY08 and FY09 to deliver useful capability for 
application to real NW problems, to establish technical collaborations required to 
achieve integrated analysis capability across a set of codes. 
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3. MILESTONE OBJECTIVE SUCCESS CRITERIA 

The Completion Criteria specified in the Milestone were to provide scalable analysis capabilities to support 
validation of large data with particular emphasis on comparison of simulation and test data. 

The project delivered  feature recognition capabilities supporting specific aspects of large data analysis that 
will be of use to a range of customers. 

From the completion criteria specified above, the following objective success criteria were developed early in 
the calendar year by the milestone team, consisting of Lisa Ice, Dino Pavlakos, David Rogers, Ken Moreland, 
Nathan Fabian, David Karelitz, Jason Wilke, Stephen Attaway, Richard Hills, and Martin Heinstein.  To 
successfully complete the milestone, the following baseline feature recognition capabilities were developed 
and tested against example and actual datasets to the satisfaction of the customers, Stephen Attaway, Jason 
Wilke, and Richard Hills.  

1. Deploy fragment identification and geometric output capabilities demonstrated in ParaView 
for the FY08 Post-Processing V&V Level II ASC Milestone (2843) as a set of library calls to 
be used within a CTH simulation. 

2. Produce geometric surface output of identified fragments in a format that includes data 
values. 

3. Calculate crater statistics on a cone-shaped crater: 
a. Crater volume, defined as the volume of a cavity measured from a user-defined plane to 

the remaining surface 
b. Crater surface area: 

i. Surface area of the depression geometry 
ii. Surface area of the intersection of the user-defined plane and the crater volume 

c. Depth of penetration, measured as the longest distance from the user-defined plane to the 
furthest point, normal to the plane. 

4. Provide scripting capability for inclusion in an input deck associated with CTH that is 
sufficient to execute the feature recognition tasks developed for this milestone. 

 
 

4. MILESTONE OBJECTIVE STRETCH GOALS 
1. Characterize the efficiency of the fragment identification algorithms to prove scaling as the 

number of processors increases, up to at least 1000 
2. Calculate crater statistics on actual data.  

a. Crater volume, defined as the volume of a cavity measured from a user-defined plane to 
the remaining surface 

b. Crater surface area: 
i. Surface area of the depression geometry 

ii. Surface area of the intersection of the user-defined plane and the crater volume 
c. Depth of penetration, measured as the longest distance from the user-defined plane to the 

furthest point, normal to the plane. 
3. Demonstrate prototype fragment identification capability within a Presto simulation 
4. Demonstrate prototype capability for executing VTK components within an S3D simulation. 
5. Demonstrate fragment identification within ParaView on other formats: 

a. Exodus file set 
6. Demonstrate visualization of CTH tracer particles within ParaView. 
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5. INTRODUCTION 

5.1 Overview 
Sensitivity Analysis and UQ require analysis and investigation of ensembles of runs, in which large numbers 
of runs (anywhere from tens to hundreds) must be analyzed as a group. In practice, analysts cannot examine a 
significant fraction of the data, and are reduced to examining simple quantities (such as a maximum or 
minimum of a significant variable) to understand the behavior of the ensemble.  Feature recognition 
capabilities developed in this milestone leveraged the scalable scientific and information visualization 
technologies within ParaView to enable analysts a broader understanding of the ensemble, by providing 
additional results, both quantitative and qualitative, from within a simulation run.  These results will allow the 
future development of abstract views of the ensemble, connected to readily-available drill-down to specific 
data from particular simulation runs. 

5.2  Crater Calculation 
Two common results of CTH simulations are datasets producing either fragments or craters. Feature 
recognition in the form of quantitative analysis of fragments and craters provides a means both for validation, 
comparing the simulation to an actual experiment, as well as examining the sensitivity of a simulation to 
changes in the input conditions. The feature recognition work performed for last year’s Level II milestone 
resulted in the ability to quantify the fragments produced by a CTH simulation. This year’s milestone extends 
that work to quantify craters produced by a CTH simulation. 

Calculating craters statistics is very similar to calculating fragment statistics because a crater is an inverted 
fragment. To extract a crater instead of a fragment, cells are kept if they have volume fractions less than the 
material volume fraction threshold versus fragment extraction which keeps cells if they have volume fractions 
greater than the material volume fraction threshold. These cells are then clipped with an implicit plane or 
sphere to isolate the volume of the crater below the original surface of the material. The volume of the crater 
is integrated in the same manner as the standard fragment connectivity filter; the volume of each cell in the 
fragment is computed and then summed.  For convenience, the maximum depth of the crater along the 
clipping plane's normal is also recorded as the cells are integrated. 

5.3 In-Situ Feature Recognition and Visualization 
Visualization and data analysis is most commonly performed as a post-processing step, after a simulation has 
completed running. In-situ feature recognition, data analysis, and visualization move these steps from post-
processing to become part of the simulation run. Simulations typically only save data for post-processing at a 
very coarse temporal resolution due to size and speed limitations with the result being that data for analysis is 
only available at that coarse temporal resolution with the potential to miss important simulation events. 
Performing the feature recognition, data analysis, and visualization during the simulation allows for a much 
higher temporal fidelity, resulting in smoother animation and a much lower chance of missing important 
events. In addition, if specific extracted features, quantities, or visualizations are the only desired results, then 
these extractions, quantities. or visualizations can be computed during the simulation without saving any data, 
resulting in a dramatic time and space savings. 



11 

 

6. RESULTS 

6.1 Milestone Objective Success Criteria 
 

1.  Deploy fragment identification and geometric output 
capabilities demonstrated in ParaView for the FY08 Post-
Processing V&V Level II ASC Milestone (2843) as a set of 
library calls to be used within a CTH simulation 

 

As part of the in-situ feature extraction and visualization work, the first step was to modify CTH to allow for 
the execution of a static ParaView pipeline in place of spyplot, the native in-situ visualization tool used for 
CTH. This was accomplished by redirecting the CTH-to-spyplot API into equivalent calls in ParaView.  A 
majority of the task on the ParaView side involved taking pointers to in-memory CTH data structures and 
reinterpreting them as ParaView data structures without copying that data.  Finally the static pipeline was 
replaced with the execution of a python script using the batch python scripting capability in ParaView.  

Figure 1 below show four time steps out of eighty-four from an in-situ feature recognition and visualization 
task using a ParaView pipeline. The simulation shows an example dataset of a ball impacting a brick, with the 
ball and brick materials each a different color. The temporal resolution of these images is over ten times 
greater than what is typically saved for post-processing. The full image set is available through Web 
FileShare (WFS1030872). 

This capability is deployed in a beta form in the CTH source-code repository. A plan is in development to 
integrate the capability with the CTH software deployment process so it is easily available to all CTH users at 
Sandia.  
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Figure 1: Four images from an in-situ feature recognition and visualization task 

 

 
2. Produce geometric surface output of identified fragments in a 

format that includes data values 
 

In order to save extracted features such asfragment data, the capability to export the outer surface of identified 
fragments as an exodus file, complete with data values, was added to ParaView. The capability is available 
both during in-situ processing as well as from within typical ParaView post-processing. Figure 2 shows the 
original CTH simulation on the right and the Exodus output on the left. 
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Figure 2: Example: exodus output of an extracted feature. The Exodus output is on the left. The 
original simulation is on the right 

 
3. Calculate crater statistics on a cone-shaped crater: 

a. Crater volume, defined as the volume of a cavity 
measured from a user-defined plane to the remaining 
surface 

b. Crater surface area: 
i. Surface area of the depression geometry 
ii. Surface area of the intersection of the user-

defined plane and the crater volume 
c. Depth of penetration, measured as the longest distance 

from the user-defined plane to the furthest point, normal 
to the plane. 

 

A key requirement for sensitivity analysis and uncertainty quantification for CTH simulations is the ability to 
accurately quantify craters produced during a simulation. Features identified and quantified include crater 
volume, surface area, and depth. Two meshes were generated for this example; a low-resolution 22 million 
element CTH AMR mesh, and a high-resolution 118 million element CTH AMR mesh. Both meshes 
contained three canonical shapes, a cone, a hemisphere, and a cylinder. Crater measurements were generated 
from both the low resolution and high resolution meshes and compared to the theoretical results for each 
canonical shape. 
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Figure 3: Low-resolution cone shaped crater example. The original dataset is on the left. The crater is 
on the right. 
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Figure 4: High-resolution cone shaped crater example. The original dataset showing the crater is on 
the right. The crater volume is on the left. 

 
The following statistics were calculated for the low-resolution and high-resolution cone-shaped craters and 
compared to the actual values.  

Cone Low-Resolution High-Resolution Theoretical Result 
Volume 0.184 0.189 0.191 
Surface Area of Top 0.478 0.611 0.636 

 
Surface Area of Crater 1.522 1.46 1.423 
Maximum Depth 0.852 0.89 0.900 
Radius 0.440 0.445 0.45 
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Figure 5: Low-resolution cylinder shaped crater example. The original dataset is on the right. The 
crater is on the left. 
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Figure 6: High-resolution cylinder shaped crater example. The original dataset is on the right. The 
crater is on the left. 

 

The following statistics were calculated for the low-resolution and high-resolution cylinder-shaped craters and 
compared to the actual values.  

Cylinder Low-Resolution 
Result 

High-Resolution Theoretical 
Result Volume 0.766 0.779 0.785 

Surface Area of Top 0.768 0.782 0.785 

 
Surface Area of Crater 3.870 3.94 3.927 
Maximum Depth 1.000 1.000 1.0 
Radius 0.497 0.500 0.5 

 

 

Figure 7: Low-resolution hemisphere shaped crater example. The original dataset is on the right. The 
crater is on the left. 
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Figure 8: High-resolution hemisphere shaped crater example. The original dataset is on the right. The 
crater is on the left. 

The following statistics were calculated for the low-resolution and high-resolution hemisphere-shaped craters 
and compared to the actual values.  

Hemisphere Low-Resolution 
Result 

High-Resolution Theoretical 
Volume 0.254 0.189 0.262 
Surface Area of Top 0.772 0.779 

 

0.785 
Surface Area of Crater 1.558 1.593 1.571 
Maximum Depth 0.501 0.499 0.5 
Radius 0.495 0.501 0.5 

 

It’s important to note that for all 3 crater shapes, as the mesh resolution increases, the simulation results 
converge to the theoretical results. 

In addition, the statistics of the cone were studied as a function of the material volume fraction threshold. As 
the threshold is decreased, the craters grow larger, and as it’s increased, the craters grow smaller. This is due 
to the fact that the craters are computed by inverting the original geometry, so an increase in the material 
volume fraction makes the original geometry larger and the crater smaller. 
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Adjusting the material volume fraction threshold can reduce the errors due to mesh under-resolution for this 
ideal example. We have not looked into whether adjusting the threshold helps in simulations of non-canonical 
shapes. 

 

Figure 9: Low resolution cone at a Material Volume Fraction of 0.25 

 

Figure 10: Low resolution cone at a Material Volume Fraction of 0.75 
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Low-Res Cone MVF 0.25 MVF 0.5 MVF 0.75 Theoretical Result 
Volume 0.189 0.184 0.176 0.191 
Surface Area of Top 0.651 0.585 0.448 0.636 

 
Surface Area of Crater 1.524 1.415 1.409 

 

1.423 
Maximum Depth 0.893 0.852 0.835 0.900 
Radius 0.45 0.440 0.42 0.45 
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4. Provide scripting capability for inclusion in an input deck 
associated with CTH that is sufficient to execute the feature 
recognition tasks developed for this milestone 

 
The first success criterion in the milestone was simply to call a static ParaView feature recognition pipeline 
from within a CTH simulation. This success criterion builds on that by allowing the user to specify a 
ParaView python script to execute within the CTH input deck. The script shown in Figure 11 shows the 
ParaView script used to generate the images shown in Figure 1. 

# make the ParaView source that interfaces with the CTH simulation 
cthsource = CTHSource () 
 
# Create a view of the ball impacting the brick 
ballblock = ExtractCTHFragments (cthsource) 
ballblock.MaterialFractionThreshold = 0.5 
ballblock.SelectMaterialFractionArrays = ["VOLM1", "VOLM2"] 
ballblock.SelectMassArrays = ["M1", "M2"] 
 
# Reflect the simulation result about the simulation axis of symmetry 
normBall = GenerateSurfaceNormals (ballblock) 
normBall.FeatureAngle = 90 
normBall.Splitting = 1 
normBall.PieceInvariant = 1 
reflBall = Reflect (normBall) 
reflBall.Center = 0.0 
reflBall.Plane = "Y" 
 
# Function to make the appropriate colorbar 
def MakeGoldRedLT(): 
  lt = servermanager.rendering.PVLookupTable () 
  servermanager.Register(lt) 
  lt.RGBPoints = [1, 0.56, 0.23, 0.23, 0, 0.9568, 0.6928, 0.3294] 
  lt.ColorSpace = "RGB" 
  return lt 
 
# Function to initialize the display 
def SetupDisplay(proxy, lt): 
  SetDisplayProperties (proxy, SuppressLOD = 1) 
  SetDisplayProperties (proxy, StaticMode = 1) 
  SetDisplayProperties (proxy, LookupTable = lt) 
  SetDisplayProperties (proxy, Specular = 0.1) 
  SetDisplayProperties (proxy, SpecularPower = 40) 
  SetDisplayProperties (proxy, SpecularColor = [1.0, 1.0, 1.0]) 
 
# Setup the initial display 
print "Updating display parameters" 
SetupDisplay (reflBall, MakeGoldRedLT()) 
Show (reflBall) 
print "done Updating display parameters" 
 
# Eventually used for camera view rotation 
angle = 3.0 
 
# update is called after every CTH simulation iteration 
def update(process,cycle,ptime,pdt): 
  global angle 
 
  # don't care about the first 1200 cycles of the simulation 
  if (cycle < 1200): 
    return 
 
  # only perform the visualization every 25th cycle 
  if ((cycle % 25) == 0): 
     
    # Setup the coloring for the geometry  
    print "Setting refl properties" 
    SetDisplayProperties (reflBall, ColorAttributeType = "POINT_DATA") 
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    SetDisplayProperties (reflBall, ColorArrayName = "Material") 
    print "done Setting refl properties" 
 
    # Set the simulation time for the visualization 
    print "Updating visual pipeline" 
    SetViewProperties (ViewTime = ptime) 
    # set view properties 
    SetViewProperties (Background = [0.2, 0.2, 0.4]) 
    SetViewProperties (LightIntensity = 0) 
    SetViewProperties (MaintainLuminance = 0) 
    SetViewProperties (UseLight = 1) 
 
    #Set the camera position and where it's looking 
    c = GetActiveCamera () 
    c.SetPosition ([10, -4, 4]) 
    c.SetFocalPoint ([1.5, 0, -1.0]) 
    c.SetViewUp([-0.423999152002544,0.317999364001908,0.847998304005088]) 
    c.Azimuth (angle) 
     
    # save the image 
    WriteImage ("image_%(p)03d_%(c)06d.png" % {'p':process,'c':cycle}) 
 
    # since every process saves an image, remove the ones we don't need 
    # This is just a workaround and should  
    # eventually be fixed in ParaView 
    if (process != 0): 
      os.remove ("image_%(p)03d_%(c)06d.png" % {'p':process,'c':cycle}) 

 

Figure 11: Example script for in-situ visualization 
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6.2 Milestone Objective Stretch Goals 
 

1. Characterize the efficiency of the fragment identification 
algorithms to prove scaling as the number of processors 
increases, up to at least 1000 

 

 

Figure 12: Scaling performance of the ParaView fragment connectivity filter as a function of the 
number of processes 

Work was done to characterize the efficiency of the CTH/ParaView interface as well as the efficiency of the 
feature recognition algorithm used for  fragment identification and characterization. A simulation was run at 
various scales from 128 to 512 processors using the Thunderbird simulation cluster. The results show that the 
fragment identification and characterization code does not scale correctly as the number of processors 
increases. As the number of processors increases, the fragment time should remain fixed as a percentage of 
simulation time, not increase linearly with the number of processors.  

This poor result was not what was expected.  The team has prioritized the ongoing work of diagnosing and 
correcting the scaling issues.  The team is consulting experts in scaling algorithms in order to evaluate the 
scaling of the fragment connectivity filter algorithm, itself. 

We did not successfully run a simulation at 1024 processors in order to test ParaView component scaling on 
that many processors; however the issues identified with lower numbers of processors must be corrected prior 
to continuing the scaling study. 
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2. Calculate crater statistics on actual data.  
a. Crater volume, defined as the volume of a cavity 

measured from a user-defined plane to the remaining 
surface 

b. Crater surface area: 
i. Surface area of the depression geometry 
ii. Surface area of the intersection of the user-

defined plane and the crater volume 
c. Depth of penetration, measured from the longest 

distance from the user-defined plane to the furthest 
point, normal to the plane. 

 

A simple CTH AMR simulation was run in which a sphere impacted a cube. Statistics were calculated on the 
roughly hemispherical crater and are shown below. 

 

Figure 13: Example impact crater. The left side shows the crater. The right side shows the original 
sphere impacting the block 
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Figure 14: Chart plotting Crater Volume and Depth versus Time step 

The table below shows the crater statistics at the time step shown in Figure 13. Plots of volume and depth vs. 
time are shown in Figure 13.  

Volume 0.064 
Surface Area of Top 0.389 
Surface Area of Crater 0.677 
Maximum Depth 0.226 

 

3. Demonstrate prototype fragment identification capability within 
a Presto simulation 

 
The team focused early this year on integrating the ParaView in-situ feature recognition and visualization 
library with Alegra, a high energy density physics simulation code.  The team has recently begun to extend 
this work  to integration with Presto, one of the simulation codes within the Sierra framework.  

An alpha version of the Alegra integration is complete with some preliminary images available. While full 
scripting is not yet included, the Alegra/ParaView binding has been successfully demonstrated. A plan is in 
place for the Sierra integration path forward, but no results are available yet. 
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Figure 15: Time series visualization of the magnitude of the magnetic field in a test 
magnetohydrodynamic solver problem in Alegra, the "Perry-White Rotor Problem" 

 
4. Demonstrate prototype capability for executing VTK 

components within an S3D simulation 
 

S3D is a parallel application for simulating turbulent, reacting flows developed by scientists at the 
Combustion Research Facility to study fundamental turbulence-chemistry interactions.  The code has been 
run on systems with upwards of 10,000 processors and the data it generates is large and high-dimensional.   A 
primary goal of the scientists is to identify, classify and track features in their data in an effort to understand 
the complex physical phenomena contributing to events such as ignition and extinction in reacting flows. 
Towards this end, we are developing software that performs principal component analysis and K-Means 
clustering to reduce the dimensionality of the data and identify features of interest. 

This case study was a simulation involving 21 chemical species reacting in a lifted jet flame. In this 
configuration a cold (550 K), quickly moving, planar ethylene fuel jet is surrounded by a co-flow of hot (1550 
K) oxidizer. S3D solves the differential equations governing the evolution of momentum and composition 
through a fully compressible solution to the Navier-Stokes equations. The solution is advanced on a finite 
difference grid using an eighth order approximation to the spatial derivatives. In the current case, evolution 
equations are also advanced for each of 21 species involved in a reduced chemical mechanism for ethylene-
air combustion. Due to the compressible formulation, S3D is extremely scalable as communication is only 
required with neighboring processes. The lifted jet flame simulation was carried out on 30,000 processes on 
the Cray XT4 at Oak Ridge National Labs with near-ideal weak scaling for a grid with 2025x1600x400 
points in the x, y, and z direction. 

The conditions following mixing between the fuel and oxidizer are suitable for autoignition within the 
domain residence time, and autoignition is a significant factor in the stabilization of the flame. The solution is 
statistically stationary in time; although fluctuations about the mean quantities are unsteady, the time-
averaged solution is steady. There is a spatial development in the solution from separate, non-burning, fuel 
and oxidizer at the domain inlet (bottom) to a steady flame near the outlet at the top of the domain. As this 
development occurs, different underlying physics control the composition. Before any reaction has taken 
place, the composition will be completely determined by the amount of fuel and oxidizer present — any of 
the three species (O2, N2, C2H4) is sufficient to determine the complete composition. After a steady flame has 
developed, it is known that the composition is largely determined by amount of the mixture which originated 
in the fuel stream – an indication of this can be obtained by a linear combination of all of the species present 
which contain the elements found in the inlet streams. During the transition, the species that most naturally 
describe the thermodynamic state may have significance indicating the dominant physical processes: it is this 
significance that we hope to explore using the principal component analysis (PCA) and K-Means clustering 
methodologies described below. 
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PCA 

PCA is a technique for identifying how several variables observed together are correlated across a set of 
observations. Recall that correlation is defined by the covariance matrix. Say we have variables 

 

which are observed r times and have mean  

 

Then their covariance matrix is 

 

Note that cov(X) is symmetric, positive definite, and has (n+2)n/2 unique entries. While examining the 
covariance matrix of a set of observations directly is possible, it can be very difficult to identify patterns of 
correlations between sets of more than 3 or 4 variables directly.  PCA simplifies this work by presenting a set 
of up to n vectors which indicate correlated sets of variables.  

The PCA technique computes the eigenvectors and eigenvalues of cov(X) and uses these eigenvectors to 
project observations into a space with reduced dimensionality m < n.  Our implementation uses the singular 
value decomposition (SVD) of cov(X)=U Σ Vt to compute the eigenvectors and eigenvalues.  Because cov(X) 
is symmetric, U = V and each column of U is an eigenvector.  Recall that Σ is a diagonal matrix.  In our case, 
the square root of each diagonal entry of Σ is the eigenvalue associated with the eigenvector in the 
corresponding column of U. 

Obtaining the eigenvalues v = diag(Σ) and eigenvectors  using the SVD is preferred over other methods 
because it behaves well in the face of degeneracy; if one variable is constant or if some combination of 
variables have precisely zero covariance, the SVD still produces valid results.  Each eigenvector identifies a 
correlation among several variables and the ratio of the associated eigenvalue to other eigenvalues indicates 
the strength of the correlation relative to the other correlations present in . Most numerical implementations 
of SVD, including the one we use, return v as a list of eigenvalues sorted in descending order.  This is very 
useful as high values of v indicate strong correlations — meaning that the first entries in v and  are the ones 
we should consider. Once v and  are obtained, PCA uses  to project the original observations X into a 
smaller space, Y.  This is accomplished by letting m be the first m columns of  and taking Y = X m. 
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Figure 16: These two images show the magnitude of the first two eigenvalues of each 8x8x8 block in the 
S3D simulation. 

The result of this analysis is a second grid that is 8×8×8=512 times more coarse than the original. Each cell in 
the second grid has a set of eigenvalues and eigenvectors associated with it and represents one 8×8×8 block of 
the original mesh. Figure 16 shows two renderings of a z-slice in the second grid; the first shows each cell 
colored by the first eigenvalue and the next by the second eigenvalue. Because the simulation is periodic in 
the z direction, these renderings are representative of the entire domain. Figure 17 shows the same grid 
colored by the component of the second eigenvector related to carbon monoxide concentration. While values 
are provided over the entire mesh, they are only significant where the associated eigenvalue is significantly 
above zero. Finally, Figure 18 is a logarithmic plot of the maximum of the ith eigenvalue over the entire 
second grid versus i. The graph consists of 2 sections, each of which is nearly linear, that meet at i = 4. 
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Figure 17: This image shows one component of the second eigenvector, corresponding to carbon 
monoxide concentration 

These results are interesting because PCA appears to have captured features related to autoignition in the 
second eigenvector (Figure 16, right). We suspect, due to the shape of the graph in Figure 18, that the first 4 
eigenvectors contain information relevant to ignition and extinction events. 
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Figure 18: This plot shows for each of the 21 eigenvector/eigenvalue pairs, the log of the largest 
eigenvalue over the entire image. 

The simulation from which these results were obtained was run on over 10,000 nodes of the Jaguar platform 
at Oak Ridge. Because no large simulations have been run since the development of the in situ framework, 
data for these figures was obtained by replaying checkpoint data in S3D on 1,500 nodes of Jaguar as if it were 
being simulated and then using the in situ framework described in this report to compute covariances,   
compute eigenvectors, and then save the results for later inspection. The eigenvalues and eigenvectors are 
only a small fraction of the full simulation state. 

K-Means Clustering 
 
The term cluster analysis is used to describe a series of unsupervised learning algorithms that partition objects 
into groups according to a measure of association. K-Means clustering [Mac67] is one such algorithm that 
classifies objects into k clusters, with k > 0, by minimizing some distance metric between the data and the 
corresponding cluster centers. 

The general algorithm consists of the following steps: 
1. Choose the number of clusters, k. 
2. Determine k initial cluster centers. 
3. Assign each data observation to the nearest cluster center. 
4. Re-compute the new cluster centers. 
5. Repeat the steps 3 and 4 until a prescribed convergence criterion is met (either the maximum number of 
iterations is reached or the number of cluster assignment changes reaches some minimum value). 

A parallel version of the K-Means clustering algorithm was implemented within VTK and is currently 
deployed within the in situ analysis framework for S3D.  After performing PCA, each eigenvalue/eigenvector 
pair is a potential statistical observation for the K-Means clustering algorithm (an option is provided to filter 
out pairs whose eigenvalue falls below a particular threshold).  Initial studies show that cluster analysis will 
facilitate further dimensionality reduction of S3D data in a meaningful way, however there are two main 
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disadvantages of the naïve implementation:  the value of k must be pre-determined and the results are heavily 
reliant on the initial cluster centers used. 

Relatively recent work [ZHD+01, DH] has proven that the continuous solutions of the discrete K-Means 
clustering membership indicators are the data projections on the principal eigenvectors of the associated 
covariance matrix. This is equivalent to showing that the cluster centroids are given by spectral expansion of 
the data covariance matrix truncated at k-1 terms. An effort is under way to implement a spectral version of 
the K-Means algorithm, and methods are being investigated in which topological analysis in conjunction with 
parallel coordinates may provide additional insight into the appropriate number of clusters as well as their 
initial starting points. Figure 19 shows parallel coordinate plots of the observations for a subset of the 
eigenvalue/eigenvector pairs of S3D data, with sample clusters highlighted in red. 

 

Figure 19: Parallel coordinate plots of observations may provide insight into initial cluster center 
values in addition to the ideal number of clusters for a set of observations.  These images are plots of 
parallel coordinates for eigenvalue/eigenvectors pair observations generated from a subset of the S3D 
data.  Potential clusters are drawn in red. 
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5. Demonstrate fragment identification within ParaView on other 

formats: 
a. Exodus file set 
 

The current version of the fragment identification filter only works on Adaptive Mesh Resolution (AMR) 
CTH data. This stretch goal seeks to extend this feature recognition code to work on Exodus files in addition 
to AMR CTH files. Figure 20 shows the result of running a version of the fragment detection filter on an 
Exodus dataset. The visualization shows a simulation of a pipe bursting and is colored by fragment ID. While 
this capability is currently only available in serial executions of ParaView, work is ongoing to support parallel 
execution. 

 

Figure 20: This image shows the fragment filter run on an Exodus simulation of a pipe bursting. 
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6. Demonstrate visualization of CTH tracer particles within 

ParaView  
 

CTH provides the ability to attach tracer particles to points on the model. As the simulation advances, the 
tracers follow the point they were initially attached to. This stretch goal allows ParaView to visualize the 
current position of tracers as well as see the path they took. Figure 21 shows a visualization of tracer particles 
from the ball brick simulation. A movie showing the visualization over time is available through Web 
Fileshare (WFS1030872).  

Currently, tracer particles can be extracted from spcth geometry files.  The team plans further extend this 
capability, including developing the ability to extract tracer particles from the higher temporal fidelity history 
("hisplot") files. 

 

Figure 21: Visualization of CTH tracer particles. The spheres show where the tracers are at the 
current time step. The lines show the path they traveled. 
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7.  CONCLUSION 
A number of new feature recognition capabilities were developed by this project to meet all of 
the minimum success criteria and several of the stretch goals of Milestone 3160.  These new 
capabilities will aid verification and validation performed for sensitivity analysis and uncertainty 
quantification (UQ). These feature recognition capabilities include: 

• crater detection, characterization, and analysis from CTH simulation data;  
• the ability to call feature recognition and visualization code contained with ParaView and 

its underlying toolkit, VTK, from within a CTH simulation;  
• fragment identification in unstructured mesh data in the Exodus format, albeit performed 

serially at this point; 
• output of extracted features in a geometric format that includes data values; and 
• utilization of VTK components to identify and visualize features within S3D. 

In addition, for this milestone, the project developed visualization capability for CTH tracers and 
performed scalability analysis on the fragment identification algorithm.  
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