
SANDIA REPORT
SAND2013-1122
Unlimited Release
Printed November 2013

Data Co-Processing for Extreme
Scale Analysis Level II ASC Milestone
(4745)

David Rogers, Kenneth Moreland, Ron Oldfield, and Nathan Fabian

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2013-1122
Unlimited Release

Printed November 2013

Data Co-Processing for Extreme Scale
Analysis Level II ASC Milestone (4745)

David Rogers
Scalable Analysis and Visualization

Sandia National Laboratories
P.O. Box 5800 MS 1326

Albuquerque, NM 87185-1326
dhroger@sandia.gov

Kenneth Moreland
Scalable Analysis and Visualization

Sandia National Laboratories
P.O. Box 5800 MS 1326

Albuquerque, NM 87185-1326
kmorel@sandia.gov

Ron Oldfield
Scalable System Software

Sandia National Laboratories
P.O. Box 5800 MS 1319

Albuquerque, NM 87185-1319
raoldfi@sandia.gov

Nathan Fabian
Scalable Analysis and Visualization

Sandia National Laboratories
P.O. Box 5800 MS 1323

Albuquerque, NM 87185-1323
ndfabian@sandia.gov

Abstract

Exascale supercomputing will embody many revolutionary changes in the hardware
and software of high-performance computing. A particularly pressing issue is gaining
insight into the science behind the exascale computations. Power and I/O speed con-
straints will fundamentally change current visualization and analysis workflows. A
traditional post-processing workflow involves storing simulation results to disk and
later retrieving them for visualization and data analysis. However, at exascale, scien-
tists and analysts will need a range of options for moving data to persistent storage,
as the current offline or post-processing pipelines will not be able to capture the data
necessary for data analysis of these extreme scale simulations. This Milestone explores
two alternate workflows, characterized as in situ and in transit , and compares them.
We find each to have its own merits and faults, and we provide information to help
pick the best option for a particular use.

3

4

Contents

Executive Summary . 7
Acknowledgements. 9
1 Official Milestone. 11
2 Catalyst. 13

2.1 Catalyst Architecture . 13
2.2 Simulation Adaptor . 15
2.3 References . 15

3 Nessie . 16
3.1 Nessie Architecture . 16
3.2 CTH in transit analysis . 19
3.3 Related Efforts . 21
3.4 Nessie Availability . 22

4 Experiment Driver . 23
5 Results . 27

5.1 Experimental Setup . 27
5.2 Total Execution Time . 31
5.3 Time-Series Analysis . 34
5.4 Runtime Variance . 36
5.5 Scaling Analysis . 39
5.6 Memory . 43

6 Conclusions . 47
References . 49

Appendix

A Signed Letter from Committee . 53
B Executive Summary Slides . 54

Figures

1 Visualization and data analysis workflows. 12
2 Coupling a simulation with Catalyst. 13
3 Wizard plugin within ParaView to export interactive traces as Catalyst

pipelines for use within a coupled simulation. 14
4 Nessie transport protocol . 17
5 Software stack for applications using the Nessie and NNTI libraries. 19
6 In situ and in transit data analysis . 20
7 Simulation of an exploding pipe. 23
8 Examples of potential fragments. 24
9 A simple 2D AMR example. 26
10 Total runtime. 30
11 Execution time comparison for the 1.5M block dataset. 31

5

12 Breakdown of operation timings. 32
13 Active Blocks . 34
14 Time-series plots of experiments. 35
15 Runtime variance of in situ operations. 37
16 Runtime variance of in transit operations. 38
17 Processing rate of data analysis. 39
18 Performance trace of 128-core run with different core counts. 41
19 In transit core scaling. 42
20 Max number of blocks parameter. 43
21 Memory usage plot matrix. 44
22 Plot of average per node memory usage of the in situ run on Cielo. 45
23 Plot of average per node memory usage of the in transit run on Cielo. 45
24 Plot of the average overhead per node of both in situ and in transit 46

Tables

1 Scaling Overview . 29

6

Executive Summary

Milestone 4745, Data Co-Processing for Extreme Scale Analysis, is successfully completed
on time and demonstrated against the letter and spirit of the stated Milestone.

Visualization and data analysis on extreme scale platforms presents critical challenges in
the management of data generated by simulations and the interface between simulation and
data analysis. Computation speed will continue to outpace storage bandwidth, and power
management will become much more of a workflow constraint on advanced architectures, so
we anticipate that science on extreme scale machines will require a range of data analysis,
filtering, and visualization workflows. With these tools, the analysts will determine the best
computation profile for specific problems. In particular, in addition to current practices of
post-processing and constrained writes, customers will need in situ and in transit workflows
that allow them flexible options for getting results to persistent storage.

Milestone 4745 provides important study of the behavior of new workflows for visualiza-
tion and data analysis. In particular, we examine the performance of two proposed workflows:
an in situ workflow in which visualization and data analysis is coupled directly with a sim-
ulation as a library, and an in transit workflow in which visualization and data analysis is
a separate service connected to the simulation via a network. Each workflow has its own
characteristics, and our study details empirical evidence on their respective performances.

As we look ahead to the extreme architectures planned by ASC, it is critical to under-
stand the strengths and weaknesses of these proposed analysis approaches, and to design
experiments that will help us understand how to enhance scientific discovery on these new
architectures. Milestones such as this one provide important foundations for evaluating our
current technical approaches, and for strategic development of analysis capabilities for future
architectures.

For this Milestone, we explored the performance characteristics of two proposed tech-
nologies developed with significant contributions from Sandia National Laboratories. These
technologies leverage existing investments in data analysis, visualization and I/O research,
and are part of a long term strategic plan for addressing ASC analysis needs across a spec-
trum of scales, codes, and science domains. We employ two critical software technologies
developed with significant contributions from Sandia National Laboratories. First, we use
the Catalyst library to provide in situ visualization and data analysis directly to a running
simulation. Second, we use the Nessie framework to establish an in transit visualization and
data analysis service connected to a running simulation.

Our primary motivation for this use case was to use a highly scalable code that provided
an example of real physics, so that we could determine performance characteristics when
applied against real data. There is significant community development in min-apps available
in the community that scale well across large architectures, but whose output is not repre-
sentative of a real science code. CTH is utilized as a test code for ASC platforms, and has
been used in several exploratory in-situ tests in the past. Because of this, the team opted to

7

use CTH as a driver for this large scale experiment.

Our empirical study comprises over 10 million core hours of running an instrumented
simulation and data analysis use case. This use case, involving the fragmentation analysis
of an explosion simulated in the CTH shock physics code, is designed in conjunction with a
Sandia analysis customer as an exemplar of scientific work.

In addition to demonstrating the scalability of our frameworks, our study also provides
insightful comparisons between the in situ and in transit workflows and the trade-off point
between them. We also consider other important parameters such as memory overhead,
initialization time, and scheduling.

This SAND report presents the full results of our milestone work and is available to
anyone.

8

Acknowledgements

Our team would like to thank the CTH team and developers who have engineered and
delivered this code over the years. As an extremely scalable, reliable science code, CTH
provides a powerful basis for performing experiments in large scale data analytics, and we
would like to thank the CTH team for their work, which has made this milestone possible.

9

10

1 Official Milestone

The following is the ASC milestone our work implements.

ASC calculations produce complex datasets that are increasingly difficult to
explore and understand using traditional post-processing workflows. To advance
understanding of underlying physics, uncertainties, and results of ASC codes,
SNL must gather as much relevant data as possible from large simulations. This
drives SNL to couple data analysis and visualization capability with a running
simulation, so that high fidelity data can be extracted and written to disk. This
Milestone evaluates two approaches for providing such a coupling:

1. In-situ processing provides “tightly-coupled” analysis capabilities through
libraries linked directly with the simulation. SNL has collaborated on de-
veloping an in-situ capability designed for this purpose.

2. In-transit processing provides “loosely-coupled” analysis capabilities by per-
forming the analysis on separate processing resources. SNL provides this
capability through a “data services” capability designed for this purpose.

SNL will engineer, test and evaluate customer-driven operations on large-scale
data created by a running simulation. The data operations will be performed
by instrumented versions of both the in-situ and in-transit solutions, with the
resulting performance data published and made available to the ASC community.

A program review will be conducted, and its results documented. A report
will be submitted as a record of milestone completion.

Our “customer-driven operations” are encapsulated in the use case given in Section 4,
which is designed by Jason Wilke, one of our customers in Mechanical Engineering, to
represent a typical shock physics analysis.

The results of our instrumentation on the coupled simulation and visualization and data
analysis are given in Section 5. These results come from experimental runs on the Cielo
supercomputer [10] ranging up to over 64 thousand cores. Our measurements record the
cost of coupling visualization and data analysis to a running simulation in terms of added
execution time and memory overhead, which satisfies the deliverables of the milestone.

The milestone describes “two approaches” for coupling a simulation with visualization
and data analysis. These approaches refer to the workflow employed in the full process from
simulation to data analysis. These workflows are summarized in Figure 1.

The workflow in Figure 1a is a traditional offline post-processing in which the sim-
ulation stores all its results to disk for later visualization and data analysis. This is what
the milestone means by the “traditional post-processing workflows” with which “complex
datasets... are increasingly difficult to explore and understand.” Approach 1 of the mile-
stone refers to the embedded in situ workflow in Figure 1b in which a visualization and

11

Science Code Simulation Data Persistent
Storage

(a) Traditional offline post-processing visualization and data analysis.

VDA
Service

VDA Data

Simulation DataVDA
APIScience Code Persistent

Storage

(b) Embedded in situ visualization and data analysis (VDA).

VDA
Service

VDA Data

Sim DataVDA
API

Sim DataScience Code Persistent
Storage

(c) Service-oriented in transit visualization and data analysis (VDA).

Figure 1: Traditional and emerging workflow diagrams showing the flow of information from
simulation to persistent storage. In all cases data will later be retrieved from storage and
further analyzed.

data analysis library is coupled with the running simulation code. Approach 2 of the mile-
stone refers to the in transit workflow in Figure 1c in which data is transfered from the
simulation job to a separate visualization and data analysis service.

All three workflows are considered in our measurements. The offline post-processing
workflow is implemented using the standard CTH I/O to write full meshes to storage and then
reading those meshes in a scripted parallel ParaView job. The embedded in situ workflow
is implemented with the Catalyst in situ library discussed in Section 2. The in transit
workflow is implemented with the Nessie I/O service described in Section 3.

12

2 Catalyst

Catalyst is a general purpose, full-featured library that leverages existing implementations
of analysis and visualization capabilities. The intent in doing this is threefold. First, by
leveraging existing visualization and data analysis libraries we can benefit from the accu-
mulation of over two decades of visualization research and development. Second, by making
the library general purpose we can quickly apply our in situ visualization and data analysis
capabilities to many simulations as opposed to a single simulation. Third, by using our
existing code we can integrate the in situ tools with our traditional post-processing tools to
provide interfaces that users are already familiar and comfortable with and to apply scalable
algorithms designed for in situ with our post-processing tools.

Catalyst is a C++ library with an API available in C, FORTRAN, and Python. It is built
atop the Visualization Toolkit (VTK) [34] and ParaView [6]. This means that Catalyst takes
advantage of a large number of algorithms including writers for I/O, rendering algorithms,
and processing algorithms such as isosurface extraction, slicing, and flow particle tracking.
Catalyst uses ParaView to implement and manage the visualization and data analysis, which
is defined using a visualization pipeline [18]. Although it is possible to construct pipelines
entirely in C++, a more flexible approach is defining pipelines with Python scripts.

Science Code

ParaView
Parallel
Services

Catalyst
APIAdapter

INITIALIZE()
ADDPIPELINE(in pipeline)

REQUESTDATADESCRIPTION(in time, out �elds)
COPROCESS(in vtkDataSet)

FINALIZE()

Function CallsFunction Calls

Figure 2: Coupling a simulation with Catalyst.

2.1 Catalyst Architecture

Catalyst boils the ParaView and VTK architecture down into five API calls that manage
all the processing required for operating a processing pipeline. Initialize and Finalize are
expected calls when dealing with MPI; this is where Catalyst will first access MPI World.
RequestDataDescription and CoProcess handle the hand-shake from the simulation code
to Catalyst. RequestDataDescription passed current time information to Catalyst, and
Catalyst passes back whether or not it should process and which fields it needs. This may
allow the simulation code, through the adaptor described below, to efficiently pass only
what is necessary at that time. The CoProcess call is where control is passed to Catalyst for
processing. This call will hang until Catalyst finishes and returns control to the simulation.

13

The AddPipeline call is where a majority of the work is done. Although there is usually
only one pipeline added to Catalyst, it is possible to add several. It is also common for this
pipeline to be written in Python, because this is the native scripting language for ParaView.
It is also possible for the pipeline to be coded in C++. While there is overhead cost to using
Python code in the pipeline here, it is very low due to its nature as a glue code combining
the C++ filters which are written in VTK. The advantage to using Python is that a scripted
pipeline can change alongside the simulation input deck without needing to recompile.

Figure 3: Wizard plugin within ParaView to export interactive traces as Catalyst pipelines
for use within a coupled simulation.

In addition to the advantages of writing Python pipeline scripts by hand, there is a
well supported plugin for ParaView that will automatically create Catalyst Python scripts
automatically from within the GUI, based on what the user does interactively, as shown
in Figure 3. This plugin reads in a file and creates the same code object provided by the
adaptor (see Section 2.2). The rest of the pipeline operates identically whether the data has
been read in from a file or it is coming from an in-memory in situ transfer.

The plugin creates images for each view open at the time the script is exported. To write
files, one can create objects within the pipeline that act as file write points. In general, these
are placed at the end of a long chain of processing to store the resulting processed data,
but it is also possible to splice these file writes into in the pipeline at any point, so that
intermediate data can be preserved. Each file and image writer can write at an independent
frequency, so that the output can be tuned precisely by the analyst. For example, images

14

(which tend to be very small) can be written out frequently, while large, detailed data files
can be written out infrequently.

2.2 Simulation Adaptor

Since Catalyst will extend to a variety of existing simulation codes, our design does not expect
its API to easily and efficiently process internal structures in all possible codes directly. Our
solution is to rely on adapters — which are small pieces of code written for each new linked
simulation — to translate data structures between the simulation’s code (for our use case the
CTH shock physics code) and Catalyst’s VTK-based architecture, as shown in Figure 2. The
adapter must also establish a mechanism that allows the simulation to define a visualization
pipeline and periodically invoke the data analysis while running the simulation, which in our
CTH adapter we control through the CTH input deck.

To conserve memory, our adapter directly interfaces the visualization and data analysis
code to the data structures defined by CTH. This interface is challenging because although
the blocks of data are represented sequentially in both CTH and VTK, the multidimensional
order is different. To address this, our adapter contains an interface wrapper above the
standard VTK array. The wrapper reimplements the array’s accessor functions to handle the
order difference between the two systems. Although there is a minor overhead in additional
pointer arithmetic and virtual method calls, it saves us from a deep memory copy.

2.3 References

The Catalyst library and the algorithms we use within CTH are an accumulation of several
years work, starting with the development of fragment analysis algorithms with our post-
processing tools [13, 19, 21], described in more detail in Section 4. Subsequent work lead
to the development of Catalyst [12] and the scaling of algorithms used in conjunction with
CTH [11].

15

3 Nessie

The NEtwork Scalable Service Interface, or Nessie, is a framework for developing parallel
client-server data services for large-scale HPC systems [16,26,29].

Nessie was originally developed out of necessity for the Lightweight File Systems (LWFS)
project [27], a joint effort between researchers at Sandia National Laboratories and the
University of New Mexico. The LWFS project followed the basic philosophy of “simplicity
enables scalability”, the foundation of earlier work on lightweight operating system kernels
at Sandia [32]. The LWFS approach was to provide a core set of fundamental capabilities
for security, data movement, and storage and afford extensibility through the development
of additional services. For example, systems that require data consistency and persistence
might create services for transactional semantics and naming to satisfy these requirements.
The Nessie framework was designed to be the vehicle to enable the rapid development and
deployment of such services.

Although Nessie was originally designed for I/O and system services, it is also useful
for development of application-specific data services. For example, we developed services
for staging checkpoint data [23,24,31], HPC database integration [30], interactive visualiza-
tion [25], network traffic analysis, and most recently CTH in transit analysis [22]. A recent
paper describes these services in detail [17].

This section includes a brief description of the Nessie architecture and APIs followed by
a more detailed description of the in transit service for CTH data analysis using ParaView.

3.1 Nessie Architecture

Because Nessie was originally designed for I/O systems, it includes a number of features that
address scalability, efficient data movement, and support for heterogeneous architectures.
Features of particular note include 1) using asynchronous methods for most of the interface
to prevent client blocking while the service processes a request; 2) using a server-directed
approach to efficiently manage network bandwidth between the client and servers; 3) using
separate channels for control and data traffic; and 4) using XDR encoding for the control
messages (i.e., requests and results) to support heterogeneous systems of compute and service
nodes.

A Nessie service consists of one or more processes that execute as a serial or parallel
job on the compute nodes or service nodes of an HPC system. We have demonstrated
Nessie services on the Cray XT and XE systems at Sandia National Laboratories (SNL)
and Oak Ridge National , the Cray XT4/5 systems at Oak Ridge National Laboratory,
and a large InfiniBand cluster at SNL. The Nessie RPC layer has direct support of Cray’s
SeaStar interconnect [7], through the Portals API [8]; Cray’s Gemini interconnect [4]; and
InfiniBand [5].

16

request

A

B

C

D

data

result
buffer

request
queue

data
buffers

result

Client Analysis Service

A

B

(1) perform_analysis()

get_data()
do_analysis()
write_result()

(3) send_result()

client-initiated
server-initiated

Legend

(2)

storage

Figure 4: Conceptual protocol for Nessie service doing analysis. The server fetches bulk
data through RDMA commands until it has satisfied the request. After completing the data
transfers, the server processes the data, writes analysis results to disk, then sends a small
“result” back to the client indicating success or failure of the operation.

Nessie API

The Nessie API follows a remote procedure call (RPC) model, where the client (i.e., the
scientific application) tells the server(s) to execute a function on its behalf. Nessie relies on
client and server stub functions to encode/decode (i.e., marshal) procedure call parameters
to/from a machine-independent format. This approach is portable because it allows access
to services on heterogeneous systems, but it is not efficient for I/O requests that contain raw
buffers that do not need encoding. It also employs a ‘push’ model for data transport that
puts tremendous stress on servers when the requests are large and unexpected, as is the case
for most I/O requests.

To address the issue of efficient transport for bulk data, Nessie uses separate commu-
nication channels for control and data messages. In this model, a “control” message, also
known as a request, is typically small. It identifies the operation to perform, where to get
arguments, the structure of the arguments, and perhaps the data itself (if the data is small
enough to fit in the fixed-sized request). In contrast, a data message is typically large and
consists of “raw” bytes that, in most cases, do not need to be encoded/decoded by the server.
For example, Figure 4 shows the transport protocol for an in transit service that performs
analysis on simulation results data.

The Nessie client uses the RPC-like interface to push control messages to the servers, but
the Nessie server uses a different, one-sided API to push or pull data to/from the client. This
protocol allows interactions with heterogeneous servers and benefits from allowing the server

17

to control the transport of bulk data [15, 35]. The server can thus manage large volumes of
requests with minimal resource requirements. Furthermore, since servers are expected to be
a critical bottleneck in the system, a server directed approach affords the server optimizing
request processing for efficient use of underlying network and storage devices – for example,
re-ordering requests to a storage device [15].

While it is not strictly necessary on systems that have homogenous clients and servers, we
use XDR encoding to provide portable serialization of arguments for the request arguments.
This was a design decision made early in the project that allow the client to send arbitrary
C-like data structures to the server with minimal development effort. At the time, we were
implementing file services for a system where the service nodes were a different architecture
(and had different endienness) than the compute nodes. In this case, byte-swaps were nec-
essary for the control structures. Since rpcgen, the function that generates the serialization
code is pervasive in Unix environments and has been in use for more than a decade, it was
the logical choice for argument marshaling.

NNTI API

The Nessie Network Transport Interface (NNTI) provides a portable, lightweight, interface
for RDMA operations on HPC platforms. Our current implementation includes support
for the Cray Seastar, InfiniBand, Cray Gemini, and IBM DCMF interconnects. The APIs
include commands to open and close the interface, connect and disconnect to a peer, register
and deregister memory buffers, and finally asynchronously transport (through put, get, and
wait commands) bulk data.

Figure 5 illustrates the software stack for applications using Nessie and NTTI. The NNTI
library sits below the Nessie RPC library to enable portability across HPC interconnects. In
addition to the Nessie library, NNTI is also used by the ADIOS/DataStager [2] to provide the
same level of portability and performance. We are also discussing NNTI as the lowest-layer
network transport for the Sirocco parallel file system, another ASC project at SNL.

CommSplitter API

The CommSplitter library was designed to overcome a security model limitation in the
Gemini interconnect. On current Gemini systems, user-space applications are not allowed
to communicate, even if both applications are owned by the same user. We requested this
feature and at the time of this writing, Cray is addressing this issue to better support data
services in future versions of Gemini. In the mean time, we overcame that limitation by
launching our jobs in Multiple Program, Multiple Data (MPMD) mode. MPMD mode
enables a set of applications to execute concurrently, sharing a single MPI Communicator.
The problem with this approach is that legacy applications were not designed to share a
communicator with other applications. In fact, most HPC codes assume they have exclusive
use of the MPI COMM WORLD communicator. When this is not the case, a global barrier,

18

Application
Nessie Client

NNTI

Pt
ls

uG
N

I

IB

D
C

M
F

NNTI
Pt

ls

uG
N

I

IB

D
C

M
F

Nessie Service

Servers

Client

Network

Figure 5: Software stack for applications using the Nessie and NNTI libraries.

such as an MPI Barrier function will hang because the other applications did not call the
MPI Barrier function.

To address this issue, we developed the CommSplitter library to allow applications to
run in MPMD mode while still maintaining exclusive access to a virtual MPI COMM WORLD

global communicator.

The CommSplitter library identifies the processes that belong to each application, then
“split” the real MPI COMM WORLD into separate communicators. The library then uses the
MPI profiling interface to intercept MPI operations, enforcing the appropriate use of com-
municators for collective operations.

No changes are required to the application source code to enable this functionality. The
user simply links the CommSplitter library to the executable before launching the job. The
library has no effect on applications that are not run in MPMD mode.

3.2 CTH in transit analysis

In this milestone, we used Nessie to construct an in transit CTH data analysis service. The
data analysis service exists as its own parallel job that communicates with a parallel CTH
job using the Nessie APIs. The in transit CTH data analysis library is a drop-in replacement
for the PVSPY library [20] used for in situ data analysis. This makes comparing in situ and

19

...

Client Application

CTH analysis
code

Fragment
Data

(a) In situ data analysis

...

...

Client Application

CTH PVSPY
Client

Fragment-Detection Service

PVSPY
Server

Raw
Data Fragment

Data

analysis
code

(b) In transit data analysis

Figure 6: Comparison of in situ (a) and in transit (b) fragment detection for the CTH shock
physics code.

in transit approaches extremely convenient since it only requires the user to link a different
library when compiling CTH. Instead of executing the data analysis on the same compute
nodes of the CTH application (as the in situ library does), the in transit library marshals
requests, sends data to the data analysis service, and performs all the data analysis on the
separate application. Figure 6 illustrates this process for data analysis that does fragment
detection.

For efficiency reasons, the in transit PVSPY client implementation does not simply for-
ward all the functions to the service. In many cases, the client maintains metadata to avoid
unnecessary data transfers. For example, the PVSPY API includes “setup” functions for
initializing data structures, assigning cell and material field names, and setting cell and ma-
terial fields pointers. Not all of these functions require an immediate interaction with the
data service. In fact, the only operations that require bulk data transport are the opera-
tions that synchronize the metadata and the data between the client and the server. These
operations occur just before a pvspy viz operation that initiates the ParaView coProcessing
on the remote service.

The in situ version of PVSPY has the notion of a “CTH source” that allows the data
analysis code to work directly on the memory of the CTH application without making any
copies. Since the in transit service does not have access to the physical memory of the CTH
application, we created a virtual CTH source on the server that emulates the data structures
on the CTH application. That allows the service to use use the same PVSPY library that
the client uses in the in situ data analysis.

With the exception of the operations to transfer metadata and data to the analysis
service, all remote operations are asynchronous, allowing the data analysis on the service to
execute in parallel with computation on the CTH application. If one remote visualization
operation is not complete by the time CTH is ready to do another visualization operation,
CTH has to wait.

20

3.3 Related Efforts

There are a number of efforts to develop technologies for staging data or providing data
services that are related to, and in some cases derived from, Nessie. The two primary
competitors of Nessie include the data-staging portions of the ADIOS library from ORNL,
and the Glean library from Argonne National Laboratory.

The Adaptable IO System (Adios) is an I/O library that separates the I/O interface
from the underlying I/O operations. Using XML configuration files, the user can specify, at
runtime, the methods used to perform I/O. For example, MPI-IO, POSIX-IO, netCDF, or
their own BP method are all options the use can select. ADIOS also includes methods data
transport that allow the staging and processing of data in the same way as Nessie. This
staging technology, called DataTap [1] and DataStager [2] derive from early work on Nessie
as part of a joint collaboration between GA Tech, SNL, and ORNL. More recent versions of
DataStager are also using the NNTI API to provide portable RDMA transport.

The DataSpaces [9] project uses the memory on data-staging nodes as a scratch space for
communicating and sharing data among multiple applications. This work is closely aligned
with the ADOIS efforts at ORNL. The primary focus is to use asynchronous IO to move
data into a staging area and then having a different application retrieve data at a later time.

A recent effort called Glean [36] from Argonne is a start towards both accelerating IO
performance and integrating functionality, such as data analysis routines, at the right place
transparently. It is very similar to PreDatA, but extends the location of operations to
potentially beyond the current machine.

Most of the related efforts focus primarily on the I/O benefits of data-staging, but have
not put a tremendous effort into complex analysis. The majority of the analyis codes perform
relatively simple statistics and/or visualization. With Nessie, and this effort in particular,
we treat the service as a complex parallel application that includes all the synchronization,
communication, and scaling issues inherent in HPC parallel applications. These issues require
a level of detail and performance tuning that is lacking in other efforts.

A second distinction between our approach and related work is a general philosophy
on supporting APIs. While the other approaches, like ADIOS, provide a unified I/O API,
our approach is to provide in transit implementations of commonly used APIs so the code
does not have to change the source code. In this milestone, we implemented an in transit
version of the pvspy API, the same API used to perform the in situ experiments. It was
this approach that made comparison between the in situ and in transit approaches so easy
to perform.

21

3.4 Nessie Availability

The Nessie software is available, open source, as part of the Trilinos I/O Support Package [28].
The package includes the NNTI, Nessie, CommSplitter libraries as well as a collection of
CMake macros and other tools for constructing application-specific data services.

22

4 Experiment Driver

For the purposes of this milestone, we explore the problem of characterizing fragments in an
explosion simulation. Simulation is a vital part in understanding shock physics. Although
experimentation will always be a necessary tool for scientific inquiry and corroboration, the
amount of data we can retrieve with experimentation is limited. Experiments in shock physics
usually involve high energy, high velocities, and high variability, all of which hinder detailed,
accurate, and repeatable observations during the experiment. When measurements cannot
be taken during the experiment, they must be taken after the experiment by observing the
remaining material. Much can be learned in the manner, but the transient states during the
experiment are lost.

Another limiting factor of experimentation is its high cost and slow turnaround. To
create shock physics experiments, physical devices must be fabricated. These devices are
then usually destroyed during the experiment. Safety and political issues also often plague
shock physics experiments. In some cases, experimentation is simply not feasible. Thus,
simulation plays a major role in shock physics analysis.

In this milestone, we use an example simulation of an exploding pipe shown in Figure 7.
This similation problem is provided to our group by Jason Wilke. In addition to well rep-
resenting the kinds of simulation and analysis done at Sandia National Laboratories, this
simulation provides interesting results and many different levels of refinement, which allows
us to scale the problem from less than 100 cores to well over 10,000 cores.

Figure 7: Simulation of an exploding pipe, which presents many prototypical fragment anal-
ysis challenges.

One of the most important features in shock physics analysis is material fragments. The
physical properties of the fragments, including mass, volume, and shape, as well as their

23

trajectories, can all be important. In particular, shape can be an important characteristic.
Consider the example fragments given in Figure 8. The top fragment is long and sharp,
making it more likely to penetrate objects. In comparison, the bottom left fragment is
rounded and could have less damage potential. However, the U-shaped fragment in the
bottom right may be harmful depending on the scenario, but could be difficult to distinguish
from the round fragment in many shape metrics.

Figure 8: Examples of potential fragments that we would like to characterize.

The simulation code we use is CTH [14,33]. It is an Eulerian shock physics code that uses
an adaptive mesh refinement (AMR) data model. These adaptive finite volumes can take up
different amounts of space depending on where they are in the model and how closely the
simulation is refining the space.

In order to correctly find fragments, we must first determine what is and is not a fragment.
The simulation operates on a finite volume and comprises a set of simulated materials, which
each take up a certain fraction of finite cells within that volume. We treat any connected
region of cells with material volume fraction above a given threshold as a fragment of that
material. Generally speaking, when a simulation begins, each material comprises usually
one connected region, which we refer to as the main mass. As the simulation progresses,
this region breaks apart and gaps occur between pieces of material, filled either by another
material or by the surrounding air. Once there is a gap as wide as at least one cell, we
determine that a fragment as formed. The challenge when finding these fragments on a large
scale parallel system is that regions that make up the fragments straddle process boundaries,
requiring communication between the processes to determine the full shape of a fragment.

Because the number of fragments a shock physics simulation can generate are so numer-
ous, it is seldom realistic for a person to examine every one. It is therefore more beneficial

24

to first perform computational analytics that provide useful summary statistics and iden-
tify particularly interesting fragments. This analysis has the added benefit of reducing the
amount of memory required to represent it. Therefore, fragment analysis is a good candidate
for in situ processing.

A full fragment analysis requires multiple steps.

1. Find block neighbors. This includes determining block neighbors located on different
process.

2. Build a conforming mesh over the AMR boundaries. AMR has inconsistent inter-
polation at interfaces between blocks of different refinements. The conforming mesh
resolves the interpolation.

3. Identify the boundaries of fragments. We estimate the boundary as the contour at a
threshold between high and low volume fraction.

4. Find the fragment connected components. A connected components analysis brings
together all finite elements that belong to a single fragment.

5. Characterize properties of fragments. Given the collected elements for each fragment,
find the features such as shape volume, and movement that are of interest.

6. Extract useful information. This could involve, for example, computing histograms of
features or extracting a small subset of fragments deemed important.

For the purpose of simplifying the problem and making it tractable for anal-
ysis, we abbreviate the problem to include only the identification of fragment
boundaries for the results of this milestone. The creation of fragment boundaries is a
nontrivial problem in that we must make sure the surface is “watertight” in that the rep-
resentative mesh surface is conforming and closed. Making a surface from an AMR mesh
watertight is challenging because the AMR mesh itself is nonconforming at boundaries be-
tween adjacent regions at different levels of refinement.

To generate this watertight fragment surface, we first build a dual mesh of the original
AMR mesh. The dual mesh contains a vertex at the center of each cell in the original mesh
and an edge through each face of of the original mesh as demonstrated in Figure 9. The
advantage of creating a dual mesh is that it is straightforward to build conforming cells
across the boundaries of AMR regions with different levels of refinement.

The disadvantage of building these dual meshes in a distributed parallel job is that
neighborhood information must be shared between regions that might be located on dif-
ferent processes. Resolving this neighborhood information requires a significant amount of
communication. (Such communication would be necessary for any creation of a watertight
mesh.) This communication can limit the scalability of the algorithm.

Efficient communication of boundary elements first requires that each process knows the
location of the neighbors for each region it holds. If data is loaded with no knowledge of its

25

Figure 9: A simple 2D AMR example with 2 different refinement levels (blue lines) and the
conforming dual grid we build with it (yellow lines).

decomposition, which is typical in the post-processing of data, then this neighborhood infor-
mation can be retrieved only through global communication. Our initial baseline algorithm
starts with this global communication, which we find to severely limit the scalability of the
algorithm.

When running the surface creation algorithm as an embedded in situ component of CTH,
this global communication of finding neighbors is wasteful because CTH already has this
information. To take advantage of this neighborhood information, we make a small change
to CTH to pass this data decomposition information through its I/O layer to Catalyst.
With this data, our refined algorithm skips the global communication leaving only the
more scalable boundary-data passing. Our analysis shows that the refined algorithm is
much more scalable than the baseline algorithm [11]. Unfortunately, we cannot apply the
refined algorithm in the in transit workflow because this workflow redistributes the data and
invalidates this neighborhood information from CTH.

26

5 Results

This section documents the results of our many experiments designed to characterize the
performance of our data analysis workflows. In particular, we are interested in determining
the additional overhead our data analysis places on the simulation and the efficiency with
which it can be done. These data summarize evaluations run over the course of 10.58 million
cpu-hours of execution. The results come from measurements taken from instrumented code
as well as the HPCToolkit profiling tool [3].

5.1 Experimental Setup

All experiments were performed on the Cielo supercomputer housed at Los Alamos National
Laboratory. Cielo is an 8,944-node Cray XE6 resource for the Advanced Simulation and
Computing (ASC) program and is jointly managed by Sandia National Laboratories and
Los Alamos National Laboratory under the New Mexico Alliance for Computing at Extreme
Scale (ACES) project. Each node contains two AMD Opteron 6136 (Magny-Cours) 8-way
processor chips for a total of 16 cores per node. Each core has a peak computational speed of
2.4 GHz, leading to a total theoretical peak of 1.37 Petaflops for the machine. The compute
nodes each have 32 GB of memory. The interconnect consists of a proprietary Cray Gemini
Network with a 3D Torus topology and has a peak throughput rate of 6 GB/s/link.

This report includes strong scaling and weak scaling results from the following CTH and
data analysis experiments. These represent three different workflows, two of which have two
different configurations for a total of five experiments.

In situ : A CTH job that directly runs an in situ data analysis. Thus, the visualization and
data analysis is performed in the same job and memory space as the simulation. Within
the in situ workflow, we measure two variations of our watertight surface algorithm.

Baseline: As described in Section 4, the baseline version of the algorithm includes a
redundant step of global communication to find AMR block neighbors. We in-
clude results from this workflow for two reasons: First, we are not able to apply
the same optimization to the in transit and offline post-processing workflows, so
this provides an apples-to-apples comparison of the benefit an in transit approach
could give using the same algorithm. Second, we anticipate other important anal-
ysis algorithms could have similar communication characteristics. For example, a
connected components algorithm could require communication between most or
all processes to resolve the connectivity of large fragments.

Refined: As described in Section 4, the refined version of the algorithm bypasses the
step of global communication by retrieving the AMR block neighbors from the
running CTH simulation. We thus expect it to have better scaling performance.

27

In transit : A CTH job that performs in transit data analysis using a separate allocation of
compute nodes. Data is transferred from the simulation to a service where visualization
and data analysis is performed asynchronously with respect to the simulation. Within
the in transit workflow, we measure two job scheduling variations.

Extra nodes: Allocate the CTH job with the same number of nodes as we would
without the data analysis, and then create a visualization and data analysis service
using extra nodes. For example, if the simulation were normally to be run on
256 nodes, then still schedule the simulation on 256 nodes and also schedule the
visualization and data analysis service on an additional 16 nodes. This allocation
represents a use case where there are additional compute nodes (perhaps with
special OS, runtime, or hardware features) that could be used to perform data
analysis on behalf of the application. For example, the suggested “burst buffer”
architecture for the Trinity system may have special nodes with NVRAM and
additional memory that would be appropriate for this type of in transit data
analysis.

Internal nodes: Divide the nodes normally allocated to the CTH job between the
simulation and the visualization and data analysis service. For example, if the
simulation were normally to be run on 256 nodes, then schedule the simulation
on only 240 nodes and use the remaining 16 nodes to schedule the visualization
and data analysis service. We use this workflow to find out if, given an equal
number of resources for in situ and in transit , there might be situations where
the preferable approach changes.

Disk-based post-processing: A CTH job that writes Spyplot files instead of doing data
analysis. At some point later a batch data analysis job is run on the saved data. This
workflow represents the traditional post-processing approach. The number of nodes
used matches the number used for data analysis in the Extra nodes version of in transit .
Note that although CTH is writing out Spyplot files, these files are being read by the
ParaView application and running the same algorithm with the same code as the in
transit workflow and the baseline algorithm for the in situ workflow.

All applications complete 500 cycles (i.e., timestep calculations) of the CTH code. The
first four applications execute a fragment analysis operation once every 10 cycles. Spyplot is
an in situ visualization capability written as part of CTH to provide some basic visualization
capability such as isosurfaces and cut planes. Because fragment detection is not available
as part of Spyplot, we do not consider the in situ capability here. Instead, for the Spyplot
file application, we output Spyplot data which intended for fragment post-processing by
ParaView, and written at a fixed interval in simulated time, calculated so that the application
executed 51 I/O operations, equaling the number of fragment analysis operations performed
by the in situ and in transit applications. The number of nodes used is the same as the in
transit application using extra nodes. There is no way to directly instruct CTH to output
Spyplot data every 10 cycles. The resulting data files are then loaded in a separate ParaView
data analysis job run at a later time. This data analysis was also performed on Cielo using

28

ParaView statically compiled from the same code base as the in situ and in transit runs, but
executed by ParaView’s pvbatch application. The time to run the simulation, read and write
files, and perform the post-processing analysis are all summed together to get a processing
time for computation equivalent to that done in the in situ and in transit workflows.

Table 1: Scaling Overview

CTH In transit Server
Most In transit Internal Extra Nodes Internal Nodes

Cores Nodes Cores Nodes Cores Nodes Cores Nodes

33K Blocks — 5 levels
128 8 96 6 16 2 16 2
256 16 224 14 16 2 16 2
512 32 480 30 16 2 16 2

1,024 64 992 62 16 2 16 2
220K Blocks — 6 levels

1,024 64 768 48 128 16 128 16
2,048 128 1,792 112 128 16 128 16
4,096 256 3,840 240 128 16 128 16
8,192 512 7,936 496 128 16 128 16

1.5M Blocks — 7 levels
4,096 256 2,496 156 1,024 128 800 100
8,192 512 6,592 412 1,024 128 800 100

16,384 1,024 14,784 924 1,024 128 800 100
32,768 2,048 31,168 1,948 1,024 128 800 100
65,536 4,096 63,936 3,996 1,024 128 800 100

For each application, we ran strong scaling experiments for three different datasets. Each
data set comes from the same initial conditions but with a different maximum level of
refinement. Thus, measurements of different job sizes with different data set sizes provides a
weak scaling overview. Table 1 shows the range of core sizes used for the various experiments.
For every application we used the maximum 16 cores-per-node for the CTH client, since CTH
is primarily bound by computation and scales very well. For the in transit experiments in
this section, we used 8 cores for each service node. The exception is in Section 5.5 where we
discuss in transit performance under different core-per-node counts.

We note that although the in transit experiments use 128 visualization nodes when
allocated using extra nodes but only 100 nodes when run internally. The rational is that
we ran the experiments with extra nodes first, and determined that the visualization is a
memory-bound problem with more memory than necessary on the nodes. Thus, we reduced
the visualization partition to 100 nodes when using internal nodes, but we were unable to
repeat the former experiments to remove this minor discrepancy.

29

●

●

● ●

0

50

100

150

200

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

T
im

e
(m

in
)

Dataset

● 1.5m blocks

220k blocks

33k blocks

(a) In situ baseline.

●

●

● ●

0

50

100

150

200

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

T
im

e
(m

in
)

Dataset

● 1.5m blocks

220k blocks

33k blocks

(b) In situ refined.

●

● ●

●

0

50

100

150

200

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

T
im

e
(m

in
)

Dataset

● 1.5m blocks (128 extra nodes)

220k blocks (16 extra nodes)

33k blocks (2 extra nodes)

(c) In transit with extra nodes.

●

● ●

●

0

50

100

150

200

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

T
im

e
(m

in
)

Dataset

● 1.5m blocks (100 internal nodes)

220k blocks (16 internal nodes)

33k blocks (2 internal nodes)

(d) In transit using internal nodes.

●

● ●

●

0

50

100

150

200

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

T
im

e
(m

in
)

Dataset

● 1.5m blocks

220k blocks

33k blocks

(e) Disk-based post-processing.

Figure 10: Total runtime for 500-cycle runs of each workflow.

30

5.2 Total Execution Time

Our first consideration is the overall runtime of each workflow with each data set and job
size.

●

● ●

●

0

50

100

150

200

4096 8192 16384 32768
Client Ranks

T
im

e
(m

in
)

Experiments

● Disk−Based Post−Processing

In Situ (baseline)

In Situ (refined)

In Transit (100 internal nodes)

In Transit (128 extra nodes)

Figure 11: Execution time comparison for the 1.5M block dataset.

Figures 10 and 11 show the measured total execution time from each of the different
workflows. In cases where we ran the same experiment multiple times, we plot the mean
with error bars representing the standard deviation from the mean. The set of plots in
Figure 10 show individual timings of each of the workflows for each size dataset; the plot in
Figure 11 shows a direct comparison of all the applications for the 1.5M block data set. The
results clearly show a “sweet spot” at 8K cores where the in transit approach, even though
it is using a less scalable algorithm, performs the same as the the refined version of in situ.
At 16K and 32K, none of the codes running data analysis show significant improvement,
the baseline in situ and the in transit approaches actually take longer. We believe the
biggest reason for this is that there is not enough work for the compute nodes. At 32K
cores, each core is processing around 46 blocks/node, where the same size problem using 4K
nodes requires each core to process 366 blocks. The key to making the in transit approach
successful is being able to overlap computation and data analysis. If the data analysis portion
does not scale particularly well, the compute nodes need sufficient work to hide the analysis
cost.

To better understand exactly where the time is being spent, we collect detailed timings
of each application using a combination of instrumented timers and profiling tools (HPC-
Toolkit). Figure 12 shows the total runtime performance of the five workflows as a stacked
bar plots illustrating the portion of runtime associated with select functions. For the in

31

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4

32
76

8

T
im

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
Viz Init

CTH
Viz

(a) In situ baseline.

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4

32
76

8

T
im

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
Viz Init

CTH
Viz

(b) In situ refined.

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4

32
76

8

T
im

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

Xfer Data
Wait

(c) In transit with extra nodes.

96 22
4

48
0

99
2

76
8

17
92

38
40

79
36

24
96

65
92

14
78

4

31
16

8

T
im

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

Xfer
Wait

(d) In transit using internal nodes.

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4

32
76

8

T
im

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

I/O
Viz

(e) Disk-based post-processing.

Figure 12: Illustration showing the contributions of selected operations to the total execution
times for each application.

32

situ workflows, we measure the initialization and computational time of CTH and the anal-
ysis/visualization. For in transit workflows, we measure the initialization cost of CTH, the
cost of transferring data to the service, and the time the client waits for the server operation
to complete. The wait only occurs after CTH has finished its operation before the visualiza-
tion and data analysis is complete. If the visualization and data analysis completes before
CTH finishes its operation, then no wait time occurs.

Results from Figure 12a show that there is a clear scaling problem with the data analysis
portion (labeled “Viz”) of the baseline in situ workflow. It almost appears as if the execution
time is more dependent on the problem size than the number of cores performing the data
analysis. The refined version dramatically improves the performance. This corroborates our
previous work [11], but we are now able to take the scaling out to a larger scale to see that
the performance appears to be flattening out (although this might be in part due to a small
number of blocks per core).

Another important issue these timings reveal is that of the initialization cost of the
visualization and data analysis. Although the CTH initialization cost appears to decrease
as the core count increases, the initialization cost for data analysis, “Viz Init,” increases,
accounting for more than 1/3 of the total time for a 500-cycle run. For long runs, the
initialization cost will get amortized, but is still large enough to warrant further study.

The in transit workflow results in Figures 12c and 12d show that the in transit ap-
proach effectively hides the data analysis overhead when the clients have sufficient compute
resources. For the 1.5M block dataset, Figure 12c shows that in transit with an extra 128
nodes successfully hides most of the cost of data analysis at 4K and 8K nodes, but the wait
time at larger core counts eliminates any benefit of in transit using the baseline algorithm.

The in transit workflow, shown in Figure 12d, which carves out a subset of 100 nodes
for data analysis, has interesting results as well. Observe that the number of cores used for
CTH is much smaller, leading to an increase in the time spent doing CTH computation.
Even with this increase in computational cost, there is still benefit. At 4K and 8K, all of
the data analysis cost is hidden. At 8K, the total runtime is slightly less than the refined
version of in situ. This result is a bit of a surprise given that they are both using the exact
same number of resources.

An additional test of interest (not performed within the scope of this Milestone) would
be to measure performance of the in transit workflows using the refined version of the frag-
ment analysis algorithm. If the the in transit approach achieved the same performance
improvement shown by Figure 12b, the in transit approach would be able to hide most of
the fragment analysis cost even at large scale. However, using the refined version of the frag-
ment analysis algorithm would be different because the mesh decomposition changes when
transferred from client to server. For the neighborhood information to remain consistent, the
I/O framework would have to report how data was repartitioned so that the neighborhood
information could be mapped to the new decomposition.

Another surprising result is the performance of the spyplot file application. For the size of

33

datasets we studied, this application performed quite well, showing that the Lustre file system
on Cielo is quite strong. The plots include the time spent writing the spyplot files during the
experiment and the measured time to perform the data analysis as a post-processing step.
One anomaly we notice in Figure 12e is that for the largest data set the I/O time jumps
from around 2 minutes with 8192 cores to 10 minutes on 16,384 cores. Looking closer at our
log files, we see that we have two experiments contributing to this value. One experiment
required about 4.5 minutes to write whereas the other required about 15.5 minutes. We
speculate that this second measurement comes from an anomalous condition on Cielo, but
we do not have enough data to diagnose further.

5.3 Time-Series Analysis

To illustrate how operation performance changes throughout a single run of the application,
we selected one experiment and tracked the performance of each 10-cycle period over a span
of a 500 cycle run. Since the “Viz” operation executes every 10 cycles, what is shown is
the sum of 10-cycles worth of CTH and the time spent by 1 data analysis operation. We
chose to evaluate the experiments that use 8K processors of the 1.5M block dataset — the
“sweet spot” mentioned in Section 5.2 — because it is one of the interesting places where
the performance of the refined in situ application and both in transit applications all have
similar total runtime.

Since we are running the adaptive-mesh refinement (AMR) variant of CTH, the number
of “active” blocks gets recalculated by CTH at various points during a run. Since we expect
this to have an impact on CTH execution and in transit transfer times, we first plot the
number of active blocks for our selected experiment in Figure 13. As simulation progresses,

●●●

●
●

●

●
●

●●●●
●

●
●

●
●

●
●

●●●

●
●●●

●●
●●●●

●●
●●

●
●

●
●

●
●●●

●

●
●

●

●
●

●

0 100 200 300 400 500

1.
44

62
1.

44
64

1.
44

66

Cycle

B
lo

ck
s

(m
ill

on
s)

Figure 13: Number of active blocks used in the course of a 500-cycle run of CTH.

34

0

50

100

150

0 100 200 300 400 500
Cycle

T
im

e
(s

ec
)

Operation

CTH

Viz

(a) In situ baseline.

0

50

100

150

0 100 200 300 400 500
Cycle

T
im

e
(s

ec
)

Operation

CTH

Viz

(b) In situ refined.

0

50

100

150

0 100 200 300 400 500
Cycle

T
im

e
(s

ec
)

Operation

CTH

Xfer

Wait

(c) In transit with extra nodes.

0

50

100

150

0 100 200 300 400 500
Cycle

T
im

e
(s

ec
)

Operation

CTH

Xfer

Wait

(d) In transit using internal nodes.

Figure 14: Illustration showing the contributions of selected operations for each 10-cycle
period of a 500-cycle CTH experiment.

it is common for the number of blocks to increase as finer resolution is needed to capture
cumulative physical effects. This simulation has an interesting drop in the number of blocks
midway through; however, the drop in the number of blocks is very slight (less than 0.01%),
so for practical purposes the number of blocks is constant.

Figure 14 shows the time contribution for a 10-cycle period of each important operation
in the in situ and in transit applications using 8K processors. One observation consistent
across the different workflows is that the time spent performing CTH computation tends to
increase throughout the life of the application, which is interesting considering that there
not a significant increase in either the number of blocks or the visualization processing time.

We also observe for the in transit applications that as long as there is some wait time,
the total run time for each 10-cycle period remains relatively flat throughout the life of the
application. We see this in both the in transit extra and in transit inclusive experiments.
The reason for this is fairly obvious. If we assume the “Viz” operation on the service is

35

essentially constant, then the wait time should be the difference between the Viz time on the
service and the CTH time on the client. As the CTH time increases, the wait time decreases
by the same amount. Since the transfer time is close to constant (it’s based on the number
of blocks), the total time at each 10-cycle period remains about the same.

5.4 Runtime Variance

An increasingly important metric for HPC applications is runtime variance. A number of
factors could contribute to inconsistent performance across multiple runs. Among them are
resource contention for memory, network, or storage systems, operating system noise, and
software techniques like garbage collection. Instead of trying to understand the cause of
inconsistent behavior in our experiments, we to document the results with the intent of
addressing them further in future work.

The plots in Figures 15 and 16 show the mean and standard error (the standard deviation
from the mean) of the important in situ and in transit operations for the 8k-core experi-
ments. In each plot, we gathered data from five or more 500-cycle experiments. Most of
our measurements for CTH and anlysis operations show a relatively small variance between
experiments. There are some outlier measurements in Figures 15a and 16b that we attribute
to another event running concurrently on Cielo by happenstance causing contention. Fig-
ure 15b shows the CTH experiments overlaid to highlight the outliers in experiment 1. The
transfer time of in transit workflows (Figures 16a and 16c) have more variance than the rest,
which we believe is caused by the Cielo job scheduler not taking into account the communi-
cation between the client and server jobs. Further research in improved placement of client
and server jobs for in transit workflows is ongoing.

36

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●●

●

●

●●●●

0

50

100

150

0 100 200 300 400 500
Cycle

T
im

e
(s

ec
)

(a) CTH mean and stddev

●●●●●●●●●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●●●

●

●●●●

0

50

100

150

0 100 200 300 400 500
Cycle

T
im

e
(m

in
)

Experiment ● 1 2 3 4 5 6

(b) CTH overlay

0

25

50

75

0 100 200 300 400 500
Cycle

T
im

e
(s

ec
)

(c) In situ (baseline) data analysis

0

5

10

15

20

0 100 200 300 400 500
Cycle

T
im

e
(s

ec
)

(d) In situ (refined) data analysis

Figure 15: Plots (a), (c), and (d) show the mean time and standard error for CTH and the
in situ data analysis operations. Plot (b) shows an overlay of the CTH experiments to show
outliers for experiment 1.

37

0

5

10

15

20

25

0 100 200 300 400 500
Cycle

T
im

e
(s

ec
)

(a) In transit (extra nodes) transfer time.

0

20

40

60

0 100 200 300 400 500
Cycle

T
im

e
(s

ec
)

(b) In transit (extra nodes) wait time.

0

5

10

15

20

25

0 100 200 300 400 500
Cycle

T
im

e
(s

ec
)

(c) In transit (inclusive) transfer time.

0

20

40

60

0 100 200 300 400 500
Cycle

T
im

e
(s

ec
)

(d) In transit (inclusive) wait time.

Figure 16: Plots of the mean time and standard error for the in transit transfer and wait
operations.

38

5.5 Scaling Analysis

Block Processing Rate

One way to get a good understanding of the scalability of an operation is to look at the
throughput or processing rate. In this case, we look at the rate at which the data analysis
operation processes blocks as we increase the number of client cores.

● ● ● ●

0

500

1000

1500

2000

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

B
lo

ck
s/

S
ec

on
d

Dataset

● 1.5m blocks

220k blocks

33k blocks

(a) In situ baseline.

●

●

●

●

0

500

1000

1500

2000

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

B
lo

ck
s/

S
ec

on
d

Dataset

● 1.5m blocks

220k blocks

33k blocks

(b) In situ refined.

●

●

●

●

0

500

1000

1500

2000

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

B
lo

ck
s/

S
ec

on
d

Dataset

● 1.5m blocks

220k blocks

33k blocks

(c) In transit with extra nodes.

●

●

●

●

0

500

1000

1500

2000

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

B
lo

ck
s/

S
ec

on
d

Dataset

● 1.5m blocks

220k blocks

33k blocks

(d) In transit with internal nodes.

Figure 17: Processing rate of data analysis portions of the four different applications.

Figure 17 shows the processing rates of the data analysis portion of the in transit appli-
cations and the “effective” processing rate of the data analysis portion (transfer time plus
wait time) of the in transit applications. Note that the effective in transit rate does not
include any processing time overlapped with the simulation execution, and thus could be
much larger than the actual processing rate. As we expect, the baseline application scales
fine for the small data set, but starts to really drop off for the medium and large data. We
see a dramatic improvement in the in situ refined application as it scales consistently well all
the way to 32K cores. The in transit applications are also not that surprising. Since we use a

39

fixed number of nodes for a dataset, we expect the effective processing rate to be essentially
flat. The dropoff for the medium and large datasets is due to the excessive waiting, identified
in Figures 12c and 12d.

Node scaling for in transit experiments

In this section, we evaluate performance of the in transit applications when using different
numbers of cores/node for the in transit service. To better understand the impact of changing
the core count for the services, consider the three HPCToolkit-generated performance traces
in Figure 18. The traces show a 10-cycle window of execution for a 128-core job using 1
server node. For this small experiment, we used a dataset of only 5k blocks.

The tracing results show a dramatic difference in network performance and wait time
between all three of the experiments. We believe the relatively poor network performance
in the 2-core experiment is caused by contention. Because only 2 cores can process the
bulk-data requests at a time, the clients are either waiting for network transfers to complete,
or the are waiting for the server to finish copying the data to a server buffer, causing the
request to sit in the server’s pending queue. The larger wait time on the 2-core experiment
tells us that for this size problem, there is a computational benefit to increasing the number
of cores performing the data analysis.

The plots in Figure 19 show differences in the total, transfer, and wait times for the 2, 4,
and 8 cores/node runs of the in transit (extra) application for the three different data sets.
While the smaller datasets show clear benefit of using more cores/node for data analysis,
the inverse seems to be true for the large datasets. Unfortunately, we did not run enough
experiments of this type to make definitive claims. A further investigation of the impact of
core scaling for the large dataset is required.

40

(a) In transit with 2 cores/server.

(b) In transit with 4 cores/server.

(c) In transit with 8 cores/server.

Figure 18: HPCToolkit-generated traces showing a 10-cycle window of execution for a 128-
core job using 2, 4, and 8 cores for the server nodes.

41

●

● ●

0

10

20

30

40

50

256 512 1024
Client Ranks

T
im

e
(m

in
)

Service Size

● 4 cores (2/node)

 8 cores (4/node)

16 cores (8/node)

(a) Total time (33k blocks).

●

●
●

0

5

10

15

256 512 1024
Client Ranks

T
im

e
(m

in
)

Service Size

● 4 cores (2/node)

 8 cores (4/node)

16 cores (8/node)

(b) Transfer time (33k blocks).

●

●

●

0

5

10

256 512 1024
Client Ranks

T
im

e
(m

in
)

Service Size

● 4 cores (2/node)

 8 cores (4/node)

16 cores (8/node)

(c) Wait time (33k blocks).

●

●

● ●

0

20

40

60

1024 2048 4096 8192
Client Ranks

T
im

e
(m

in
)

Service Size

● 32 cores (2/node)

 64 cores (4/node)

128 cores (8/node)

(d) Total time (218k blocks).

● ●
●

●

0

3

6

9

12

1024 2048 4096 8192
Client Ranks

T
im

e
(m

in
)

Service Size

● 32 cores (2/node)

 64 cores (4/node)

128 cores (8/node)

(e) Transfer time (218k blocks).

● ●

●

●

0

5

10

15

1024 2048 4096 8192
Client Ranks

T
im

e
(m

in
)

Service Size

● 32 cores (2/node)

 64 cores (4/node)

128 cores (8/node)

(f) Wait time (218k blocks).

●

● ●
●

0

40

80

120

4096 8192 16384 32768
Client Ranks

T
im

e
(m

in
)

Service Size

● 256 cores (2/node)

 512 cores (4/node)

1024 cores (8/node)

(g) Total time (1.5m blocks).

●
●

●

●

0

5

10

4096 8192 16384 32768
Client Ranks

T
im

e
(m

in
)

Service Size

● 256 cores (2/node)

 512 cores (4/node)

1024 cores (8/node)

(h) Transfer time (1.5m blocks).

●

●

●

●

0

20

40

60

4096 8192 16384 32768
Client Ranks

T
im

e
(m

in
)

Service Size

● 256 cores (2/node)

 512 cores (4/node)

1024 cores (8/node)

(i) Wait time (1.5m blocks).

Figure 19: In transit performance for 2, 4, and 8 cores per server node.

42

5.6 Memory

The following memory plots were taken by examining free memory on the nodes using
/proc/meminfo. Measuring free memory is conservative because it also accounts for caches
and buffers, so although you may run out of free memory in a system, the execution will
not immediately fail due to memory freed from those other sources. However, these are an
indication of the worst case possible. On Cielo there are 16 cores per node and in each case
the nodes were loaded with 16 MPI ranks executing the statically linked executable.

In order to understand CTH memory usage results, it is important to note that CTH
preallocates memory based on a value for “max number of blocks” provided through the input
deck. Because of this, CTH memory usage is highly impacted by the user specification. In
this case we ran the results with what we believe are reasonable values for “max number of
blocks” given the size of the problem. Figure 20 shows the corresponding max blocks for
each run.

0	

100	

200	

300	

400	

500	

600	

700	

128	 256	 512	 1024	 1024	 2048	 4096	 8192	 4096	 8192	 16384	 32768	

M
ax
	 N
um

be
r	 O

f	 B
lo
ck
s	

Cores	

Figure 20: A plot of the “max number of blocks” parameter supplied to CTH for each run.

Figure 21 provides an overview of all memory measurements taken for the system. The
memory taken by CTH is quite flat, as expected, for each run. However, even though the
size of the mesh changes throughout the simulation, the memory overhead for in situ and in
transit runs changes only moderately. Thus, for the rest of the results analysis, we summarize
all measurements as simply the maximum value, which is a reasonable representation of all
values.

Figure 22 gives a summary of the extra memory used when using Catalyst for in situ
data analysis during our experiments. Likewise, Figure 23 gives the same summary for the in

43

M
em

or
y

U
se

d
(G

B)

0

5

10

15

5
A

M
R

Le
ve

ls

M
em

or
y

U
se

d
(G

B)

0

5

10

15

6
A

M
R

Le
ve

ls

M
em

or
y

U
se

d
(G

B)

0

5

10

15

7
A

M
R

Le
ve

ls

20

100500
Measure Index

100500
Measure Index

100500
Measure Index

100500
Measure Index

100500
Measure Index

100500
Measure Index

100500
Measure Index

100500
Measure Index

100500
Measure Index

Cores
32768163848192409620481024512256128

In Situ
In Transit
CTH Only

Figure 21: Matrix of all measurements taken for memory usage comparisons. Each measure-
ment is the total memory in use in a node (so for in situ and in transit memory includes both
CTH simulation and overhead). Each measurement is plotted as the maximum memory use
in all nodes at the time the measurement was taken.

transit memory overhead for the nodes within the simulation (memory usage on the separate
data analysis job is not given). In all cases the added overhead is less than 50% than the
memory used by CTH itself, and in most cases the additional overhead is significantly smaller
than that.

Figure 24 compares the amount of memory per node added when using in situ versus in
transit . As expected, the in transit approach requires a smaller memory overhead than in
situ within the nodes of the simulation. Thus, in transit could be a better option when the
simulation requires as much memory per process as possible, but the in transit approach
also requires separate nodes to be reserved for the data analysis, which also may cause the
total amount of available simulation memory to be reduced if nodes must be taken away
from the simulation.

44

32768

Co
re

s

7
A

M
R

Le
ve

ls
6

A
M

R
Le

ve
ls

5
A

M
R

Le
ve

ls

16384

8192

4096

8192

4096
2048

1024

Co
re

s

1024

512

256

128

Co
re

s

0 2 4 6 8 10 12 14 16 18 20
Maximum Memory Used Per Node (GB)

CTH Only In Situ

CTH Only

CTH Only

In Situ

In Situ

Figure 22: Plot of average per node memory usage of the in situ run on Cielo.

32768

Co
re

s

7
A

M
R

Le
ve

ls
6

A
M

R
Le

ve
ls

5
A

M
R

Le
ve

ls

16384

8192

4096

8192

4096
2048

1024

Co
re

s

1024

512

256

128

Co
re

s

0 2 4 6 8 10 12 14 16 18 20
Maximum Memory Used Per Node (GB)

CTH Only In Transit

CTH Only

CTH Only

In Transit

In Transit

Figure 23: Plot of average per node memory usage of the in transit run on Cielo.

45

32768

Co
re

s

7
A

M
R

Le
ve

ls

16384

8192

4096

8192

Co
re

s

6
A

M
R

Le
ve

ls

4096

2049

1024

1024

Co
re

s

5
A

M
R

Le
ve

ls

512

256

128

0.0 1.0 2.0 3.0 4.0 5.0 6.00.5 1.5 2.5 3.5 4.5 5.5 6.5
Maximum Memory Used (GB)

In Situ
In Transit

In Situ
In Transit

In Situ
In Transit

Figure 24: Plot of the average overhead per node of both in situ and in transit

46

6 Conclusions

This document summarizes a significant scaling study resulting from over 9 million core-hours
of execution and analyzes the comparative performance of multiple workflows for performing
visualization and data analysis on simulation results. Most of these workflows benefit from
running in tandem with the simulation to analyze its transient data before it is written to
storage. Based on this analysis, we make the following conclusions.

In transit can provide a performance improvement over in situ in some circum-
stances, but the window is narrower than we anticipated. In transit data analysis
has an added overhead above embedded in situ data analysis involving transferring data
between parallel jobs. Given a data analysis algorithm with perfect linear scalability, we
suspect in transit workflows will always have an added cost, and our results support this.
With a data analysis algorithm that does not scale perfectly, possibly due to communication
overhead, it is theoretically possible for in transit to be faster by reducing the size of the data
analysis job. This is one of the motivations for choosing a data analysis task that requires
significant communication. In our results, we do find instances where in transit is faster, but
by a smaller margin and for fewer configurations than we initially anticipated. So although
in transit has several other positive features, we do not anticipate performance to be the
main motivations for using it.

The efficiency of in transit relies on balancing the time spent in simulation and
data analysis. The significant overhead cost, apart from data transfer, in the in transit
workflow is the idle time spent in the simulation waiting for the visualization and data
analysis service to become ready or the idle time spent in the visualization and data analysis
service waiting for the simulation to send more data. This idle waiting time is minimized
when the simulation and data analysis spend the same amount of wall clock time between
transfers. Although not demonstrated in this work, it is possible to “auto-balance” the
work between simulation and data analysis by, at every iteration of the simulation, transfer
data to the data analysis if and only if the data analysis service is ready to accept more
work. The disadvantage of such an approach is that the idle process time could be replaced
with unnecessary extra data analysis or less data analysis than necessary. However, we
suspect that controlling the amount of visualization and data analysis performed through
job allocation sizes fits well with users’ rules of thumb about resource allocation.

Memory overhead will be an important trade-off space. The baseline amount of
memory added to the CTH job to perform in situ processing is roughly 100MB per core.
Considering that our embedded in situ library is a fully featured visualization toolkit con-
taining over 2 million lines of code and algorithms developed over almost 2 decades, this
overhead is not unreasonable. Nevertheless, this footprint can be problematic for simula-
tions already tight on memory. Because of this, efforts are already underway to improve
our memory footprint by making finer modules and being more selective on the available

47

algorithms. This, of course, requires a compromise between the size of the library and the
algorithms that are dynamically available. We also note that our algorithm has the poten-
tial to generate sizable meshes of its own. Thus, it may be fruitful to pursue and support
incremental algorithms where possible.

Initialization time matters. Our scaling efforts to date focus on the scalability of the al-
gorithms invoked during the run of a simulation. The initialization cost, a one-time penalty,
has yet to be seriously considered. However, based on our HPCToolkit measurements, ini-
tialization becomes a significant cost at high process counts.

Disk-based I/O is not dead. . . yet. Our initial assumption was that it would not
be feasible to output full results at a fine enough temporal resolution from CTH to disk
storage to perform our high fidelity data analysis. However, our control workflow shows
that although the overall time to write data to disk and then read back again incurs a large
cost, it is still realistic to do so. Thus, users may still choose to incur the extra overhead to
use a traditional offline post-processing visualization and data analysis workflow. This is an
important consideration in providing flexibitly for our end users.

Better job scheduling is important. One of the more complicated parts of running
an in transit workflow is scheduling the simulation job and service job to run in tandem.
Frankly, the capabilities of the scheduler are inadequate for our needs. We cannot start and
stop jobs independently and make reconnections dynamically. Another experiment we would
like to do but is challenging to schedule is to allow simulation and service to share nodes.
Since each node has 16 cores, perhaps we could get better transfer performance by allocating
one core per node for service and the rest for simulation. A similar scheduling scheme will
be important to take advantage of burst buffers in future architectures.

48

References

[1] Hasan Abbasi, Jay Lofstead, Fang Zheng, Karsten Schwan, Matthew Wolf, and Scott
Klasky. Extending I/O through high performance data services, September 2009.
DOI 10.1109/CLUSTR.2009.5289167.

[2] Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott Klasky, Karsten Schwan, and
Fang Zheng. Datastager: scalable data staging services for petascale applications.
In Proceedings of the 18th IEEE International Symposium on High Performance Dis-
tributed Computing, pages 39–48, Garching, Germany, 2009. ACM Press.

[3] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and
N. R. Tallent. Hpctoolkit: tools for performance analysis of optimized parallel programs.
Concurrency and Computation: Practice and Experience, 22(6):685–701, 2010.

[4] R. Alverson, D. Roweth, and L. Kaplan. The Gemini system interconnect. In Proceedings
of the 18th Annual Symposium on High Performance Interconnects (HOTI), pages 83–
87, Mountain View, CA, August 2010. IEEE Computer Society Press.

[5] InfiniBand Trade Association. InfiniBand Architecture Specification, Release 1.2, Oc-
tober 2004.

[6] Utkarsh Ayachit et al. The ParaView Guide: A Parallel Visualization Application.
Kitware Inc., 4th edition, 2012. ISBN 978-1-930934-24-5.

[7] Ron Brightwell, Kevin Pedretti, Keith Underwood, and Trammell Hudson. SeaStar
interconnect: Balanced bandwidth for scalable performance. IEEE Micro, 26(3):41–57,
2006.

[8] Ron Brightwell, Rolf Riesen, Bill Lawry, and Arther B. Maccabe. Portals 3.0: protocol
building blocks for low overhead communication. In Proceedings of the International
Parallel and Distributed Processing Symposium, page 268, Fort Lauderdale, FL, April
2002. IEEE Computer Society Press.

[9] Ciprian Docan, Manish Parashar, and Scott Klasky. Dataspaces: an interaction and
coordination framework for coupled simulation workflows. In Proceedings of the 19th
IEEE International Symposium on High Performance Distributed Computing, pages 25–
36, Chicago, IL, June 2010.

[10] Doug Doerfler, Manuel Vigil, Sudip Dosanjh, and John Morrison. The cielo petascale
capability supercomputer. In Cray User Group, 2011.

[11] Nathan Fabian. In situ fragment detection at scale. In Proceedings of the IEEE Sym-
posium on Large-Scale Data Analysis and Visualization, pages 105–108, October 2012.
DOI 10.1109/LDAV.2012.6378983.

[12] Nathan Fabian, Kenneth Moreland, David Thompson, Andrew C. Bauer, Pat Marion,
Berk Geveci, Michel Rasquin, and Kenneth E. Jansen. The ParaView coprocessing

49

library: A scalable, general purpose in situ visualization library. In Proceedings of the
IEEE Symposium on Large-Scale Data Analysis and Visualization, pages 89–96, October
2011. DOI 10.1109/LDAV.2011.6092322.

[13] Lisa Ice, Nathan Fabian, Kenneth D. Moreland, Janine C. Bennett, David C. Thompson,
David B. Karelitz, and W. Alan Scott. Scalable analysis tools for sensitivity analysis
and UQ (3160) results. Technical Report 2009-6032, Sandia National Laboratories,
September 2009.

[14] E. S. Hertel Jr., R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J. M. McGlaun,
S. V. Petney, S. A. Silling, P. A. Taylor, and L. Yarrington. CTH: A software family
for multi-dimensional shock physics analysis. In R. Brun and L.D. Dumitrescu, editors,
Proceedings of the 19th International Symposium on Shock Physics, volume 1, pages
377–382, Marseille, France, July 1993.

[15] David Kotz. Disk-directed I/O for MIMD multiprocessors. In Hai Jin, Toni Cortes, and
Rajkumar Buyya, editors, High Performance Mass Storage and Parallel I/O: Technolo-
gies and Applications, chapter 35, pages 513–535. IEEE Computer Society Press and
John Wiley & Sons, New York, NY, 2001.

[16] Jay Lofstead, Ron Oldfield, Todd Kordenbrock, and Charles Reiss. Extending scalability
of collective I/O through Nessie and staging. In Proceedings of the 6th Parallel Data
Storage Workshop, Seattle, WA, November 2011.

[17] Jay Lofstead, Ron A. Oldfield, and Todd H. Kordenbrock. Experiences applying data
staging technology in unconventional ways. In 13th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGrid), Delft, The Netherlands, May
2013. IEEE/ACM.

[18] Kenneth Moreland. A survey of visualization pipelines. IEEE Transac-
tions on Visualization and Computer Graphics, 19(3):367–378, March 2013.
DOI 10.1109/TVCG.2012.133.

[19] Kenneth Moreland, Nathan Fabian, Pat Marion, and Berk Geveci. Visualization on su-
percomputing platform level II ASC milestone (3537-1B) results from Sandia. Technical
Report SAND 2010-6118, Sandia National Laboratories, September 2010.

[20] Kenneth Moreland, Nathan Fabian, Pat Marion, and Berk Geveci. Visualization on su-
percomputing platform level II ASC milestone (3537-1b) results from Sandia. Technical
Report SAND2010-6118, Sandia National Laboratories, September 2010.

[21] Kenneth Moreland, C. Charles Law, Lisa Ice, and David Karelitz. Analysis of fragmen-
tation in shock physics simulation. In Proceedings of the 2008 Workshop on Ultrascale
Visualization, pages 40–46, November 2008.

[22] Kenneth Moreland, Ron Oldfield, Pat Marion, Sebastien Joudain, Norbert Podhorszki,
Venkatram Vishwanath, Nathan Fabian, Ciprian Docan, Manish Parashar, Mark Hereld,

50

Michael E. Papka, and Scott Klasky. Examples of in transit visualization. In Proceed-
ings of the PDAC 2011 : 2nd International Workshop on Petascale Data Analytics:
Challenges and Opportunities, Seattle, WA, November 2011.

[23] Ron A. Oldfield. Lightweight storage and overlay networks for fault tolerance. Techni-
cal Report SAND2010-0040, Sandia National Laboratories, Albuquerque, NM, January
2010.

[24] Ron A. Oldfield, Sarala Arunagiri, Patricia J. Teller, Seetharami Seelam, Rolf Riesen,
Maria Ruiz Varela, and Philip C. Roth. Modeling the impact of checkpoints on next-
generation systems. In Proceedings of the 24th IEEE Conference on Mass Storage Sys-
tems and Technologies, San Diego, CA, September 2007.

[25] Ron A. Oldfield, Brett W. Bader, and Peter Chew. Supporting multilingual document
clustering on the Cray XT3. In SIAM Conference on Parallel Processing and Scientific
Computing, February 2010.

[26] Ron A. Oldfield, Todd Kordenbrock, and Jay Lofstead. Developing integrated data
services for Cray systems with a Gemini interconnect. In Cray User Group Meeting,
April 2012.

[27] Ron A. Oldfield, Arthur B. Maccabe, Sarala Arunagiri, Todd Kordenbrock, Rolf Riesen,
Lee Ward, and Patrick Widener. Lightweight I/O for scientific applications. In Proceed-
ings of the IEEE International Conference on Cluster Computing, Barcelona, Spain,
September 2006.

[28] Ron A. Oldfield, Gregory D. Sjaardema, Gerald F. Lofstead II, and Todd Kordenbrock.
Trilinos I/O Support (Trios). Scientific Programming, August 2012.

[29] Ron A. Oldfield, Patrick Widener, Arthur B. Maccabe, Lee Ward, and Todd Korden-
brock. Efficient data-movement for lightweight I/O. In Proceedings of the 2006 Interna-
tional Workshop on High Performance I/O Techniques and Deployment of Very Large
Scale I/O Systems, Barcelona, Spain, September 2006.

[30] Ron A. Oldfield, Andrew Wilson, George Davidson, and Craig Ulmer. Access to external
resources using service-node proxies. In Proceedings of the Cray User Group Meeting,
Atlanta, GA, May 2009.

[31] Charles Reiss, Gerald Lofstead, and Ron Oldfield. Implementation and evaluation of
a staging proxy for checkpoint I/O. Technical report, Sandia National Laboratories,
Albuquerque, NM, August 2008.

[32] Rolf Riesen, Ron Brightwell, Patrick Bridges, Trammell Hudson, Arthur Maccabe,
Patrick Widener, and Kurt Ferreira. Designing and implementing lightweight kernels
for capability computing. Concurrency and Computation: Practice and Experience,
21(6):793–817, August 2008.

51

[33] Robert G. Schmitt, David A. Crawford, Raymond L Bell, and Eugene S. Hertel. Adap-
tive mesh refinement and multi-phase flow in the CTH. In Workshop on Numerical
methods for multi-material fluid flows, Paris, France, September 2002.

[34] Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit: An Object
Oriented Approach to 3D Graphics. Kitware Inc., fourth edition, 2004. ISBN 1-930934-
19-X.

[35] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed col-
lective I/O in Panda. In Proceedings ofSupercomputing ’95, page 57, San Diego, CA,
December 1995. IEEE Computer Society Press.

[36] Venkatram Vishwanath, Mark Hereld, Vitali Morozov, and Michael E. Papka. Topology-
aware data movement and staging for I/O acceleration on Blue Gene/P supercomputing
systems. In Proceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’11, pages 19:1–19:11, New York, NY,
USA, 2011. ACM.

52

Date:
Subject:

March 5th,2013
Achievement of ASC Level II Milestone 1

To Whom It May Concern:

On Tuesday, March 5th,2013, a formal review of ASC Level II Milestone 4547, Data Co-Processing for
Extreme Scale Analysis was held. We, the committee, found that the Milestone was completed on time,
and demonstrated against the letter and spirit stated in the Milestone.

Committee members were Becky Springmeyer (LLNL), Berk Gevci (Kitware, Inc), Ron Brightwell
(1423), Mike Glass (1545), Kim Mish (1542), Dino Pavlakos (9326), Kendall Pierson (1542), Jason

Wilke (6634)

Sincerely,
i\ * /-,r't v- u\t---r=_=-

Jim A\ens, Milestone Committee Chair (LANL)

Exceptional Service in the National lnterest

A Signed Letter from Committee

53

Milestone	 4547	

Data	 Co-‐Processing	 for	 Extreme	 Scale	 Analysis	
SAND#	 2013-‐1427	 P	 	
	
	
ExecuCve	 Summary	 of	 Milestone	 Report	
	
	
	
March	 5,	 2013	
	
David	 Rogers,	 Ron	 Oldfield,	 Kenneth	 Moreland	 and	 Nathan	 Fabian	
	
Sandia	 NaConal	 Laboratories	

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. !

Summary	

§  Milestone	 4745	 “Data	 Co-‐Processing	 for	 Extreme	 Scale	
Analysis”	 was	 successfully	 completed	 on	 Cme,	 and	
demonstrated	 against	 the	 leSer	 and	 spirit	 of	 stated	
Milestone.	

§  The	 Milestone	 Team	 completed	 over	 10.5	 million	 cpu	 hours	 of	
Cielo	 tests	 on	 both	 in	 situ	 and	 in	 transit	 analysis	 capabiliCes	
on	 a	 problem	 provided	 by	 a	 Sandia	 analyst.	

§  The	 results	 of	 these	 experiments	 have	 been	 detailed	 in	 a	
SAND	 report,	 which	 is	 published	 as	 an	 unclassified	 unlimited	
release	 document,	 available	 to	 the	 enCre	 mod/sim	
community	

The	 path	 to	 Exascale	

Milestone	 4745	 is	 an	 important	 step	 in	 capability	 development,	
customer	 engagement,	 and	 scalability	 development	 on	 the	 path	
to	 exascale.	 	 It	 represents	 significant	 work	 on	 the	 development	
of	 both	 Catalyst,	 an	 open	 source	 in	 situ	 analysis	 capability,	 and	
Nessie,	 an	 open	 source	 data	 services	 capability.	
	
This	 Milestone	 is	 part	 of	 an	 integrated	 R&D	 roadmap	 aimed	 at	
characterizing,	 understanding,	 and	 promoCng	 soluCons	 for	
complex	 analysis	 problems	 on	 advanced	 architectures.	
	
It	 is	 an	 important	 foundaCon	 step	 in	 developing	 cross-‐cu[ng	
capabiliCes.	

Milestone	 4745	
SC	 calculaCons	 produce	 complex	 datasets	 that	 are	 increasingly	 difficult	 to	 explore	 and	
understand	 using	 tradiConal	 post-‐processing	 workflows.	 	 To	 advance	 understanding	 of	
underlying	 physics,	 uncertainCes,	 and	 results	 of	 ASC	 codes,	 SNL	 must	 gather	 as	 much	
relevant	 data	 as	 possible	 from	 large	 simulaCons.	 	 This	 drives	 SNL	 to	 couple	 data	
analysis	 and	 visualizaCon	 capability	 with	 a	 running	 simulaCon,	 so	 that	 high	 fidelity	
data	 can	 be	 extracted	 and	 wriSen	 to	 disk.	 	 This	 Milestone	 evaluates	 two	 approaches	
for	 providing	 such	 a	 coupling:	
§  In-‐situ	 processing	 provides	 ``Cghtly-‐coupled''	 analysis	 capabiliCes	 through	 libraries	

linked	 directly	 with	 the	 simulaCon.	 	 SNL	 has	 collaborated	 on	 developing	 an	 in-‐situ	
capability	 designed	 for	 this	 purpose.	

§  In-‐transit	 processing	 provides	 ``loosely-‐coupled''	 analysis	 capabiliCes	 by	
performing	 the	 analysis	 on	 separate	 processing	 resources.	 	 SNL	 provides	 this	
capability	 through	 a	 ``data	 services''	 capability	 designed	 for	 this	 purpose.	

SNL	 will	 engineer,	 test	 and	 evaluate	 customer-‐driven	 operaCons	 on	 large-‐scale	 data	
created	 by	 a	 running	 simulaCon.	 	 The	 data	 operaCons	 will	 be	 performed	 by	
instrumented	 versions	 of	 both	 the	 in-‐situ	 and	 in-‐transit	 soluCons,	 with	 the	 resulCng	
performance	 data	 published	 and	 made	 available	 to	 the	 ASC	 community.	
A	 program	 review	 will	 be	 conducted,	 and	 its	 results	 documented.	 	 A	 report	 will	 be	
submiSed	 as	 a	 record	 of	 milestone	 compleCon.	

MoCvaCon	

SC	 calculaCons	 produce	 complex	 datasets	 that	 are	 increasingly	
difficult	 to	 explore	 and	 understand	 using	 tradiConal	 post-‐
processing	 workflows.	 	 To	 advance	 understanding	 of	 underlying	
physics,	 uncertainCes,	 and	 results	 of	 ASC	 codes,	 SNL	 must	 gather	
as	 much	 relevant	 data	 as	 possible	 from	 large	 simulaCons.	 	 This	
drives	 SNL	 to	 couple	 data	 analysis	 and	 visualizaCon	 capability	
with	 a	 running	 simulaCon,	 so	 that	 high	 fidelity	 data	 can	 be	
extracted	 and	 wriSen	 to	 disk.	 	 	
	
§  Note:	 ASC	 program	 will	 benefit	 from	 a	 detailed	 understanding	

of	 the	 rela;onship	 between	 analyst	 tasks,	 analysis	 opera;ons,	
and	 disk	 I/O	 performance.	 	

In	 situ	 and	 in	 transit	 workflows	
§  In	 situ	 processing	 provides	 ``Cghtly-‐coupled''	 analysis	 capabiliCes	 through	

libraries	 linked	 directly	 with	 the	 simulaCon.	 	 SNL	 has	 collaborated	 on	
developing	 an	 in	 situ	 capability	 designed	 for	 this	 purpose.	

§  In	 transit	 processing	 provides	 ``loosely-‐coupled''	 analysis	 capabiliCes	 by	
performing	 the	 analysis	 on	 separate	 processing	 resources.	 	 SNL	 provides	
this	 capability	 through	 a	 ``data	 services''	 capability	 designed	 for	 this	
purpose.	

VDA
Service

VDA Data

Simulation DataVDA
APIScience Code Persistent

Storage

VDA
Service

VDA Data

Sim DataVDA
API

Sim DataScience Code Persistent
Storage

Diagram	 of	 in	 situ	 workflow,	 accomplished	 in	 this	 Milestone	 through	
the	 use	 of	 Catalyst,	 an	 open	 source,	 VTK-‐based	 analysis	 library.	

Diagram	 of	 in	 transit	 workflow,	 in	 which	 the	 science	 code	
communicates	 with	 data	 services	 nodes	 to	 perform	 analysis	
operaCons.	 	 This	 is	 accomplished	 in	 this	 Milestone	 through	 the	 use	 of	
Nessie,	 an	 open	 source	 data	 services	 library.	

B Executive Summary Slides

54

Milestone	 4745,	 compleCon	 criteria	
SC	 calculaCons	 produce	 complex	 datasets	 that	 are	 increasingly	 difficult	 to	 explore	 and	
understand	 using	 tradiConal	 post-‐processing	 workflows.	 	 To	 advance	 understanding	 of	
underlying	 physics,	 uncertainCes,	 and	 results	 of	 ASC	 codes,	 SNL	 must	 gather	 as	 much	
relevant	 data	 as	 possible	 from	 large	 simulaCons.	 	 This	 drives	 SNL	 to	 couple	 data	
analysis	 and	 visualizaCon	 capability	 with	 a	 running	 simulaCon,	 so	 that	 high	 fidelity	
data	 can	 be	 extracted	 and	 wriSen	 to	 disk.	 	 This	 Milestone	 evaluates	 two	 approaches	
for	 providing	 such	 a	 coupling:	
§  In-‐situ	 processing	 provides	 ``Cghtly-‐coupled''	 analysis	 capabiliCes	 through	 libraries	

linked	 directly	 with	 the	 simulaCon.	 	 SNL	 has	 collaborated	 on	 developing	 an	 in-‐situ	
capability	 designed	 for	 this	 purpose.	

§  In-‐transit	 processing	 provides	 ``loosely-‐coupled''	 analysis	 capabiliCes	 by	
performing	 the	 analysis	 on	 separate	 processing	 resources.	 	 SNL	 provides	 this	
capability	 through	 a	 ``data	 services''	 capability	 designed	 for	 this	 purpose.	

SNL	 will	 engineer,	 test	 and	 evaluate	 customer-‐driven	 operaCons	 on	 large-‐scale	 data	
created	 by	 a	 running	 simulaCon.	 	 The	 data	 operaCons	 will	 be	 performed	 by	
instrumented	 versions	 of	 both	 the	 in-‐situ	 and	 in-‐transit	 soluCons,	 with	 the	 resulCng	
performance	 data	 published	 and	 made	 available	 to	 the	 ASC	 community.	
A	 program	 review	 will	 be	 conducted,	 and	 its	 results	 documented.	 	 A	 report	 will	 be	
submiSed	 as	 a	 record	 of	 milestone	 compleCon.	

Experiment	 Driver	
Milestone	 focused	 on	 “customer-‐driven	 opera;ons	 on	 large-‐scale	 data	 created	 by	 a	
running	 simula;on”	

Customer	 driver	 use	 case:	 characterize	 fragments	 in	 an	 	
explosion	 simulaCon,	 an	 analysis	 step	 criCcal	 for	 	
understanding	 shock	 physics	
§  Partner:	 Jason	 Wilke	
§  CriCcal	 steps	

§  Find	 fragments	 (mulCple	 operaCons	 required)	
§  Characterize	 fragments	 (mass,	 velocity,	 etc.)	
§  Extract	 useful	 informaCon	

Milestone	 experiments	 focused	 on	 iden;fying	 the	 fragments.	 	 This	 operaCon	 is	 a	
significantly	 complex	 part	 the	 analysis,	 so	 it	 serves	 as	 a	 useful	 way	 to	 characterize	 the	
operaCons	 in	 the	 driver	 use	 case.	
Full	 range	 of	 data	 experiments	 run	 at	 32k	 cores	 on	 Cielo.	 	 ParCal	 experiments	 done	 at	 64k	
cores	 on	 Cielo.	 	 This	 report	 presents	 results	 from	 the	 32k	 runs.	
	

Fragment	 detecCon	

§  OperaCons	 required	 for	 fragment	 detecCon	 (requires	 a	
waterCght	 surface)	
1.  Find	 block	 neighbors	
2.  Build	 a	 conforming	 mesh	 over	 AMR	 boundaries	
3.  IdenCfy	 boundaries	 of	 fragments	

Step	 2	 Step	 3	

Implemented	 Workflows	

§  In	 situ:	 A	 CTH	 job	 that	 directly	 runs	 in	 situ	 data	 analysis	
§  Baseline:	 Basic	 algorithm	 with	 somewhat	 redundant	 step	 of	 global	

communicaCon	 to	 find	 AMR	 block	 neighbors	
§  Refined:	 Improved	 algorithm	 that	 gets	 AMR	 block	 neighbors	 from	 CTH	

§  In	 transit:	 CTH	 transfers	 data	 to	 separate	 server	 job	
§  Extra	 nodes:	 CTH	 job	 size	 same	 as	 other	 runs,	 extra	 nodes	 are	 used	 to	

allocate	 the	 VDA	 service	
§  Internal	 nodes:	 CTH	 job	 given	 fewer	 nodes	 that	 are	 assigned	 to	 VDA	

service	 so	 that	 together	 both	 jobs	 use	 the	 same	 nodes	 as	 other	 runs	

§  Post-‐processing:	 Write	 Spyplot	 files	 from	 CTH,	 then	 post	
process	 analysis	 by	 reading	 back	 in	 and	 batch	 processing	 in	
ParaView.	

In	 Transit	 AllocaCons	

256	 Nodes	

SimulaCon	

16	 Nodes	

Vis	

256	 Nodes	

SimulaCon	
Vis	

“Extra	 Nodes”	 allocated	 for	 VDA	 services	

“Internal	 Nodes”	 included	 in	 job	 allocaCon	

Experiment	 ConfiguraCons	

§  All	 experiments	 performed	 on	 Cielo	 supercomputer	 at	 LANL,	
jointly	 managed	 by	 Los	 Alamos	 NaConal	 Laboratory	 and	
Sandia	 NaConal	 Laboratories	
§  8,944	 node	 Cray	 XE6	
§  Node:	 2	 AMD	 Opteron	 6136	 (Magny-‐Cours)	 8-‐way	 processor	 chips	

§  Total	 of	 16	 cores/node	
§  2.4	 GHz	 peak	 computaCon	 speed	 per	 core	

§  Peak	 of	 1.37	 Petaflops	
§  32	 GB	 memory/node	

55

Experiment,	 cont’d	

§  All	 applicaCons	 complete	 500	 cycles	 (i.e.,	 Cmestep	
calculaCons)	 of	 the	 CTH	 code.	 	

§  The	 first	 four	 applicaCons	 execute	 an	 analysis	 operaCon	 once	
every	 10	 cycles	

§  Spyplot	 file	 applicaCon	 outputs	 spyplot	 data	 at	 a	 fixed	 interval	
in	 simulated	 Cme,	 calculated	 so	 that	 the	 applicaCon	 executed	
the	 same	 number	 of	 analysis	 operaCons	 performed	 by	 the	
in	 situ	 and	 in	 transit	 applicaCons	
§  Total	 number	 of	 analysis	 operaCons	 is	 the	 same	

§  Data	 captured	 was	 from	 instrumented	 code	 and	 HPCToolkit	

Experiment,	 cont’d	
§  For	 each	 applicaCon,	 we	 ran	 strong	 scaling	 experiments	 for	

three	 different	 datasets.	 	 	
§  Each	 data	 set	 comes	 from	 the	 same	 iniCal	 condiCons	 but	 with	 a	

different	 maximum	 level	 of	 refinement	
§  Measurements	 of	 different	 job	 sizes	 with	 different	 data	 set	 sizes	

provides	 a	 weak	 scaling	 overview.	

Table	 shows	 the	 range	 of	 core	 sizes	 used	 for	 the	 various	 experiments.	 	 For	
every	 applicaCon	 we	 used	 the	 maximum	 16	 cores-‐per-‐node	 for	 the	 CTH	
client,	 since	 CTH	 is	 primarily	 bound	 by	 computaCon	 and	 scales	 very	 well.	

	

Results	

!

! !

!

0

50

100

150

200

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

Ti
m

e
(m

in
)

Dataset
! 1.5m blocks (100 internal nodes)

220k blocks (16 internal nodes)
33k blocks (2 internal nodes)

!

! !

!

0

50

100

150

200

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

Ti
m

e
(m

in
)

Dataset
! 1.5m blocks (128 extra nodes)

220k blocks (16 extra nodes)
33k blocks (2 extra nodes)

Total	 RunCme	 for	 All	 Experiments	

In	 situ	 baseline	 In	 situ	 refined	

In	 transit	 extra	 nodes	 In	 transit	 internal	 nodes	

Disk-‐based	 post-‐processing	

5	 applicaCons	
3	 datasets	
	
Strong	 scaling	 for	 each	
dataset	
	
Error	 bars	 show	 variance	
	

!

!

! !

0

50

100

150

200

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

Ti
m

e
(m

in
)

Dataset
! 1.5m blocks

220k blocks
33k blocks

!

!

! !

0

50

100

150

200

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

Ti
m

e
(m

in
)

Dataset
! 1.5m blocks

220k blocks
33k blocks

!

! !

!

0

50

100

150

200

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

Ti
m

e
(m

in
)

Dataset
! 1.5m blocks

220k blocks
33k blocks

Pipeline	 Summary	 Timing	 (1.5m	 blocks)	

Acceptable	 scaling	 performance,	 with	 the	 	 excepCon	 of	 the	 baseline	 algorithm.	

●

● ●

●

0

50

100

150

200

4096 8192 16384 32768
Client Ranks

Ti
m

e
(m

in
)

Experiments
● Disk−Based Post−Processing

In Situ (baseline)
In Situ (refined)
In Transit (100 internal nodes)
In Transit (128 extra nodes)(Post	 Processing)	

56

●

● ●

●

0

50

100

150

200

4096 8192 16384 32768
Client Ranks

Ti
m

e
(m

in
)

Experiments
● Disk−Based Post−Processing

In Situ (baseline)
In Situ (refined)
In Transit (100 internal nodes)
In Transit (128 extra nodes)

Pipeline	 Summary	 Timing	 (1.5m	 blocks)	

No	 significant	 improvement	 at	 32K	 cores.	 	 Probably	 insufficient	 work	 for	 analysis	 (only	
45	 blocks	 per	 process).	

(Post	 Processing)	

●

● ●

●

0

50

100

150

200

4096 8192 16384 32768
Client Ranks

Ti
m

e
(m

in
)

Experiments
● Disk−Based Post−Processing

In Situ (baseline)
In Situ (refined)
In Transit (100 internal nodes)
In Transit (128 extra nodes)

Pipeline	 Summary	 Timing	 (1.5m	 blocks)	

WriCng	 files	 surprisingly	 fast.	 	 Although	 slower	 than	 most	 alternaCves,	 sCll	 a	 viable	
opCon.	

(Post	 Processing)	

●

● ●

●

0

50

100

150

200

4096 8192 16384 32768
Client Ranks

Ti
m

e
(m

in
)

Experiments
● Disk−Based Post−Processing

In Situ (baseline)
In Situ (refined)
In Transit (100 internal nodes)
In Transit (128 extra nodes)

Pipeline	 Summary	 Timing	 (1.5m	 blocks)	

“Sweet	 spot”	 at	 8K	 cores:	 in	 transit	 with	 unrefined	 algorithm	 equal	 to	 in	 situ	 with	
refined	 algorithm.	

(Post	 Processing)	

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

Xfer Data
Wait

96 22
4

48
0

99
2

76
8

17
92

38
40

79
36

24
96

65
92

14
78

4
31

16
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

Xfer
Wait

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
Viz Init

CTH
Viz

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
Viz Init

CTH
Viz

Timing	 Per	 Task	

In	 situ	 baseline	 In	 situ	 refined	

In	 transit	 extra	 nodes	 In	 transit	 internal	 nodes	

•  CTH	 scales	 well.	
•  Baseline	 algorithm	 does	

not	 scale	
•  Disk	 I/O	 not	 bad	
	

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

I/O
Viz

Disk-‐based	 post-‐processing	

96 22
4

48
0

99
2

76
8

17
92

38
40

79
36

24
96

65
92

14
78

4
31

16
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

Xfer
Wait

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

Xfer Data
Wait

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
Viz Init

CTH
Viz

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
Viz Init

CTH
Viz

Timing	 Per	 Task	

In	 situ	 baseline	 In	 situ	 refined	

In	 transit	 extra	 nodes	 In	 transit	 internal	 nodes	

Refined	 analysis	 has	 much	
l owe r	 o v e r h e ad ,	 b u t	
iniCalizaCon	 is	 problemaCc.	 	 	
	
Refined	 algorithm	 requires	
addiConal	 data	 to	 be	
passed.	 Not	 done	 for	
in	 transit	 experiments.	
	

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

I/O
Viz

Disk-‐based	 post-‐processing	

96 22
4

48
0

99
2

76
8

17
92

38
40

79
36

24
96

65
92

14
78

4
31

16
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

Xfer
Wait

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

Xfer Data
Wait

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
Viz Init

CTH
Viz

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
Viz Init

CTH
Viz

Timing	 Per	 Task	

In	 situ	 baseline	 In	 situ	 refined	

In	 transit	 extra	 nodes	 In	 transit	 internal	 nodes	

Service	 is	 a	 fixed	 size	 (100	
nodes),	 the	 wait	 Cme	
should	 be	 independent	 of	
the	 number	 of	 cores	 on	 the	
client.	
	
	

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

I/O
Viz

Disk-‐based	 post-‐processing	

57

96 22
4

48
0

99
2

76
8

17
92

38
40

79
36

24
96

65
92

14
78

4
31

16
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

Xfer
Wait

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

Xfer Data
Wait

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
Viz Init

CTH
Viz

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
Viz Init

CTH
Viz

Timing	 Per	 Task	

In	 situ	 baseline	 In	 situ	 refined	

In	 transit	 extra	 nodes	 In	 transit	 internal	 nodes	

“ swee t	 s po t ” ,	 whe r e	
compute	 and	 analysis	 are	
balanced	 (equal)	
	

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

I/O
Viz

Disk-‐based	 post-‐processing	

0

50

100

150

0 100 200 300 400 500
Cycle

Ti
m

e
(s

ec
)

Operation
CTH
Viz

0

50

100

150

0 100 200 300 400 500
Cycle

Ti
m

e
(s

ec
)

Operation
CTH
Viz

0

50

100

150

0 100 200 300 400 500
Cycle

Ti
m

e
(s

ec
)

Operation
CTH
Xfer
Wait

0

50

100

150

0 100 200 300 400 500
Cycle

Ti
m

e
(s

ec
)

Operation
CTH
Xfer
Wait

In	 situ	 baseline	 In	 situ	 refined	

In	 transit	 extra	 nodes	 In	 transit	 internal	 nodes	

Although	 number	 of	 blocks	
changes	 very	 liSle,	 CTH	
runCme	 gets	 longer	 as	
simulaCon	 progresses.	
	
V i s	 Cm e	 i s	 r o u g h l y	
constant.	
	
In	 transit	 will	 “win”	 when	
xfer+wait	 is	 less	 than	 viz.	
	
In	 transit	 can	 flaSen	 the	
runCme	 as	 long	 as	 extra	
simulaCon	 Cme	 consumes	
only	 wait	 Cme.	
	

Time-‐Series	 Analysis	 (8k	 cores)	
10-‐cycle	 increments	

Time-‐Series	 Analysis:	 Variance	
10-‐cycle	 increments	

CTH	 (mean+std)	

Anomalies	 that	 cause	 large	 variance	 are	 clearly	 idenCfied	 in	 overlay	 plot.	 	
Not	 sure	 the	 true	 cause	 of	 the	 outliers.	 	 	 	
	

!!!!!!!!!!!!!!!!!!!!!

!

!!!!!!!!!!!!!!!
!!

!!!!!
!

!

!!!!

0

50

100

150

0 100 200 300 400 500
Cycle

Ti
m

e
(s

ec
)

!!!!!!!!!!!!!!!!
!!!!!

!

!!!!!!!!!!!!!!!
!!

!!!!!
!

!

!!!!

0

50

100

150

0 100 200 300 400 500
Cycle

Ti
m

e
(m

in
)

Experiment ! 1 2 3 4 5 6

CTH	 (overlaid)	

Time-‐Series	 Analysis:	 Variance	
10-‐cycle	 increments	

In	 situ	 baseline	 In	 situ	 refined	

Refined	 algorithm	 has	 much	 less	 communicaCon,	 resulCng	 in	 less	 variance.	 	
Scales	 are	 different	 in	 the	 two	 plots.	 	 	
	

0

5

10

15

20

0 100 200 300 400 500
Cycle

Ti
m

e
(s

ec
)

0

25

50

75

0 100 200 300 400 500
Cycle

Ti
m

e
(s

ec
)

0

5

10

15

20

25

0 100 200 300 400 500
Cycle

Ti
m

e
(s

ec
)

0

20

40

60

0 100 200 300 400 500
Cycle

Ti
m

e
(s

ec
)

0

5

10

15

20

25

0 100 200 300 400 500
Cycle

Ti
m

e
(s

ec
)

0

20

40

60

0 100 200 300 400 500
Cycle

Ti
m

e
(s

ec
)

In	 transit	 extra	 nodes	 transfer	 In	 transit	 extra	 nodes	 wait	

In	 transit	 internal	 nodes	 transfer	 In	 transit	 internal	 nodes	 wait	

In	 transit	 transfer	 Cmes	
have	 noCceable	 variance.	
	
P o s s i b l y	 c a u s e d	 b y	
placement	 issues.	 	
	
S c h e d u l e r	 d o e s	 n o t	
opCmize	 allocaCons	 for	
transfers	 between	 jobs.	
	

Time-‐Series	 Analysis:	 Variance	
10-‐cycle	 increments	

Block	 Processing	 Rate	 (Viz)	

In	 situ	 baseline	 In	 situ	 refined	

Refined	 algorithm	 is	
s c a l a b l e , 	 b a s e l i n e	
algorithm	 is	 not.	 	 (Verifies	
previous	 work.)	
	
In-‐transit	 plots	 show	
“effecCve”	 processing	
rate.	 	 	 Since	 viz	 Cme	 is	
flat ,	 we	 expect	 the	
e ff e c C v e 	 r a t e 	 t o	
decrease.	 	
	
At	 4k	 and	 8k,	 effecCve	
processing	 rate	 of	 in	
transit	 outperforms	 in	
situ.	 	

!

!

!

!

0

500

1000

1500

2000

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

Bl
oc

ks
/S

ec
on

d

Dataset
! 1.5m blocks

220k blocks
33k blocks

! ! ! !

0

500

1000

1500

2000

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

Bl
oc

ks
/S

ec
on

d

Dataset
! 1.5m blocks

220k blocks
33k blocks

!

!

!

!

0

500

1000

1500

2000

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

Bl
oc

ks
/S

ec
on

d

Dataset
! 1.5m blocks

220k blocks
33k blocks

!

!

!

!

0

500

1000

1500

2000

128 256 512 1024 2048 4096 8192 16384 32768
Client Ranks

Bl
oc

ks
/S

ec
on

d

Dataset
! 1.5m blocks

220k blocks
33k blocks

In	 transit	 extra	 (effecCve)	 In	 situ	 inclusive	 (effecCve)	

58

In	 Transit	 Node	 Scaling	

2	 server	 cores:	 64:1	
•  10	 cycles	 in	 37	 secs	
•  Client	 idle	 waiCng	 for	

servers	 (also	 affects	 xfers)	 	

Wait	 for	 Server	 Transfer	 Data	

4	 server	 cores:	 32:1	
•  10	 cycles	 in	 23	 secs	
	

8	 server	 cores:	 16:1	
•  10	 cycles	 in	 19	 secs	
•  Less	 than	 1%	 Cme	 waiCng	

In	 Transit	 Node	 Scaling	

!

! !

0

10

20

30

40

50

256 512 1024
Client Ranks

Ti
m

e
(m

in
)

Service Size
! 4 cores (2/node)

 8 cores (4/node)
16 cores (8/node)

!

!

! !

0

20

40

60

1024 2048 4096 8192
Client Ranks

Ti
m

e
(m

in
)

Service Size
! 32 cores (2/node)

 64 cores (4/node)
128 cores (8/node)

!

! !
!

0

40

80

120

4096 8192 16384 32768
Client Ranks

Ti
m

e
(m

in
)

Service Size
! 256 cores (2/node)

 512 cores (4/node)
1024 cores (8/node)

33k	 blocks	 218k	 blocks	 1.5m	 blocks	

For	 small	 datasets,	 there	 is	 clear	 benefit	 to	 using	 4	 and	 8	 cores/node	 (agreement	
previous	 slide)	
	
For	 1.5m	 blocks	 datasets	 (at	 large	 scale),	 the	 opposite	 appears	 to	 be	 true.	 	 	
Needs	 further	 study.	 	

Memory	 Footprint	 (on	 code	 side)	

M
em

or
y

U
se

d
(G

B)

0

5

10

15

5
AM

R
Le

ve
ls

M
em

or
y

U
se

d
(G

B)

0

5

10

15

6
AM

R
Le

ve
ls

M
em

or
y

U
se

d
(G

B)

0

5

10

15

7
AM

R
Le

ve
ls

20

100500
Measure Index

100500
Measure Index

100500
Measure Index

100500
Measure Index

100500
Measure Index

100500
Measure Index

100500
Measure Index

100500
Measure Index

100500
Measure Index

Cores
32768163848192409620481024512256128

In Situ
In Transit
CTH Only

All	 memory	 measurements.	 	 Holds	 relaCvely	 steady	 for	 all	 workflows	

Memory	 Footprint	 (on	 code	 side)	

32768

Co
re

s

7
AM

R
Le

ve
ls

6
AM

R
Le

ve
ls

5
AM

R
Le

ve
ls

16384
8192
4096
8192
4096
2048

1024

Co
re

s

1024
512
256
128

Co
re

s

0 2 4 6 8 10 12 14 16 18 20
Maximum Memory Used Per Node (GB)

CTH Only In Situ

CTH Only

CTH Only

In Situ

In Situ

32768

Co
re

s

7
AM

R
Le

ve
ls

6
AM

R
Le

ve
ls

5
AM

R
Le

ve
ls

16384
8192
4096
8192
4096
2048

1024

Co
re

s

1024
512
256
128

Co
re

s

0 2 4 6 8 10 12 14 16 18 20
Maximum Memory Used Per Node (GB)

CTH Only In Transit

CTH Only

CTH Only

In Transit

In Transit

Memory	 overhead	 generally	 falls	 between	 25%	 and	 50%	

Memory	 Footprint	 (on	 code	 side)	

32768

Co
re

s

7
AM

R
Le

ve
ls

16384

8192

4096

8192

Co
re

s

6
AM

R
Le

ve
ls

4096

2049

1024

1024

Co
re

s

5
AM

R
Le

ve
ls

512

256

128

0.0 1.0 2.0 3.0 4.0 5.0 6.00.5 1.5 2.5 3.5 4.5 5.5 6.5
Maximum Memory Used (GB)

In Situ
In Transit

In Situ
In Transit

In Situ
In Transit

In	 transit	 generally	 has	 less	 memory	 overhead,	 but	 requires	 extra	 nodes	 allocated	

Conclusions	

59

Conclusions	

In	 transit	 can	 provide	 a	 performance	 improvement	 over	 in	 situ	 in	 some	
circumstances,	 but	 the	 window	 is	 narrower	 than	 we	 ini?ally	 expected	 it	 would	 be.	 	
	
In	 transit	 data	 analysis	 has	 an	 added	 overhead	 above	 embedded	 in	 situ	 data	 analysis	
involving	 transferring	 data	 between	 parallel	 jobs.	 Given	 a	 data	 analysis	 algorithm	 with	
perfect	 linear	 scalability,	 we	 suspect	 in	 transit	 workflows	 will	 always	 have	 an	 added	
cost,	 and	 our	 results	 support	 this.	 With	 a	 data	 analysis	 algorithm	 that	 does	 not	 scale	
perfectly,	 possibly	 due	 to	 communicaCon	 overhead,	 it	 is	 theoreCcally	 possible	 for	
in	 transit	 to	 be	 faster	 by	 reducing	 the	 size	 of	 the	 data	 analysis	 job.	 This	 is	 one	 of	 the	
moCvaCons	 for	 choosing	 a	 data	 analysis	 task	 that	 requires	 significant	 communicaCon.	
In	 our	 results,	 we	 do	 find	 instances	 where	 in	 transit	 is	 faster,	 but	 by	 a	 smaller	 margin	
and	 for	 fewer	 configuraCons	 than	 we	 iniCally	 anCcipated.	 So	 although	 in	 transit	 has	
several	 other	 posiCve	 features,	 we	 do	 not	 anCcipate	 performance	 to	 be	 the	 main	
moCvaCons	 for	 using	 it.	

Conclusions	

The	 efficiency	 of	 in	 transit	 relies	 on	 balancing	 the	 ?me	 spent	 in	 simula?on	 and	 data	
analysis.	
The	 significant	 overhead	 cost,	 apart	 from	 data	 transfer,	 in	 the	 in	 transit	 workflow	 is	
the	 idle	 Cme	 spent	 in	 the	 simulaCon	 waiCng	 for	 the	 visualizaCon	 and	 data	 analysis	
service	 to	 become	 ready	 or	 the	 idle	 Cme	 spent	 in	 the	 visualizaCon	 and	 data	 analysis	
service	 waiCng	 for	 the	 simulaCon	 to	 send	 more	 data.	 This	 idle	 waiCng	 Cme	 is	
minimized	 when	 the	 simulaCon	 and	 data	 analysis	 spend	 the	 same	 amount	 of	 wall	
clock	 Cme	 between	 transfers.	 Although	 not	 demonstrated	 in	 this	 work,	 it	 is	 possible	 to	
“auto-‐balance”	 the	 work	 between	 simulaCon	 and	 data	 analysis	 by,	 at	 every	 iteraCon	
of	 the	 simulaCon,	 transfer	 data	 to	 the	 data	 analysis	 if	 and	 only	 if	 the	 data	 analysis	
service	 is	 ready	 to	 accept	 more	 work.	 The	 disadvantage	 of	 such	 an	 approach	 is	 that	
the	 idle	 process	 Cme	 could	 be	 replaced	 with	 unnecessary	 extra	 data	 analysis	 or	 less	
data	 analysis	 than	 necessary.	 However,	 we	 suspect	 that	 controlling	 the	 amount	 of	
visualizaCon	 and	 data	 analysis	 performed	 through	 job	 allocaCon	 sizes	 fits	 well	 with	
users’	 rules	 of	 thumb	 about	 resource	 allocaCon.	

Conclusions	

Memory	 overhead	 will	 be	 an	 important	 trade-‐off	 space. 	 	
	
The	 baseline	 amount	 of	 memory	 added	 to	 the	 CTH	 job	 to	 perform	 in	 situ	 processing	 is	
roughly	 100MB	 per	 core.	 Considering	 that	 our	 embedded	 in	 situ	 library	 is	 a	 fully	
featured	 visualizaCon	 toolkit	 containing	 over	 2	 million	 lines	 of	 code	 and	 algorithms	
developed	 over	 almost	 2	 decades,	 this	 overhead	 is	 not	 unreasonable.	 Nevertheless,	
this	 footprint	 can	 be	 problemaCc	 for	 simulaCons	 already	 Cght	 on	 memory.	 Because	 of	
this,	 efforts	 are	 already	 underway	 to	 improve	 our	 memory	 footprint	 by	 making	 finer	
modules	 and	 being	 more	 selecCve	 on	 the	 available	 algorithms.	 This,	 of	 course,	
requires	 a	 compromise	 between	 the	 size	 of	 the	 library	 and	 the	 algorithms	 that	 are	
dynamically	 available.	 We	 also	 note	 that	 our	 algorithm	 has	 the	 potenCal	 to	 generate	
sizable	 meshes	 of	 its	 own.	 Thus,	 it	 may	 be	 fruisul	 to	 pursue	 and	 support	 incremental	
algorithms	 where	 possible.	

Conclusions	

Ini?aliza?on	 ?me	 maGers	
	
Our	 scaling	 efforts	 to	 date	 focus	 on	 the	 scalability	 of	 the	 algorithms	 invoked	 during	 the	
run	 of	 a	 simulaCon.	 The	 iniCalizaCon	 cost,	 a	 one-‐Cme	 penalty,	 has	 yet	 to	 be	 seriously	
considered.	 However,	 based	 on	 our	 HPCToolkit	 measurements,	 iniCalizaCon	 becomes	
a	 significant	 cost	 at	 high	 process	 counts.	
	
Disk-‐based	 I/O	 is	 not	 dead	 .	 .	 .	 yet. 	 	
	
Our	 iniCal	 assumpCon	 was	 that	 it	 would	 not	 be	 feasible	 to	 output	 full	 results	 at	 a	 fine	
enough	 temporal	 resoluCon	 from	 CTH	 to	 disk	 storage	 to	 perform	 our	 high	 fidelity	 data	
analysis.	 However,	 our	 control	 workflow	 shows	 that	 although	 the	 overall	 Cme	 to	 write	
data	 to	 disk	 and	 then	 read	 back	 again	 incurs	 a	 large	 cost,	 it	 is	 sCll	 realisCc	 to	 do	 so.	
Thus,	 users	 may	 sCll	 choose	 to	 incur	 the	 extra	 overhead	 to	 use	 a	 tradiConal	 offline	
post-‐processing	 visualizaCon	 and	 data	 analysis	 workflow.	

Conclusions	

BeGer	 job	 scheduling	 is	 important	
	
One	 of	 the	 more	 complicated	 parts	 of	 running	 an	 in	 transit	 workflow	 is	 scheduling	 the	
simulaCon	 job	 and	 service	 job	 to	 run	 in	 tandem.	 Frankly,	 the	 capabiliCes	 of	 the	
scheduler	 are	 inadequate	 for	 our	 needs.	 We	 cannot	 start	 and	 stop	 jobs	 independently	
and	 make	 reconnecCons	 dynamically.	 Another	 experiment	 we	 would	 like	 to	 do	 but	 is	
challenging	 to	 schedule	 is	 to	 allow	 simulaCon	 and	 service	 to	 share	 nodes.	 Since	 each	
node	 has	 16	 cores,	 perhaps	 we	 could	 get	 beSer	 transfer	 performance	 by	 allocaCng	
one	 core	 per	 node	 for	 service	 and	 the	 rest	 for	 simulaCon.	 A	 similar	 scheduling	 scheme	
will	 be	 important	 to	 take	 advantage	 of	 burst	 buffers	 in	 future	 architectures.	

Future	 Work	

§  Algorithm	 comparison.	 	 Three	 similar	 algorithms	 with	 three	
different	 scaling	 behaviors	
§  Contour	 algorithm	 (perfectly	 scalable)	
§  Refined	 water	 Cght	 contours	 (reasonably	 scalable)	
§  Baseline	 water	 Cght	 contours	 (not	 scalable)	

§  No-‐wait	 analysis	 (in	 transit)	
§  Perform	 analysis	 if	 and	 only	 if	 the	 service	 is	 ready	

§  InvesCgate	 iniCalizaCon	 cost	 of	 in	 situ	 vis	
§  Zero	 copy	 transfers	 (in	 transit)	
§  AddiConal	 apps	 at	 Cielo	 scale	
§  Improved	 OS	 and	 runCme	 support	

§  Scheduling,	 placement,	 node	 sharing,	 specialized	 runCmes,	 …	

60

Summary	

§  Milestone	 4745	 “Data	 Co-‐Processing	 for	 Extreme	 Scale	
Analysis”	 was	 successfully	 completed	 on	 Cme,	 and	
demonstrated	 against	 the	 leSer	 and	 spirit	 of	 stated	
Milestone.	

§  The	 Milestone	 Team	 completed	 over	 9	 million	 node	 hours	 of	
Cielo	 tests	 on	 both	 in	 situ	 and	 in	 transit	 analysis	 capabiliCes	
on	 a	 problem	 provided	 by	 a	 Sandia	 analyst.	

§  The	 results	 of	 these	 experiments	 have	 been	 detailed	 in	 a	
SAND	 report,	 which	 is	 published	 as	 an	 unclassified	 unlimited	
release	 document,	 available	 to	 the	 enCre	 mod/sim	
community	

61

DISTRIBUTION:

1 James Ahrens
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

2 David Rogers
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

1 Berk Geveci
Kitware, Inc.
28 Corporate Drive
Clifton Park, NY 12065

1 Lucy Nowell
U.S. Department of Energy
SC-21
19901 Germantown Road
Germantown, MD 20874-1290

1 Becky Springmeyer
Lawrence Livermore National Laboratory MS 555
P.O Box 808
7000 East Ave.
Livermore, CA 94551

1 MS 1319 Ronald Brightwell, 01423

1 MS 0845 Micheal Glass, 01545

1 MS 1319 Suzanne Kelly, 01423

1 MS 0845 Kyran Mish, 01542

1 MS 0823 Constantine Pavlakos, 09326

1 MS 0380 Kendall Pierson, 01542

1 MS 0783 Jason Wilke, 06615

2 MS 1326 Nathan Fabian, 01461

2 MS 1326 Kenneth Moreland, 01461

2 MS 1327 Ron Oldfield, 01461

2 MS 0822 Jeff Mauldin, 09326

2 MS 0822 Warren Hunt, 09326

1 MS 0899 Technical Library, 9536 (electronic copy)

62

v1.38

	Executive Summary
	Acknowledgements
	Official Milestone
	Catalyst
	Catalyst Architecture
	Simulation Adaptor
	References

	Nessie
	Nessie Architecture
	CTH in transit analysis
	Related Efforts
	Nessie Availability

	Experiment Driver
	Results
	Experimental Setup
	Total Execution Time
	Time-Series Analysis
	Runtime Variance
	Scaling Analysis
	Memory

	Conclusions
	References
	Signed Letter from Committee
	Executive Summary Slides

