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Abstract

Exascale supercomputing will embody many revolutionary changes in the hardware
and software of high-performance computing. A particularly pressing issue is gaining
insight into the science behind the exascale computations. Power and I/O speed con-
straints will fundamentally change current visualization and analysis workflows. A
traditional post-processing workflow involves storing simulation results to disk and
later retrieving them for visualization and data analysis. However, at exascale, scien-
tists and analysts will need a range of options for moving data to persistent storage,
as the current offline or post-processing pipelines will not be able to capture the data
necessary for data analysis of these extreme scale simulations. This Milestone explores
two alternate workflows, characterized as in situ and in transit , and compares them.
We find each to have its own merits and faults, and we provide information to help
pick the best option for a particular use.
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Executive Summary

Milestone 4745, Data Co-Processing for Extreme Scale Analysis, is successfully completed
on time and demonstrated against the letter and spirit of the stated Milestone.

Visualization and data analysis on extreme scale platforms presents critical challenges in
the management of data generated by simulations and the interface between simulation and
data analysis. Computation speed will continue to outpace storage bandwidth, and power
management will become much more of a workflow constraint on advanced architectures, so
we anticipate that science on extreme scale machines will require a range of data analysis,
filtering, and visualization workflows. With these tools, the analysts will determine the best
computation profile for specific problems. In particular, in addition to current practices of
post-processing and constrained writes, customers will need in situ and in transit workflows
that allow them flexible options for getting results to persistent storage.

Milestone 4745 provides important study of the behavior of new workflows for visualiza-
tion and data analysis. In particular, we examine the performance of two proposed workflows:
an in situ workflow in which visualization and data analysis is coupled directly with a sim-
ulation as a library, and an in transit workflow in which visualization and data analysis is
a separate service connected to the simulation via a network. Each workflow has its own
characteristics, and our study details empirical evidence on their respective performances.

As we look ahead to the extreme architectures planned by ASC, it is critical to under-
stand the strengths and weaknesses of these proposed analysis approaches, and to design
experiments that will help us understand how to enhance scientific discovery on these new
architectures. Milestones such as this one provide important foundations for evaluating our
current technical approaches, and for strategic development of analysis capabilities for future
architectures.

For this Milestone, we explored the performance characteristics of two proposed tech-
nologies developed with significant contributions from Sandia National Laboratories. These
technologies leverage existing investments in data analysis, visualization and I/O research,
and are part of a long term strategic plan for addressing ASC analysis needs across a spec-
trum of scales, codes, and science domains. We employ two critical software technologies
developed with significant contributions from Sandia National Laboratories. First, we use
the Catalyst library to provide in situ visualization and data analysis directly to a running
simulation. Second, we use the Nessie framework to establish an in transit visualization and
data analysis service connected to a running simulation.

Our primary motivation for this use case was to use a highly scalable code that provided
an example of real physics, so that we could determine performance characteristics when
applied against real data. There is significant community development in min-apps available
in the community that scale well across large architectures, but whose output is not repre-
sentative of a real science code. CTH is utilized as a test code for ASC platforms, and has
been used in several exploratory in-situ tests in the past. Because of this, the team opted to
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use CTH as a driver for this large scale experiment.

Our empirical study comprises over 10 million core hours of running an instrumented
simulation and data analysis use case. This use case, involving the fragmentation analysis
of an explosion simulated in the CTH shock physics code, is designed in conjunction with a
Sandia analysis customer as an exemplar of scientific work.

In addition to demonstrating the scalability of our frameworks, our study also provides
insightful comparisons between the in situ and in transit workflows and the trade-off point
between them. We also consider other important parameters such as memory overhead,
initialization time, and scheduling.

This SAND report presents the full results of our milestone work and is available to
anyone.
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1 Official Milestone

The following is the ASC milestone our work implements.

ASC calculations produce complex datasets that are increasingly difficult to
explore and understand using traditional post-processing workflows. To advance
understanding of underlying physics, uncertainties, and results of ASC codes,
SNL must gather as much relevant data as possible from large simulations. This
drives SNL to couple data analysis and visualization capability with a running
simulation, so that high fidelity data can be extracted and written to disk. This
Milestone evaluates two approaches for providing such a coupling:

1. In-situ processing provides “tightly-coupled” analysis capabilities through
libraries linked directly with the simulation. SNL has collaborated on de-
veloping an in-situ capability designed for this purpose.

2. In-transit processing provides “loosely-coupled” analysis capabilities by per-
forming the analysis on separate processing resources. SNL provides this
capability through a “data services” capability designed for this purpose.

SNL will engineer, test and evaluate customer-driven operations on large-scale
data created by a running simulation. The data operations will be performed
by instrumented versions of both the in-situ and in-transit solutions, with the
resulting performance data published and made available to the ASC community.

A program review will be conducted, and its results documented. A report
will be submitted as a record of milestone completion.

Our “customer-driven operations” are encapsulated in the use case given in Section 4,
which is designed by Jason Wilke, one of our customers in Mechanical Engineering, to
represent a typical shock physics analysis.

The results of our instrumentation on the coupled simulation and visualization and data
analysis are given in Section 5. These results come from experimental runs on the Cielo
supercomputer [10] ranging up to over 64 thousand cores. Our measurements record the
cost of coupling visualization and data analysis to a running simulation in terms of added
execution time and memory overhead, which satisfies the deliverables of the milestone.

The milestone describes “two approaches” for coupling a simulation with visualization
and data analysis. These approaches refer to the workflow employed in the full process from
simulation to data analysis. These workflows are summarized in Figure 1.

The workflow in Figure 1a is a traditional offline post-processing in which the sim-
ulation stores all its results to disk for later visualization and data analysis. This is what
the milestone means by the “traditional post-processing workflows” with which “complex
datasets... are increasingly difficult to explore and understand.” Approach 1 of the mile-
stone refers to the embedded in situ workflow in Figure 1b in which a visualization and
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Science Code Simulation Data Persistent
Storage

(a) Traditional offline post-processing visualization and data analysis.

VDA
Service

VDA Data

Simulation DataVDA
APIScience Code Persistent

Storage

(b) Embedded in situ visualization and data analysis (VDA).

VDA
Service

VDA Data

Sim DataVDA
API

Sim DataScience Code Persistent
Storage

(c) Service-oriented in transit visualization and data analysis (VDA).

Figure 1: Traditional and emerging workflow diagrams showing the flow of information from
simulation to persistent storage. In all cases data will later be retrieved from storage and
further analyzed.

data analysis library is coupled with the running simulation code. Approach 2 of the mile-
stone refers to the in transit workflow in Figure 1c in which data is transfered from the
simulation job to a separate visualization and data analysis service.

All three workflows are considered in our measurements. The offline post-processing
workflow is implemented using the standard CTH I/O to write full meshes to storage and then
reading those meshes in a scripted parallel ParaView job. The embedded in situ workflow
is implemented with the Catalyst in situ library discussed in Section 2. The in transit
workflow is implemented with the Nessie I/O service described in Section 3.
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2 Catalyst

Catalyst is a general purpose, full-featured library that leverages existing implementations
of analysis and visualization capabilities. The intent in doing this is threefold. First, by
leveraging existing visualization and data analysis libraries we can benefit from the accu-
mulation of over two decades of visualization research and development. Second, by making
the library general purpose we can quickly apply our in situ visualization and data analysis
capabilities to many simulations as opposed to a single simulation. Third, by using our
existing code we can integrate the in situ tools with our traditional post-processing tools to
provide interfaces that users are already familiar and comfortable with and to apply scalable
algorithms designed for in situ with our post-processing tools.

Catalyst is a C++ library with an API available in C, FORTRAN, and Python. It is built
atop the Visualization Toolkit (VTK) [34] and ParaView [6]. This means that Catalyst takes
advantage of a large number of algorithms including writers for I/O, rendering algorithms,
and processing algorithms such as isosurface extraction, slicing, and flow particle tracking.
Catalyst uses ParaView to implement and manage the visualization and data analysis, which
is defined using a visualization pipeline [18]. Although it is possible to construct pipelines
entirely in C++, a more flexible approach is defining pipelines with Python scripts.

Science Code

ParaView
Parallel
Services

Catalyst
APIAdapter

INITIALIZE()
ADDPIPELINE(in pipeline)

REQUESTDATADESCRIPTION(in time, out �elds)
COPROCESS(in vtkDataSet)

FINALIZE()

Function CallsFunction Calls

Figure 2: Coupling a simulation with Catalyst.

2.1 Catalyst Architecture

Catalyst boils the ParaView and VTK architecture down into five API calls that manage
all the processing required for operating a processing pipeline. Initialize and Finalize are
expected calls when dealing with MPI; this is where Catalyst will first access MPI World.
RequestDataDescription and CoProcess handle the hand-shake from the simulation code
to Catalyst. RequestDataDescription passed current time information to Catalyst, and
Catalyst passes back whether or not it should process and which fields it needs. This may
allow the simulation code, through the adaptor described below, to efficiently pass only
what is necessary at that time. The CoProcess call is where control is passed to Catalyst for
processing. This call will hang until Catalyst finishes and returns control to the simulation.
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The AddPipeline call is where a majority of the work is done. Although there is usually
only one pipeline added to Catalyst, it is possible to add several. It is also common for this
pipeline to be written in Python, because this is the native scripting language for ParaView.
It is also possible for the pipeline to be coded in C++. While there is overhead cost to using
Python code in the pipeline here, it is very low due to its nature as a glue code combining
the C++ filters which are written in VTK. The advantage to using Python is that a scripted
pipeline can change alongside the simulation input deck without needing to recompile.

Figure 3: Wizard plugin within ParaView to export interactive traces as Catalyst pipelines
for use within a coupled simulation.

In addition to the advantages of writing Python pipeline scripts by hand, there is a
well supported plugin for ParaView that will automatically create Catalyst Python scripts
automatically from within the GUI, based on what the user does interactively, as shown
in Figure 3. This plugin reads in a file and creates the same code object provided by the
adaptor (see Section 2.2). The rest of the pipeline operates identically whether the data has
been read in from a file or it is coming from an in-memory in situ transfer.

The plugin creates images for each view open at the time the script is exported. To write
files, one can create objects within the pipeline that act as file write points. In general, these
are placed at the end of a long chain of processing to store the resulting processed data,
but it is also possible to splice these file writes into in the pipeline at any point, so that
intermediate data can be preserved. Each file and image writer can write at an independent
frequency, so that the output can be tuned precisely by the analyst. For example, images
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(which tend to be very small) can be written out frequently, while large, detailed data files
can be written out infrequently.

2.2 Simulation Adaptor

Since Catalyst will extend to a variety of existing simulation codes, our design does not expect
its API to easily and efficiently process internal structures in all possible codes directly. Our
solution is to rely on adapters — which are small pieces of code written for each new linked
simulation — to translate data structures between the simulation’s code (for our use case the
CTH shock physics code) and Catalyst’s VTK-based architecture, as shown in Figure 2. The
adapter must also establish a mechanism that allows the simulation to define a visualization
pipeline and periodically invoke the data analysis while running the simulation, which in our
CTH adapter we control through the CTH input deck.

To conserve memory, our adapter directly interfaces the visualization and data analysis
code to the data structures defined by CTH. This interface is challenging because although
the blocks of data are represented sequentially in both CTH and VTK, the multidimensional
order is different. To address this, our adapter contains an interface wrapper above the
standard VTK array. The wrapper reimplements the array’s accessor functions to handle the
order difference between the two systems. Although there is a minor overhead in additional
pointer arithmetic and virtual method calls, it saves us from a deep memory copy.

2.3 References

The Catalyst library and the algorithms we use within CTH are an accumulation of several
years work, starting with the development of fragment analysis algorithms with our post-
processing tools [13, 19, 21], described in more detail in Section 4. Subsequent work lead
to the development of Catalyst [12] and the scaling of algorithms used in conjunction with
CTH [11].
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3 Nessie

The NEtwork Scalable Service Interface, or Nessie, is a framework for developing parallel
client-server data services for large-scale HPC systems [16,26,29].

Nessie was originally developed out of necessity for the Lightweight File Systems (LWFS)
project [27], a joint effort between researchers at Sandia National Laboratories and the
University of New Mexico. The LWFS project followed the basic philosophy of “simplicity
enables scalability”, the foundation of earlier work on lightweight operating system kernels
at Sandia [32]. The LWFS approach was to provide a core set of fundamental capabilities
for security, data movement, and storage and afford extensibility through the development
of additional services. For example, systems that require data consistency and persistence
might create services for transactional semantics and naming to satisfy these requirements.
The Nessie framework was designed to be the vehicle to enable the rapid development and
deployment of such services.

Although Nessie was originally designed for I/O and system services, it is also useful
for development of application-specific data services. For example, we developed services
for staging checkpoint data [23,24,31], HPC database integration [30], interactive visualiza-
tion [25], network traffic analysis, and most recently CTH in transit analysis [22]. A recent
paper describes these services in detail [17].

This section includes a brief description of the Nessie architecture and APIs followed by
a more detailed description of the in transit service for CTH data analysis using ParaView.

3.1 Nessie Architecture

Because Nessie was originally designed for I/O systems, it includes a number of features that
address scalability, efficient data movement, and support for heterogeneous architectures.
Features of particular note include 1) using asynchronous methods for most of the interface
to prevent client blocking while the service processes a request; 2) using a server-directed
approach to efficiently manage network bandwidth between the client and servers; 3) using
separate channels for control and data traffic; and 4) using XDR encoding for the control
messages (i.e., requests and results) to support heterogeneous systems of compute and service
nodes.

A Nessie service consists of one or more processes that execute as a serial or parallel
job on the compute nodes or service nodes of an HPC system. We have demonstrated
Nessie services on the Cray XT and XE systems at Sandia National Laboratories (SNL)
and Oak Ridge National , the Cray XT4/5 systems at Oak Ridge National Laboratory,
and a large InfiniBand cluster at SNL. The Nessie RPC layer has direct support of Cray’s
SeaStar interconnect [7], through the Portals API [8]; Cray’s Gemini interconnect [4]; and
InfiniBand [5].
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request

A

B

C

D

data

result
buffer

request
queue

data
buffers

result

Client Analysis Service

A

B

(1) perform_analysis()

get_data()
do_analysis()
write_result()

(3) send_result()

client-initiated
server-initiated

Legend

(2)

storage

Figure 4: Conceptual protocol for Nessie service doing analysis. The server fetches bulk
data through RDMA commands until it has satisfied the request. After completing the data
transfers, the server processes the data, writes analysis results to disk, then sends a small
“result” back to the client indicating success or failure of the operation.

Nessie API

The Nessie API follows a remote procedure call (RPC) model, where the client (i.e., the
scientific application) tells the server(s) to execute a function on its behalf. Nessie relies on
client and server stub functions to encode/decode (i.e., marshal) procedure call parameters
to/from a machine-independent format. This approach is portable because it allows access
to services on heterogeneous systems, but it is not efficient for I/O requests that contain raw
buffers that do not need encoding. It also employs a ‘push’ model for data transport that
puts tremendous stress on servers when the requests are large and unexpected, as is the case
for most I/O requests.

To address the issue of efficient transport for bulk data, Nessie uses separate commu-
nication channels for control and data messages. In this model, a “control” message, also
known as a request, is typically small. It identifies the operation to perform, where to get
arguments, the structure of the arguments, and perhaps the data itself (if the data is small
enough to fit in the fixed-sized request). In contrast, a data message is typically large and
consists of “raw” bytes that, in most cases, do not need to be encoded/decoded by the server.
For example, Figure 4 shows the transport protocol for an in transit service that performs
analysis on simulation results data.

The Nessie client uses the RPC-like interface to push control messages to the servers, but
the Nessie server uses a different, one-sided API to push or pull data to/from the client. This
protocol allows interactions with heterogeneous servers and benefits from allowing the server
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to control the transport of bulk data [15, 35]. The server can thus manage large volumes of
requests with minimal resource requirements. Furthermore, since servers are expected to be
a critical bottleneck in the system, a server directed approach affords the server optimizing
request processing for efficient use of underlying network and storage devices – for example,
re-ordering requests to a storage device [15].

While it is not strictly necessary on systems that have homogenous clients and servers, we
use XDR encoding to provide portable serialization of arguments for the request arguments.
This was a design decision made early in the project that allow the client to send arbitrary
C-like data structures to the server with minimal development effort. At the time, we were
implementing file services for a system where the service nodes were a different architecture
(and had different endienness) than the compute nodes. In this case, byte-swaps were nec-
essary for the control structures. Since rpcgen, the function that generates the serialization
code is pervasive in Unix environments and has been in use for more than a decade, it was
the logical choice for argument marshaling.

NNTI API

The Nessie Network Transport Interface (NNTI) provides a portable, lightweight, interface
for RDMA operations on HPC platforms. Our current implementation includes support
for the Cray Seastar, InfiniBand, Cray Gemini, and IBM DCMF interconnects. The APIs
include commands to open and close the interface, connect and disconnect to a peer, register
and deregister memory buffers, and finally asynchronously transport (through put, get, and
wait commands) bulk data.

Figure 5 illustrates the software stack for applications using Nessie and NTTI. The NNTI
library sits below the Nessie RPC library to enable portability across HPC interconnects. In
addition to the Nessie library, NNTI is also used by the ADIOS/DataStager [2] to provide the
same level of portability and performance. We are also discussing NNTI as the lowest-layer
network transport for the Sirocco parallel file system, another ASC project at SNL.

CommSplitter API

The CommSplitter library was designed to overcome a security model limitation in the
Gemini interconnect. On current Gemini systems, user-space applications are not allowed
to communicate, even if both applications are owned by the same user. We requested this
feature and at the time of this writing, Cray is addressing this issue to better support data
services in future versions of Gemini. In the mean time, we overcame that limitation by
launching our jobs in Multiple Program, Multiple Data (MPMD) mode. MPMD mode
enables a set of applications to execute concurrently, sharing a single MPI Communicator.
The problem with this approach is that legacy applications were not designed to share a
communicator with other applications. In fact, most HPC codes assume they have exclusive
use of the MPI COMM WORLD communicator. When this is not the case, a global barrier,
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Figure 5: Software stack for applications using the Nessie and NNTI libraries.

such as an MPI Barrier function will hang because the other applications did not call the
MPI Barrier function.

To address this issue, we developed the CommSplitter library to allow applications to
run in MPMD mode while still maintaining exclusive access to a virtual MPI COMM WORLD

global communicator.

The CommSplitter library identifies the processes that belong to each application, then
“split” the real MPI COMM WORLD into separate communicators. The library then uses the
MPI profiling interface to intercept MPI operations, enforcing the appropriate use of com-
municators for collective operations.

No changes are required to the application source code to enable this functionality. The
user simply links the CommSplitter library to the executable before launching the job. The
library has no effect on applications that are not run in MPMD mode.

3.2 CTH in transit analysis

In this milestone, we used Nessie to construct an in transit CTH data analysis service. The
data analysis service exists as its own parallel job that communicates with a parallel CTH
job using the Nessie APIs. The in transit CTH data analysis library is a drop-in replacement
for the PVSPY library [20] used for in situ data analysis. This makes comparing in situ and
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Figure 6: Comparison of in situ (a) and in transit (b) fragment detection for the CTH shock
physics code.

in transit approaches extremely convenient since it only requires the user to link a different
library when compiling CTH. Instead of executing the data analysis on the same compute
nodes of the CTH application (as the in situ library does), the in transit library marshals
requests, sends data to the data analysis service, and performs all the data analysis on the
separate application. Figure 6 illustrates this process for data analysis that does fragment
detection.

For efficiency reasons, the in transit PVSPY client implementation does not simply for-
ward all the functions to the service. In many cases, the client maintains metadata to avoid
unnecessary data transfers. For example, the PVSPY API includes “setup” functions for
initializing data structures, assigning cell and material field names, and setting cell and ma-
terial fields pointers. Not all of these functions require an immediate interaction with the
data service. In fact, the only operations that require bulk data transport are the opera-
tions that synchronize the metadata and the data between the client and the server. These
operations occur just before a pvspy viz operation that initiates the ParaView coProcessing
on the remote service.

The in situ version of PVSPY has the notion of a “CTH source” that allows the data
analysis code to work directly on the memory of the CTH application without making any
copies. Since the in transit service does not have access to the physical memory of the CTH
application, we created a virtual CTH source on the server that emulates the data structures
on the CTH application. That allows the service to use use the same PVSPY library that
the client uses in the in situ data analysis.

With the exception of the operations to transfer metadata and data to the analysis
service, all remote operations are asynchronous, allowing the data analysis on the service to
execute in parallel with computation on the CTH application. If one remote visualization
operation is not complete by the time CTH is ready to do another visualization operation,
CTH has to wait.
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3.3 Related Efforts

There are a number of efforts to develop technologies for staging data or providing data
services that are related to, and in some cases derived from, Nessie. The two primary
competitors of Nessie include the data-staging portions of the ADIOS library from ORNL,
and the Glean library from Argonne National Laboratory.

The Adaptable IO System (Adios) is an I/O library that separates the I/O interface
from the underlying I/O operations. Using XML configuration files, the user can specify, at
runtime, the methods used to perform I/O. For example, MPI-IO, POSIX-IO, netCDF, or
their own BP method are all options the use can select. ADIOS also includes methods data
transport that allow the staging and processing of data in the same way as Nessie. This
staging technology, called DataTap [1] and DataStager [2] derive from early work on Nessie
as part of a joint collaboration between GA Tech, SNL, and ORNL. More recent versions of
DataStager are also using the NNTI API to provide portable RDMA transport.

The DataSpaces [9] project uses the memory on data-staging nodes as a scratch space for
communicating and sharing data among multiple applications. This work is closely aligned
with the ADOIS efforts at ORNL. The primary focus is to use asynchronous IO to move
data into a staging area and then having a different application retrieve data at a later time.

A recent effort called Glean [36] from Argonne is a start towards both accelerating IO
performance and integrating functionality, such as data analysis routines, at the right place
transparently. It is very similar to PreDatA, but extends the location of operations to
potentially beyond the current machine.

Most of the related efforts focus primarily on the I/O benefits of data-staging, but have
not put a tremendous effort into complex analysis. The majority of the analyis codes perform
relatively simple statistics and/or visualization. With Nessie, and this effort in particular,
we treat the service as a complex parallel application that includes all the synchronization,
communication, and scaling issues inherent in HPC parallel applications. These issues require
a level of detail and performance tuning that is lacking in other efforts.

A second distinction between our approach and related work is a general philosophy
on supporting APIs. While the other approaches, like ADIOS, provide a unified I/O API,
our approach is to provide in transit implementations of commonly used APIs so the code
does not have to change the source code. In this milestone, we implemented an in transit
version of the pvspy API, the same API used to perform the in situ experiments. It was
this approach that made comparison between the in situ and in transit approaches so easy
to perform.
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3.4 Nessie Availability

The Nessie software is available, open source, as part of the Trilinos I/O Support Package [28].
The package includes the NNTI, Nessie, CommSplitter libraries as well as a collection of
CMake macros and other tools for constructing application-specific data services.
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4 Experiment Driver

For the purposes of this milestone, we explore the problem of characterizing fragments in an
explosion simulation. Simulation is a vital part in understanding shock physics. Although
experimentation will always be a necessary tool for scientific inquiry and corroboration, the
amount of data we can retrieve with experimentation is limited. Experiments in shock physics
usually involve high energy, high velocities, and high variability, all of which hinder detailed,
accurate, and repeatable observations during the experiment. When measurements cannot
be taken during the experiment, they must be taken after the experiment by observing the
remaining material. Much can be learned in the manner, but the transient states during the
experiment are lost.

Another limiting factor of experimentation is its high cost and slow turnaround. To
create shock physics experiments, physical devices must be fabricated. These devices are
then usually destroyed during the experiment. Safety and political issues also often plague
shock physics experiments. In some cases, experimentation is simply not feasible. Thus,
simulation plays a major role in shock physics analysis.

In this milestone, we use an example simulation of an exploding pipe shown in Figure 7.
This similation problem is provided to our group by Jason Wilke. In addition to well rep-
resenting the kinds of simulation and analysis done at Sandia National Laboratories, this
simulation provides interesting results and many different levels of refinement, which allows
us to scale the problem from less than 100 cores to well over 10,000 cores.

Figure 7: Simulation of an exploding pipe, which presents many prototypical fragment anal-
ysis challenges.

One of the most important features in shock physics analysis is material fragments. The
physical properties of the fragments, including mass, volume, and shape, as well as their
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trajectories, can all be important. In particular, shape can be an important characteristic.
Consider the example fragments given in Figure 8. The top fragment is long and sharp,
making it more likely to penetrate objects. In comparison, the bottom left fragment is
rounded and could have less damage potential. However, the U-shaped fragment in the
bottom right may be harmful depending on the scenario, but could be difficult to distinguish
from the round fragment in many shape metrics.

Figure 8: Examples of potential fragments that we would like to characterize.

The simulation code we use is CTH [14,33]. It is an Eulerian shock physics code that uses
an adaptive mesh refinement (AMR) data model. These adaptive finite volumes can take up
different amounts of space depending on where they are in the model and how closely the
simulation is refining the space.

In order to correctly find fragments, we must first determine what is and is not a fragment.
The simulation operates on a finite volume and comprises a set of simulated materials, which
each take up a certain fraction of finite cells within that volume. We treat any connected
region of cells with material volume fraction above a given threshold as a fragment of that
material. Generally speaking, when a simulation begins, each material comprises usually
one connected region, which we refer to as the main mass. As the simulation progresses,
this region breaks apart and gaps occur between pieces of material, filled either by another
material or by the surrounding air. Once there is a gap as wide as at least one cell, we
determine that a fragment as formed. The challenge when finding these fragments on a large
scale parallel system is that regions that make up the fragments straddle process boundaries,
requiring communication between the processes to determine the full shape of a fragment.

Because the number of fragments a shock physics simulation can generate are so numer-
ous, it is seldom realistic for a person to examine every one. It is therefore more beneficial
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to first perform computational analytics that provide useful summary statistics and iden-
tify particularly interesting fragments. This analysis has the added benefit of reducing the
amount of memory required to represent it. Therefore, fragment analysis is a good candidate
for in situ processing.

A full fragment analysis requires multiple steps.

1. Find block neighbors. This includes determining block neighbors located on different
process.

2. Build a conforming mesh over the AMR boundaries. AMR has inconsistent inter-
polation at interfaces between blocks of different refinements. The conforming mesh
resolves the interpolation.

3. Identify the boundaries of fragments. We estimate the boundary as the contour at a
threshold between high and low volume fraction.

4. Find the fragment connected components. A connected components analysis brings
together all finite elements that belong to a single fragment.

5. Characterize properties of fragments. Given the collected elements for each fragment,
find the features such as shape volume, and movement that are of interest.

6. Extract useful information. This could involve, for example, computing histograms of
features or extracting a small subset of fragments deemed important.

For the purpose of simplifying the problem and making it tractable for anal-
ysis, we abbreviate the problem to include only the identification of fragment
boundaries for the results of this milestone. The creation of fragment boundaries is a
nontrivial problem in that we must make sure the surface is “watertight” in that the rep-
resentative mesh surface is conforming and closed. Making a surface from an AMR mesh
watertight is challenging because the AMR mesh itself is nonconforming at boundaries be-
tween adjacent regions at different levels of refinement.

To generate this watertight fragment surface, we first build a dual mesh of the original
AMR mesh. The dual mesh contains a vertex at the center of each cell in the original mesh
and an edge through each face of of the original mesh as demonstrated in Figure 9. The
advantage of creating a dual mesh is that it is straightforward to build conforming cells
across the boundaries of AMR regions with different levels of refinement.

The disadvantage of building these dual meshes in a distributed parallel job is that
neighborhood information must be shared between regions that might be located on dif-
ferent processes. Resolving this neighborhood information requires a significant amount of
communication. (Such communication would be necessary for any creation of a watertight
mesh.) This communication can limit the scalability of the algorithm.

Efficient communication of boundary elements first requires that each process knows the
location of the neighbors for each region it holds. If data is loaded with no knowledge of its
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Figure 9: A simple 2D AMR example with 2 different refinement levels (blue lines) and the
conforming dual grid we build with it (yellow lines).

decomposition, which is typical in the post-processing of data, then this neighborhood infor-
mation can be retrieved only through global communication. Our initial baseline algorithm
starts with this global communication, which we find to severely limit the scalability of the
algorithm.

When running the surface creation algorithm as an embedded in situ component of CTH,
this global communication of finding neighbors is wasteful because CTH already has this
information. To take advantage of this neighborhood information, we make a small change
to CTH to pass this data decomposition information through its I/O layer to Catalyst.
With this data, our refined algorithm skips the global communication leaving only the
more scalable boundary-data passing. Our analysis shows that the refined algorithm is
much more scalable than the baseline algorithm [11]. Unfortunately, we cannot apply the
refined algorithm in the in transit workflow because this workflow redistributes the data and
invalidates this neighborhood information from CTH.
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5 Results

This section documents the results of our many experiments designed to characterize the
performance of our data analysis workflows. In particular, we are interested in determining
the additional overhead our data analysis places on the simulation and the efficiency with
which it can be done. These data summarize evaluations run over the course of 10.58 million
cpu-hours of execution. The results come from measurements taken from instrumented code
as well as the HPCToolkit profiling tool [3].

5.1 Experimental Setup

All experiments were performed on the Cielo supercomputer housed at Los Alamos National
Laboratory. Cielo is an 8,944-node Cray XE6 resource for the Advanced Simulation and
Computing (ASC) program and is jointly managed by Sandia National Laboratories and
Los Alamos National Laboratory under the New Mexico Alliance for Computing at Extreme
Scale (ACES) project. Each node contains two AMD Opteron 6136 (Magny-Cours) 8-way
processor chips for a total of 16 cores per node. Each core has a peak computational speed of
2.4 GHz, leading to a total theoretical peak of 1.37 Petaflops for the machine. The compute
nodes each have 32 GB of memory. The interconnect consists of a proprietary Cray Gemini
Network with a 3D Torus topology and has a peak throughput rate of 6 GB/s/link.

This report includes strong scaling and weak scaling results from the following CTH and
data analysis experiments. These represent three different workflows, two of which have two
different configurations for a total of five experiments.

In situ : A CTH job that directly runs an in situ data analysis. Thus, the visualization and
data analysis is performed in the same job and memory space as the simulation. Within
the in situ workflow, we measure two variations of our watertight surface algorithm.

Baseline: As described in Section 4, the baseline version of the algorithm includes a
redundant step of global communication to find AMR block neighbors. We in-
clude results from this workflow for two reasons: First, we are not able to apply
the same optimization to the in transit and offline post-processing workflows, so
this provides an apples-to-apples comparison of the benefit an in transit approach
could give using the same algorithm. Second, we anticipate other important anal-
ysis algorithms could have similar communication characteristics. For example, a
connected components algorithm could require communication between most or
all processes to resolve the connectivity of large fragments.

Refined: As described in Section 4, the refined version of the algorithm bypasses the
step of global communication by retrieving the AMR block neighbors from the
running CTH simulation. We thus expect it to have better scaling performance.
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In transit : A CTH job that performs in transit data analysis using a separate allocation of
compute nodes. Data is transferred from the simulation to a service where visualization
and data analysis is performed asynchronously with respect to the simulation. Within
the in transit workflow, we measure two job scheduling variations.

Extra nodes: Allocate the CTH job with the same number of nodes as we would
without the data analysis, and then create a visualization and data analysis service
using extra nodes. For example, if the simulation were normally to be run on
256 nodes, then still schedule the simulation on 256 nodes and also schedule the
visualization and data analysis service on an additional 16 nodes. This allocation
represents a use case where there are additional compute nodes (perhaps with
special OS, runtime, or hardware features) that could be used to perform data
analysis on behalf of the application. For example, the suggested “burst buffer”
architecture for the Trinity system may have special nodes with NVRAM and
additional memory that would be appropriate for this type of in transit data
analysis.

Internal nodes: Divide the nodes normally allocated to the CTH job between the
simulation and the visualization and data analysis service. For example, if the
simulation were normally to be run on 256 nodes, then schedule the simulation
on only 240 nodes and use the remaining 16 nodes to schedule the visualization
and data analysis service. We use this workflow to find out if, given an equal
number of resources for in situ and in transit , there might be situations where
the preferable approach changes.

Disk-based post-processing: A CTH job that writes Spyplot files instead of doing data
analysis. At some point later a batch data analysis job is run on the saved data. This
workflow represents the traditional post-processing approach. The number of nodes
used matches the number used for data analysis in the Extra nodes version of in transit .
Note that although CTH is writing out Spyplot files, these files are being read by the
ParaView application and running the same algorithm with the same code as the in
transit workflow and the baseline algorithm for the in situ workflow.

All applications complete 500 cycles (i.e., timestep calculations) of the CTH code. The
first four applications execute a fragment analysis operation once every 10 cycles. Spyplot is
an in situ visualization capability written as part of CTH to provide some basic visualization
capability such as isosurfaces and cut planes. Because fragment detection is not available
as part of Spyplot, we do not consider the in situ capability here. Instead, for the Spyplot
file application, we output Spyplot data which intended for fragment post-processing by
ParaView, and written at a fixed interval in simulated time, calculated so that the application
executed 51 I/O operations, equaling the number of fragment analysis operations performed
by the in situ and in transit applications. The number of nodes used is the same as the in
transit application using extra nodes. There is no way to directly instruct CTH to output
Spyplot data every 10 cycles. The resulting data files are then loaded in a separate ParaView
data analysis job run at a later time. This data analysis was also performed on Cielo using
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ParaView statically compiled from the same code base as the in situ and in transit runs, but
executed by ParaView’s pvbatch application. The time to run the simulation, read and write
files, and perform the post-processing analysis are all summed together to get a processing
time for computation equivalent to that done in the in situ and in transit workflows.

Table 1: Scaling Overview

CTH In transit Server
Most In transit Internal Extra Nodes Internal Nodes

Cores Nodes Cores Nodes Cores Nodes Cores Nodes

33K Blocks — 5 levels
128 8 96 6 16 2 16 2
256 16 224 14 16 2 16 2
512 32 480 30 16 2 16 2

1,024 64 992 62 16 2 16 2
220K Blocks — 6 levels

1,024 64 768 48 128 16 128 16
2,048 128 1,792 112 128 16 128 16
4,096 256 3,840 240 128 16 128 16
8,192 512 7,936 496 128 16 128 16

1.5M Blocks — 7 levels
4,096 256 2,496 156 1,024 128 800 100
8,192 512 6,592 412 1,024 128 800 100

16,384 1,024 14,784 924 1,024 128 800 100
32,768 2,048 31,168 1,948 1,024 128 800 100
65,536 4,096 63,936 3,996 1,024 128 800 100

For each application, we ran strong scaling experiments for three different datasets. Each
data set comes from the same initial conditions but with a different maximum level of
refinement. Thus, measurements of different job sizes with different data set sizes provides a
weak scaling overview. Table 1 shows the range of core sizes used for the various experiments.
For every application we used the maximum 16 cores-per-node for the CTH client, since CTH
is primarily bound by computation and scales very well. For the in transit experiments in
this section, we used 8 cores for each service node. The exception is in Section 5.5 where we
discuss in transit performance under different core-per-node counts.

We note that although the in transit experiments use 128 visualization nodes when
allocated using extra nodes but only 100 nodes when run internally. The rational is that
we ran the experiments with extra nodes first, and determined that the visualization is a
memory-bound problem with more memory than necessary on the nodes. Thus, we reduced
the visualization partition to 100 nodes when using internal nodes, but we were unable to
repeat the former experiments to remove this minor discrepancy.
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Figure 10: Total runtime for 500-cycle runs of each workflow.
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5.2 Total Execution Time

Our first consideration is the overall runtime of each workflow with each data set and job
size.
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Figure 11: Execution time comparison for the 1.5M block dataset.

Figures 10 and 11 show the measured total execution time from each of the different
workflows. In cases where we ran the same experiment multiple times, we plot the mean
with error bars representing the standard deviation from the mean. The set of plots in
Figure 10 show individual timings of each of the workflows for each size dataset; the plot in
Figure 11 shows a direct comparison of all the applications for the 1.5M block data set. The
results clearly show a “sweet spot” at 8K cores where the in transit approach, even though
it is using a less scalable algorithm, performs the same as the the refined version of in situ.
At 16K and 32K, none of the codes running data analysis show significant improvement,
the baseline in situ and the in transit approaches actually take longer. We believe the
biggest reason for this is that there is not enough work for the compute nodes. At 32K
cores, each core is processing around 46 blocks/node, where the same size problem using 4K
nodes requires each core to process 366 blocks. The key to making the in transit approach
successful is being able to overlap computation and data analysis. If the data analysis portion
does not scale particularly well, the compute nodes need sufficient work to hide the analysis
cost.

To better understand exactly where the time is being spent, we collect detailed timings
of each application using a combination of instrumented timers and profiling tools (HPC-
Toolkit). Figure 12 shows the total runtime performance of the five workflows as a stacked
bar plots illustrating the portion of runtime associated with select functions. For the in
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(c) In transit with extra nodes.
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(d) In transit using internal nodes.
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Figure 12: Illustration showing the contributions of selected operations to the total execution
times for each application.
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situ workflows, we measure the initialization and computational time of CTH and the anal-
ysis/visualization. For in transit workflows, we measure the initialization cost of CTH, the
cost of transferring data to the service, and the time the client waits for the server operation
to complete. The wait only occurs after CTH has finished its operation before the visualiza-
tion and data analysis is complete. If the visualization and data analysis completes before
CTH finishes its operation, then no wait time occurs.

Results from Figure 12a show that there is a clear scaling problem with the data analysis
portion (labeled “Viz”) of the baseline in situ workflow. It almost appears as if the execution
time is more dependent on the problem size than the number of cores performing the data
analysis. The refined version dramatically improves the performance. This corroborates our
previous work [11], but we are now able to take the scaling out to a larger scale to see that
the performance appears to be flattening out (although this might be in part due to a small
number of blocks per core).

Another important issue these timings reveal is that of the initialization cost of the
visualization and data analysis. Although the CTH initialization cost appears to decrease
as the core count increases, the initialization cost for data analysis, “Viz Init,” increases,
accounting for more than 1/3 of the total time for a 500-cycle run. For long runs, the
initialization cost will get amortized, but is still large enough to warrant further study.

The in transit workflow results in Figures 12c and 12d show that the in transit ap-
proach effectively hides the data analysis overhead when the clients have sufficient compute
resources. For the 1.5M block dataset, Figure 12c shows that in transit with an extra 128
nodes successfully hides most of the cost of data analysis at 4K and 8K nodes, but the wait
time at larger core counts eliminates any benefit of in transit using the baseline algorithm.

The in transit workflow, shown in Figure 12d, which carves out a subset of 100 nodes
for data analysis, has interesting results as well. Observe that the number of cores used for
CTH is much smaller, leading to an increase in the time spent doing CTH computation.
Even with this increase in computational cost, there is still benefit. At 4K and 8K, all of
the data analysis cost is hidden. At 8K, the total runtime is slightly less than the refined
version of in situ. This result is a bit of a surprise given that they are both using the exact
same number of resources.

An additional test of interest (not performed within the scope of this Milestone) would
be to measure performance of the in transit workflows using the refined version of the frag-
ment analysis algorithm. If the the in transit approach achieved the same performance
improvement shown by Figure 12b, the in transit approach would be able to hide most of
the fragment analysis cost even at large scale. However, using the refined version of the frag-
ment analysis algorithm would be different because the mesh decomposition changes when
transferred from client to server. For the neighborhood information to remain consistent, the
I/O framework would have to report how data was repartitioned so that the neighborhood
information could be mapped to the new decomposition.

Another surprising result is the performance of the spyplot file application. For the size of
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datasets we studied, this application performed quite well, showing that the Lustre file system
on Cielo is quite strong. The plots include the time spent writing the spyplot files during the
experiment and the measured time to perform the data analysis as a post-processing step.
One anomaly we notice in Figure 12e is that for the largest data set the I/O time jumps
from around 2 minutes with 8192 cores to 10 minutes on 16,384 cores. Looking closer at our
log files, we see that we have two experiments contributing to this value. One experiment
required about 4.5 minutes to write whereas the other required about 15.5 minutes. We
speculate that this second measurement comes from an anomalous condition on Cielo, but
we do not have enough data to diagnose further.

5.3 Time-Series Analysis

To illustrate how operation performance changes throughout a single run of the application,
we selected one experiment and tracked the performance of each 10-cycle period over a span
of a 500 cycle run. Since the “Viz” operation executes every 10 cycles, what is shown is
the sum of 10-cycles worth of CTH and the time spent by 1 data analysis operation. We
chose to evaluate the experiments that use 8K processors of the 1.5M block dataset — the
“sweet spot” mentioned in Section 5.2 — because it is one of the interesting places where
the performance of the refined in situ application and both in transit applications all have
similar total runtime.

Since we are running the adaptive-mesh refinement (AMR) variant of CTH, the number
of “active” blocks gets recalculated by CTH at various points during a run. Since we expect
this to have an impact on CTH execution and in transit transfer times, we first plot the
number of active blocks for our selected experiment in Figure 13. As simulation progresses,
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Figure 13: Number of active blocks used in the course of a 500-cycle run of CTH.

34



0

50

100

150

0 100 200 300 400 500
Cycle

T
im

e 
(s

ec
)

Operation

CTH

Viz

(a) In situ baseline.

0

50

100

150

0 100 200 300 400 500
Cycle

T
im

e 
(s

ec
)

Operation

CTH

Viz

(b) In situ refined.

0

50

100

150

0 100 200 300 400 500
Cycle

T
im

e 
(s

ec
)

Operation

CTH

Xfer

Wait

(c) In transit with extra nodes.

0

50

100

150

0 100 200 300 400 500
Cycle

T
im

e 
(s

ec
)

Operation

CTH

Xfer

Wait

(d) In transit using internal nodes.

Figure 14: Illustration showing the contributions of selected operations for each 10-cycle
period of a 500-cycle CTH experiment.

it is common for the number of blocks to increase as finer resolution is needed to capture
cumulative physical effects. This simulation has an interesting drop in the number of blocks
midway through; however, the drop in the number of blocks is very slight (less than 0.01%),
so for practical purposes the number of blocks is constant.

Figure 14 shows the time contribution for a 10-cycle period of each important operation
in the in situ and in transit applications using 8K processors. One observation consistent
across the different workflows is that the time spent performing CTH computation tends to
increase throughout the life of the application, which is interesting considering that there
not a significant increase in either the number of blocks or the visualization processing time.

We also observe for the in transit applications that as long as there is some wait time,
the total run time for each 10-cycle period remains relatively flat throughout the life of the
application. We see this in both the in transit extra and in transit inclusive experiments.
The reason for this is fairly obvious. If we assume the “Viz” operation on the service is
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essentially constant, then the wait time should be the difference between the Viz time on the
service and the CTH time on the client. As the CTH time increases, the wait time decreases
by the same amount. Since the transfer time is close to constant (it’s based on the number
of blocks), the total time at each 10-cycle period remains about the same.

5.4 Runtime Variance

An increasingly important metric for HPC applications is runtime variance. A number of
factors could contribute to inconsistent performance across multiple runs. Among them are
resource contention for memory, network, or storage systems, operating system noise, and
software techniques like garbage collection. Instead of trying to understand the cause of
inconsistent behavior in our experiments, we to document the results with the intent of
addressing them further in future work.

The plots in Figures 15 and 16 show the mean and standard error (the standard deviation
from the mean) of the important in situ and in transit operations for the 8k-core experi-
ments. In each plot, we gathered data from five or more 500-cycle experiments. Most of
our measurements for CTH and anlysis operations show a relatively small variance between
experiments. There are some outlier measurements in Figures 15a and 16b that we attribute
to another event running concurrently on Cielo by happenstance causing contention. Fig-
ure 15b shows the CTH experiments overlaid to highlight the outliers in experiment 1. The
transfer time of in transit workflows (Figures 16a and 16c) have more variance than the rest,
which we believe is caused by the Cielo job scheduler not taking into account the communi-
cation between the client and server jobs. Further research in improved placement of client
and server jobs for in transit workflows is ongoing.
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Figure 15: Plots (a), (c), and (d) show the mean time and standard error for CTH and the
in situ data analysis operations. Plot (b) shows an overlay of the CTH experiments to show
outliers for experiment 1.
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Figure 16: Plots of the mean time and standard error for the in transit transfer and wait
operations.
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5.5 Scaling Analysis

Block Processing Rate

One way to get a good understanding of the scalability of an operation is to look at the
throughput or processing rate. In this case, we look at the rate at which the data analysis
operation processes blocks as we increase the number of client cores.
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Figure 17: Processing rate of data analysis portions of the four different applications.

Figure 17 shows the processing rates of the data analysis portion of the in transit appli-
cations and the “effective” processing rate of the data analysis portion (transfer time plus
wait time) of the in transit applications. Note that the effective in transit rate does not
include any processing time overlapped with the simulation execution, and thus could be
much larger than the actual processing rate. As we expect, the baseline application scales
fine for the small data set, but starts to really drop off for the medium and large data. We
see a dramatic improvement in the in situ refined application as it scales consistently well all
the way to 32K cores. The in transit applications are also not that surprising. Since we use a
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fixed number of nodes for a dataset, we expect the effective processing rate to be essentially
flat. The dropoff for the medium and large datasets is due to the excessive waiting, identified
in Figures 12c and 12d.

Node scaling for in transit experiments

In this section, we evaluate performance of the in transit applications when using different
numbers of cores/node for the in transit service. To better understand the impact of changing
the core count for the services, consider the three HPCToolkit-generated performance traces
in Figure 18. The traces show a 10-cycle window of execution for a 128-core job using 1
server node. For this small experiment, we used a dataset of only 5k blocks.

The tracing results show a dramatic difference in network performance and wait time
between all three of the experiments. We believe the relatively poor network performance
in the 2-core experiment is caused by contention. Because only 2 cores can process the
bulk-data requests at a time, the clients are either waiting for network transfers to complete,
or the are waiting for the server to finish copying the data to a server buffer, causing the
request to sit in the server’s pending queue. The larger wait time on the 2-core experiment
tells us that for this size problem, there is a computational benefit to increasing the number
of cores performing the data analysis.

The plots in Figure 19 show differences in the total, transfer, and wait times for the 2, 4,
and 8 cores/node runs of the in transit (extra) application for the three different data sets.
While the smaller datasets show clear benefit of using more cores/node for data analysis,
the inverse seems to be true for the large datasets. Unfortunately, we did not run enough
experiments of this type to make definitive claims. A further investigation of the impact of
core scaling for the large dataset is required.
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(a) In transit with 2 cores/server.

(b) In transit with 4 cores/server.

(c) In transit with 8 cores/server.

Figure 18: HPCToolkit-generated traces showing a 10-cycle window of execution for a 128-
core job using 2, 4, and 8 cores for the server nodes.
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Figure 19: In transit performance for 2, 4, and 8 cores per server node.
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5.6 Memory

The following memory plots were taken by examining free memory on the nodes using
/proc/meminfo. Measuring free memory is conservative because it also accounts for caches
and buffers, so although you may run out of free memory in a system, the execution will
not immediately fail due to memory freed from those other sources. However, these are an
indication of the worst case possible. On Cielo there are 16 cores per node and in each case
the nodes were loaded with 16 MPI ranks executing the statically linked executable.

In order to understand CTH memory usage results, it is important to note that CTH
preallocates memory based on a value for “max number of blocks” provided through the input
deck. Because of this, CTH memory usage is highly impacted by the user specification. In
this case we ran the results with what we believe are reasonable values for “max number of
blocks” given the size of the problem. Figure 20 shows the corresponding max blocks for
each run.
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Figure 20: A plot of the “max number of blocks” parameter supplied to CTH for each run.

Figure 21 provides an overview of all memory measurements taken for the system. The
memory taken by CTH is quite flat, as expected, for each run. However, even though the
size of the mesh changes throughout the simulation, the memory overhead for in situ and in
transit runs changes only moderately. Thus, for the rest of the results analysis, we summarize
all measurements as simply the maximum value, which is a reasonable representation of all
values.

Figure 22 gives a summary of the extra memory used when using Catalyst for in situ
data analysis during our experiments. Likewise, Figure 23 gives the same summary for the in
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Figure 21: Matrix of all measurements taken for memory usage comparisons. Each measure-
ment is the total memory in use in a node (so for in situ and in transit memory includes both
CTH simulation and overhead). Each measurement is plotted as the maximum memory use
in all nodes at the time the measurement was taken.

transit memory overhead for the nodes within the simulation (memory usage on the separate
data analysis job is not given). In all cases the added overhead is less than 50% than the
memory used by CTH itself, and in most cases the additional overhead is significantly smaller
than that.

Figure 24 compares the amount of memory per node added when using in situ versus in
transit . As expected, the in transit approach requires a smaller memory overhead than in
situ within the nodes of the simulation. Thus, in transit could be a better option when the
simulation requires as much memory per process as possible, but the in transit approach
also requires separate nodes to be reserved for the data analysis, which also may cause the
total amount of available simulation memory to be reduced if nodes must be taken away
from the simulation.
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6 Conclusions

This document summarizes a significant scaling study resulting from over 9 million core-hours
of execution and analyzes the comparative performance of multiple workflows for performing
visualization and data analysis on simulation results. Most of these workflows benefit from
running in tandem with the simulation to analyze its transient data before it is written to
storage. Based on this analysis, we make the following conclusions.

In transit can provide a performance improvement over in situ in some circum-
stances, but the window is narrower than we anticipated. In transit data analysis
has an added overhead above embedded in situ data analysis involving transferring data
between parallel jobs. Given a data analysis algorithm with perfect linear scalability, we
suspect in transit workflows will always have an added cost, and our results support this.
With a data analysis algorithm that does not scale perfectly, possibly due to communication
overhead, it is theoretically possible for in transit to be faster by reducing the size of the data
analysis job. This is one of the motivations for choosing a data analysis task that requires
significant communication. In our results, we do find instances where in transit is faster, but
by a smaller margin and for fewer configurations than we initially anticipated. So although
in transit has several other positive features, we do not anticipate performance to be the
main motivations for using it.

The efficiency of in transit relies on balancing the time spent in simulation and
data analysis. The significant overhead cost, apart from data transfer, in the in transit
workflow is the idle time spent in the simulation waiting for the visualization and data
analysis service to become ready or the idle time spent in the visualization and data analysis
service waiting for the simulation to send more data. This idle waiting time is minimized
when the simulation and data analysis spend the same amount of wall clock time between
transfers. Although not demonstrated in this work, it is possible to “auto-balance” the
work between simulation and data analysis by, at every iteration of the simulation, transfer
data to the data analysis if and only if the data analysis service is ready to accept more
work. The disadvantage of such an approach is that the idle process time could be replaced
with unnecessary extra data analysis or less data analysis than necessary. However, we
suspect that controlling the amount of visualization and data analysis performed through
job allocation sizes fits well with users’ rules of thumb about resource allocation.

Memory overhead will be an important trade-off space. The baseline amount of
memory added to the CTH job to perform in situ processing is roughly 100MB per core.
Considering that our embedded in situ library is a fully featured visualization toolkit con-
taining over 2 million lines of code and algorithms developed over almost 2 decades, this
overhead is not unreasonable. Nevertheless, this footprint can be problematic for simula-
tions already tight on memory. Because of this, efforts are already underway to improve
our memory footprint by making finer modules and being more selective on the available
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algorithms. This, of course, requires a compromise between the size of the library and the
algorithms that are dynamically available. We also note that our algorithm has the poten-
tial to generate sizable meshes of its own. Thus, it may be fruitful to pursue and support
incremental algorithms where possible.

Initialization time matters. Our scaling efforts to date focus on the scalability of the al-
gorithms invoked during the run of a simulation. The initialization cost, a one-time penalty,
has yet to be seriously considered. However, based on our HPCToolkit measurements, ini-
tialization becomes a significant cost at high process counts.

Disk-based I/O is not dead. . . yet. Our initial assumption was that it would not
be feasible to output full results at a fine enough temporal resolution from CTH to disk
storage to perform our high fidelity data analysis. However, our control workflow shows
that although the overall time to write data to disk and then read back again incurs a large
cost, it is still realistic to do so. Thus, users may still choose to incur the extra overhead to
use a traditional offline post-processing visualization and data analysis workflow. This is an
important consideration in providing flexibitly for our end users.

Better job scheduling is important. One of the more complicated parts of running
an in transit workflow is scheduling the simulation job and service job to run in tandem.
Frankly, the capabilities of the scheduler are inadequate for our needs. We cannot start and
stop jobs independently and make reconnections dynamically. Another experiment we would
like to do but is challenging to schedule is to allow simulation and service to share nodes.
Since each node has 16 cores, perhaps we could get better transfer performance by allocating
one core per node for service and the rest for simulation. A similar scheduling scheme will
be important to take advantage of burst buffers in future architectures.
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Date:
Subject:

March 5th,2013
Achievement of ASC Level II Milestone 1

To Whom It May Concern:

On Tuesday, March 5th,2013, a formal review of ASC Level II Milestone 4547, Data Co-Processing for
Extreme Scale Analysis was held. We, the committee, found that the Milestone was completed on time,
and demonstrated against the letter and spirit stated in the Milestone.

Committee members were Becky Springmeyer (LLNL), Berk Gevci (Kitware, Inc), Ron Brightwell
(1423), Mike Glass (1545), Kim Mish (1542), Dino Pavlakos (9326), Kendall Pierson (1542), Jason

Wilke (6634)

Sincerely,
i\ * /-,r't v- u\t---r=_=-

Jim A\ens, Milestone Committee Chair (LANL)

Exceptional Service in the National lnterest

A Signed Letter from Committee
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Milestone	  4547	  

Data	  Co-‐Processing	  for	  Extreme	  Scale	  Analysis	  
SAND#	  2013-‐1427	  P	  	  
	  
	  
ExecuCve	  Summary	  of	  Milestone	  Report	  
	  
	  
	  
March	  5,	  2013	  
	  
David	  Rogers,	  Ron	  Oldfield,	  Kenneth	  Moreland	  and	  Nathan	  Fabian	  
	  
Sandia	  NaConal	  Laboratories	  

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 
Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. !

Summary	  

§  Milestone	  4745	  “Data	  Co-‐Processing	  for	  Extreme	  Scale	  
Analysis”	  was	  successfully	  completed	  on	  Cme,	  and	  
demonstrated	  against	  the	  leSer	  and	  spirit	  of	  stated	  
Milestone.	  

§  The	  Milestone	  Team	  completed	  over	  10.5	  million	  cpu	  hours	  of	  
Cielo	  tests	  on	  both	  in	  situ	  and	  in	  transit	  analysis	  capabiliCes	  
on	  a	  problem	  provided	  by	  a	  Sandia	  analyst.	  

§  The	  results	  of	  these	  experiments	  have	  been	  detailed	  in	  a	  
SAND	  report,	  which	  is	  published	  as	  an	  unclassified	  unlimited	  
release	  document,	  available	  to	  the	  enCre	  mod/sim	  
community	  

The	  path	  to	  Exascale	  

Milestone	  4745	  is	  an	   important	  step	  in	  capability	  development,	  
customer	  engagement,	  and	  scalability	  development	  on	  the	  path	  
to	  exascale.	   	   It	  represents	  significant	  work	  on	  the	  development	  
of	  both	  Catalyst,	  an	  open	  source	   in	  situ	  analysis	  capability,	  and	  
Nessie,	  an	  open	  source	  data	  services	  capability.	  
	  
This	  Milestone	   is	  part	  of	   an	   integrated	  R&D	   roadmap	  aimed	  at	  
characterizing,	   understanding,	   and	   promoCng	   soluCons	   for	  
complex	  analysis	  problems	  on	  advanced	  architectures.	  
	  
It	   is	   an	   important	   foundaCon	   step	   in	   developing	   cross-‐cu[ng	  
capabiliCes.	  

Milestone	  4745	  
SC	  calculaCons	  produce	  complex	  datasets	  that	  are	  increasingly	  difficult	  to	  explore	  and	  
understand	  using	  tradiConal	  post-‐processing	  workflows.	  	  To	  advance	  understanding	  of	  
underlying	  physics,	  uncertainCes,	  and	  results	  of	  ASC	  codes,	  SNL	  must	  gather	  as	  much	  
relevant	   data	   as	   possible	   from	   large	   simulaCons.	   	   This	   drives	   SNL	   to	   couple	   data	  
analysis	   and	   visualizaCon	   capability	   with	   a	   running	   simulaCon,	   so	   that	   high	   fidelity	  
data	  can	  be	  extracted	  and	  wriSen	  to	  disk.	   	  This	  Milestone	  evaluates	  two	  approaches	  
for	  providing	  such	  a	  coupling:	  
§  In-‐situ	  processing	  provides	  ``Cghtly-‐coupled''	  analysis	  capabiliCes	  through	  libraries	  

linked	  directly	  with	  the	  simulaCon.	   	  SNL	  has	  collaborated	  on	  developing	  an	  in-‐situ	  
capability	  designed	  for	  this	  purpose.	  

§  In-‐transit	   processing	   provides	   ``loosely-‐coupled''	   analysis	   capabiliCes	   by	  
performing	   the	   analysis	   on	   separate	   processing	   resources.	   	   SNL	   provides	   this	  
capability	  through	  a	  ``data	  services''	  capability	  designed	  for	  this	  purpose.	  

SNL	  will	   engineer,	   test	   and	  evaluate	   customer-‐driven	  operaCons	  on	   large-‐scale	   data	  
created	   by	   a	   running	   simulaCon.	   	   The	   data	   operaCons	   will	   be	   performed	   by	  
instrumented	  versions	  of	  both	   the	   in-‐situ	   and	   in-‐transit	   soluCons,	  with	   the	   resulCng	  
performance	  data	  published	  and	  made	  available	  to	  the	  ASC	  community.	  
A	   program	   review	  will	   be	   conducted,	   and	   its	   results	   documented.	   	   A	   report	  will	   be	  
submiSed	  as	  a	  record	  of	  milestone	  compleCon.	  

MoCvaCon	  

SC	   calculaCons	   produce	   complex	   datasets	   that	   are	   increasingly	  
difficult	   to	   explore	   and	   understand	   using	   tradiConal	   post-‐
processing	  workflows.	   	  To	  advance	  understanding	  of	  underlying	  
physics,	  uncertainCes,	  and	  results	  of	  ASC	  codes,	  SNL	  must	  gather	  
as	  much	  relevant	  data	  as	  possible	   from	   large	  simulaCons.	   	  This	  
drives	   SNL	   to	   couple	   data	   analysis	   and	   visualizaCon	   capability	  
with	   a	   running	   simulaCon,	   so	   that	   high	   fidelity	   data	   can	   be	  
extracted	  and	  wriSen	  to	  disk.	  	  	  
	  
§  Note:	  ASC	  program	  will	  benefit	  from	  a	  detailed	  understanding	  

of	  the	  rela;onship	  between	  analyst	  tasks,	  analysis	  opera;ons,	  
and	  disk	  I/O	  performance.	  	  

In	  situ	  and	  in	  transit	  workflows	  
§  In	  situ	  processing	  provides	  ``Cghtly-‐coupled''	  analysis	  capabiliCes	  through	  

libraries	  linked	  directly	  with	  the	  simulaCon.	  	  SNL	  has	  collaborated	  on	  
developing	  an	  in	  situ	  capability	  designed	  for	  this	  purpose.	  

§  In	  transit	  processing	  provides	  ``loosely-‐coupled''	  analysis	  capabiliCes	  by	  
performing	  the	  analysis	  on	  separate	  processing	  resources.	  	  SNL	  provides	  
this	  capability	  through	  a	  ``data	  services''	  capability	  designed	  for	  this	  
purpose.	  
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Diagram	  of	  in	  situ	  workflow,	  accomplished	  in	  this	  Milestone	  through	  
the	  use	  of	  Catalyst,	  an	  open	  source,	  VTK-‐based	  analysis	  library.	  

Diagram	  of	  in	  transit	  workflow,	  in	  which	  the	  science	  code	  
communicates	  with	  data	  services	  nodes	  to	  perform	  analysis	  
operaCons.	  	  This	  is	  accomplished	  in	  this	  Milestone	  through	  the	  use	  of	  
Nessie,	  an	  open	  source	  data	  services	  library.	  

B Executive Summary Slides
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Milestone	  4745,	  compleCon	  criteria	  
SC	  calculaCons	  produce	  complex	  datasets	  that	  are	  increasingly	  difficult	  to	  explore	  and	  
understand	  using	  tradiConal	  post-‐processing	  workflows.	  	  To	  advance	  understanding	  of	  
underlying	  physics,	  uncertainCes,	  and	  results	  of	  ASC	  codes,	  SNL	  must	  gather	  as	  much	  
relevant	   data	   as	   possible	   from	   large	   simulaCons.	   	   This	   drives	   SNL	   to	   couple	   data	  
analysis	   and	   visualizaCon	   capability	   with	   a	   running	   simulaCon,	   so	   that	   high	   fidelity	  
data	  can	  be	  extracted	  and	  wriSen	  to	  disk.	   	  This	  Milestone	  evaluates	  two	  approaches	  
for	  providing	  such	  a	  coupling:	  
§  In-‐situ	  processing	  provides	  ``Cghtly-‐coupled''	  analysis	  capabiliCes	  through	  libraries	  

linked	  directly	  with	  the	  simulaCon.	   	  SNL	  has	  collaborated	  on	  developing	  an	  in-‐situ	  
capability	  designed	  for	  this	  purpose.	  

§  In-‐transit	   processing	   provides	   ``loosely-‐coupled''	   analysis	   capabiliCes	   by	  
performing	   the	   analysis	   on	   separate	   processing	   resources.	   	   SNL	   provides	   this	  
capability	  through	  a	  ``data	  services''	  capability	  designed	  for	  this	  purpose.	  

SNL	  will	   engineer,	   test	   and	  evaluate	   customer-‐driven	  operaCons	  on	   large-‐scale	   data	  
created	   by	   a	   running	   simulaCon.	   	   The	   data	   operaCons	   will	   be	   performed	   by	  
instrumented	  versions	  of	  both	   the	   in-‐situ	   and	   in-‐transit	   soluCons,	  with	   the	   resulCng	  
performance	  data	  published	  and	  made	  available	  to	  the	  ASC	  community.	  
A	   program	   review	  will	   be	   conducted,	   and	   its	   results	   documented.	   	   A	   report	  will	   be	  
submiSed	  as	  a	  record	  of	  milestone	  compleCon.	  

Experiment	  Driver	  
Milestone	  focused	  on	  “customer-‐driven	  opera;ons	  on	  large-‐scale	  data	  created	  by	  a	  
running	  simula;on”	  

Customer	  driver	  use	  case:	  characterize	  fragments	  in	  an	  	  
explosion	  simulaCon,	  an	  analysis	  step	  criCcal	  for	  	  
understanding	  shock	  physics	  
§  Partner:	  Jason	  Wilke	  
§  CriCcal	  steps	  

§  Find	  fragments	  (mulCple	  operaCons	  required)	  
§  Characterize	  fragments	  (mass,	  velocity,	  etc.)	  
§  Extract	  useful	  informaCon	  

Milestone	  experiments	  focused	  on	  iden;fying	  the	  fragments.	  	  This	  operaCon	  is	  a	  
significantly	  complex	  part	  the	  analysis,	  so	  it	  serves	  as	  a	  useful	  way	  to	  characterize	  the	  
operaCons	  in	  the	  driver	  use	  case.	  
Full	  range	  of	  data	  experiments	  run	  at	  32k	  cores	  on	  Cielo.	  	  ParCal	  experiments	  done	  at	  64k	  
cores	  on	  Cielo.	  	  This	  report	  presents	  results	  from	  the	  32k	  runs.	  
	  

Fragment	  detecCon	  

§  OperaCons	  required	  for	  fragment	  detecCon	  (requires	  a	  
waterCght	  surface)	  
1.  Find	  block	  neighbors	  
2.  Build	  a	  conforming	  mesh	  over	  AMR	  boundaries	  
3.  IdenCfy	  boundaries	  of	  fragments	  

Step	  2	   Step	  3	  

Implemented	  Workflows	  

§  In	  situ:	  A	  CTH	  job	  that	  directly	  runs	  in	  situ	  data	  analysis	  
§  Baseline:	  Basic	  algorithm	  with	  somewhat	  redundant	  step	  of	  global	  

communicaCon	  to	  find	  AMR	  block	  neighbors	  
§  Refined:	  Improved	  algorithm	  that	  gets	  AMR	  block	  neighbors	  from	  CTH	  

§  In	  transit:	  CTH	  transfers	  data	  to	  separate	  server	  job	  
§  Extra	  nodes:	  CTH	  job	  size	  same	  as	  other	  runs,	  extra	  nodes	  are	  used	  to	  

allocate	  the	  VDA	  service	  
§  Internal	  nodes:	  CTH	  job	  given	  fewer	  nodes	  that	  are	  assigned	  to	  VDA	  

service	  so	  that	  together	  both	  jobs	  use	  the	  same	  nodes	  as	  other	  runs	  

§  Post-‐processing:	  Write	  Spyplot	  files	  from	  CTH,	  then	  post	  
process	  analysis	  by	  reading	  back	  in	  and	  batch	  processing	  in	  
ParaView.	  

In	  Transit	  AllocaCons	  

256	  Nodes	  

SimulaCon	  

16	  Nodes	  

Vis	  

256	  Nodes	  

SimulaCon	  
Vis	  

“Extra	  Nodes”	  allocated	  for	  VDA	  services	  

“Internal	  Nodes”	  included	  in	  job	  allocaCon	  

Experiment	  ConfiguraCons	  

§  All	  experiments	  performed	  on	  Cielo	  supercomputer	  at	  LANL,	  
jointly	  managed	  by	  Los	  Alamos	  NaConal	  Laboratory	  and	  
Sandia	  NaConal	  Laboratories	  
§  8,944	  node	  Cray	  XE6	  
§  Node:	  2	  AMD	  Opteron	  6136	  (Magny-‐Cours)	  8-‐way	  processor	  chips	  

§  Total	  of	  16	  cores/node	  
§  2.4	  GHz	  peak	  computaCon	  speed	  per	  core	  

§  Peak	  of	  1.37	  Petaflops	  
§  32	  GB	  memory/node	  
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Experiment,	  cont’d	  

§  All	  applicaCons	  complete	  500	  cycles	  (i.e.,	  Cmestep	  
calculaCons)	  of	  the	  CTH	  code.	  	  

§  The	  first	  four	  applicaCons	  execute	  an	  analysis	  operaCon	  once	  
every	  10	  cycles	  

§  Spyplot	  file	  applicaCon	  outputs	  spyplot	  data	  at	  a	  fixed	  interval	  
in	  simulated	  Cme,	  calculated	  so	  that	  the	  applicaCon	  executed	  
the	  same	  number	  of	  analysis	  operaCons	  performed	  by	  the	  
in	  situ	  and	  in	  transit	  applicaCons	  
§  Total	  number	  of	  analysis	  operaCons	  is	  the	  same	  

§  Data	  captured	  was	  from	  instrumented	  code	  and	  HPCToolkit	  

Experiment,	  cont’d	  
§  For	  each	  applicaCon,	  we	  ran	  strong	  scaling	  experiments	  for	  

three	  different	  datasets.	  	  	  
§  Each	  data	  set	  comes	  from	  the	  same	  iniCal	  condiCons	  but	  with	  a	  

different	  maximum	  level	  of	  refinement	  
§  Measurements	  of	  different	  job	  sizes	  with	  different	  data	  set	  sizes	  

provides	  a	  weak	  scaling	  overview.	  

Table	  shows	  the	  range	  of	  core	  sizes	  used	  for	  the	  various	  experiments.	  	  For	  
every	  applicaCon	  we	  used	  the	  maximum	  16	  cores-‐per-‐node	  for	  the	  CTH	  
client,	  since	  CTH	  is	  primarily	  bound	  by	  computaCon	  and	  scales	  very	  well.	  

	  

Results	  
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Total	  RunCme	  for	  All	  Experiments	  

In	  situ	  baseline	   In	  situ	  refined	  

In	  transit	  extra	  nodes	   In	  transit	  internal	  nodes	  

Disk-‐based	  post-‐processing	  

5	  applicaCons	  
3	  datasets	  
	  
Strong	  scaling	  for	  each	  
dataset	  
	  
Error	  bars	  show	  variance	  
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Pipeline	  Summary	  Timing	  (1.5m	  blocks)	  

Acceptable	  scaling	  performance,	  with	  the	  	  excepCon	  of	  the	  baseline	  algorithm.	  
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Pipeline	  Summary	  Timing	  (1.5m	  blocks)	  

No	  significant	  improvement	  at	  32K	  cores.	  	  Probably	  insufficient	  work	  for	  analysis	  (only	  
45	  blocks	  per	  process).	  

(Post	  Processing)	  
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Pipeline	  Summary	  Timing	  (1.5m	  blocks)	  

WriCng	   files	   surprisingly	   fast.	   	   Although	   slower	   than	  most	   alternaCves,	   sCll	   a	   viable	  
opCon.	  

(Post	  Processing)	  
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“Sweet	   spot”	   at	   8K	   cores:	   in	   transit	   with	   unrefined	   algorithm	   equal	   to	   in	   situ	   with	  
refined	  algorithm.	  

(Post	  Processing)	  
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In	  situ	  baseline	   In	  situ	  refined	  

In	  transit	  extra	  nodes	   In	  transit	  internal	  nodes	  

•  CTH	  scales	  well.	  
•  Baseline	   algorithm	   does	  

not	  scale	  
•  Disk	  I/O	  not	  bad	  
	  

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e 
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

I/O
Viz

Disk-‐based	  post-‐processing	  

96 22
4

48
0

99
2

76
8

17
92

38
40

79
36

24
96

65
92

14
78

4
31

16
8

Ti
m

e 
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

Xfer
Wait

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e 
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
CTH

Xfer Data
Wait

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e 
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
Viz Init

CTH
Viz

12
8

25
6

51
2

10
24

10
24

20
48

40
96

81
92

40
96

81
92

16
38

4
32

76
8

Ti
m

e 
(m

in
)

0

50

100

150

200

33k blocks 219k blocks 1.5m blocks

CTH Init
Viz Init

CTH
Viz

Timing	  Per	  Task	  

In	  situ	  baseline	   In	  situ	  refined	  

In	  transit	  extra	  nodes	   In	  transit	  internal	  nodes	  

Refined	   analysis	   has	   much	  
l owe r	   o v e r h e ad ,	   b u t	  
iniCalizaCon	  is	  problemaCc.	  	  	  
	  
Refined	   algorithm	   requires	  
addiConal	   data	   to	   be	  
passed.	   Not	   done	   for	  
in	  transit	  experiments.	  
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Timing	  Per	  Task	  

In	  situ	  baseline	   In	  situ	  refined	  

In	  transit	  extra	  nodes	   In	  transit	  internal	  nodes	  

Service	   is	   a	   fixed	   size	   (100	  
nodes),	   the	   wait	   Cme	  
should	   be	   independent	   of	  
the	  number	  of	  cores	  on	  the	  
client.	  
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Timing	  Per	  Task	  

In	  situ	  baseline	   In	  situ	  refined	  

In	  transit	  extra	  nodes	   In	  transit	  internal	  nodes	  

“ swee t	   s po t ” ,	   whe r e	  
compute	   and	   analysis	   are	  
balanced	  (equal)	  
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In	  situ	  baseline	   In	  situ	  refined	  

In	  transit	  extra	  nodes	   In	  transit	  internal	  nodes	  

Although	  number	  of	  blocks	  
changes	   very	   liSle,	   CTH	  
runCme	   gets	   longer	   as	  
simulaCon	  progresses.	  
	  
V i s	   Cm e	   i s	   r o u g h l y	  
constant.	  
	  
In	   transit	   will	   “win”	   when	  
xfer+wait	  is	  less	  than	  viz.	  
	  
In	   transit	   can	   flaSen	   the	  
runCme	   as	   long	   as	   extra	  
simulaCon	   Cme	   consumes	  
only	  wait	  Cme.	  
	  

Time-‐Series	  Analysis	  (8k	  cores)	  
10-‐cycle	  increments	  

Time-‐Series	  Analysis:	  Variance	  
10-‐cycle	  increments	  

CTH	  (mean+std)	  

Anomalies	  that	  cause	  large	  variance	  are	  clearly	  idenCfied	  in	  overlay	  plot.	  	  
Not	  sure	  the	  true	  cause	  of	  the	  outliers.	  	  	  	  
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Time-‐Series	  Analysis:	  Variance	  
10-‐cycle	  increments	  

In	  situ	  baseline	   In	  situ	  refined	  

Refined	  algorithm	  has	  much	  less	  communicaCon,	  resulCng	  in	  less	  variance.	  	  
Scales	  are	  different	  in	  the	  two	  plots.	  	  	  
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In	  transit	  extra	  nodes	  transfer	   In	  transit	  extra	  nodes	  wait	  

In	  transit	  internal	  nodes	  transfer	   In	  transit	  internal	  nodes	  wait	  

In	   transit	   transfer	   Cmes	  
have	  noCceable	  variance.	  
	  
P o s s i b l y	   c a u s e d	   b y	  
placement	  issues.	  	  
	  
S c h e d u l e r	   d o e s	   n o t	  
opCmize	   allocaCons	   for	  
transfers	  between	  jobs.	  
	  

Time-‐Series	  Analysis:	  Variance	  
10-‐cycle	  increments	  

Block	  Processing	  Rate	  (Viz)	  

In	  situ	  baseline	   In	  situ	  refined	  

Refined	   algorithm	   is	  
s c a l a b l e , 	   b a s e l i n e	  
algorithm	  is	  not.	  	  (Verifies	  
previous	  work.)	  
	  
In-‐transit	   plots	   show	  
“effecCve”	   processing	  
rate.	   	   	   Since	   viz	   Cme	   is	  
flat ,	   we	   expect	   the	  
e ff e c C v e 	   r a t e 	   t o	  
decrease.	  	  
	  
At	   4k	   and	   8k,	   effecCve	  
processing	   rate	   of	   in	  
transit	   outperforms	   in	  
situ.	  	  
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In	  Transit	  Node	  Scaling	  

2	  server	  cores:	  64:1	  
•  10	  cycles	  in	  37	  secs	  
•  Client	  idle	  waiCng	  for	  

servers	  (also	  affects	  xfers)	  	  

Wait	  for	  Server	   Transfer	  Data	  

4	  server	  cores:	  32:1	  
•  10	  cycles	  in	  23	  secs	  
	  

8	  server	  cores:	  16:1	  
•  10	  cycles	  in	  19	  secs	  
•  Less	  than	  1%	  Cme	  waiCng	  

In	  Transit	  Node	  Scaling	  
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33k	  blocks	   218k	  blocks	   1.5m	  blocks	  

For	   small	   datasets,	   there	   is	   clear	   benefit	   to	   using	   4	   and	   8	   cores/node	   (agreement	  
previous	  slide)	  
	  
For	  1.5m	  blocks	  datasets	  (at	  large	  scale),	  the	  opposite	  appears	  to	  be	  true.	  	  	  
Needs	  further	  study.	  	  

Memory	  Footprint	  (on	  code	  side)	  
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Memory	  overhead	  generally	  falls	  between	  25%	  and	  50%	  
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In	  transit	  generally	  has	  less	  memory	  overhead,	  but	  requires	  extra	  nodes	  allocated	  

Conclusions	  
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Conclusions	  

In	   transit	   can	   provide	   a	   performance	   improvement	   over	   in	   situ	   in	   some	  
circumstances,	  but	  the	  window	  is	  narrower	  than	  we	  ini?ally	  expected	  it	  would	  be.	  	  
	  
In	  transit	  data	  analysis	  has	  an	  added	  overhead	  above	  embedded	   in	  situ	  data	  analysis	  
involving	  transferring	  data	  between	  parallel	  jobs.	  Given	  a	  data	  analysis	  algorithm	  with	  
perfect	   linear	   scalability,	  we	   suspect	   in	   transit	  workflows	  will	   always	  have	  an	  added	  
cost,	  and	  our	  results	  support	  this.	  With	  a	  data	  analysis	  algorithm	  that	  does	  not	  scale	  
perfectly,	   possibly	   due	   to	   communicaCon	   overhead,	   it	   is	   theoreCcally	   possible	   for	  
in	  transit	  to	  be	  faster	  by	  reducing	  the	  size	  of	  the	  data	  analysis	  job.	  This	  is	  one	  of	  the	  
moCvaCons	  for	  choosing	  a	  data	  analysis	  task	  that	  requires	  significant	  communicaCon.	  
In	  our	  results,	  we	  do	  find	  instances	  where	  in	  transit	  is	  faster,	  but	  by	  a	  smaller	  margin	  
and	   for	   fewer	   configuraCons	   than	  we	   iniCally	  anCcipated.	   So	  although	   in	   transit	   has	  
several	   other	   posiCve	   features,	   we	   do	   not	   anCcipate	   performance	   to	   be	   the	   main	  
moCvaCons	  for	  using	  it.	  

Conclusions	  

The	  efficiency	  of	  in	  transit	  relies	  on	  balancing	  the	  ?me	  spent	  in	  simula?on	  and	  data	  
analysis.	  
The	  significant	  overhead	  cost,	  apart	   from	  data	   transfer,	   in	   the	   in	   transit	  workflow	   is	  
the	   idle	   Cme	   spent	   in	   the	   simulaCon	  waiCng	   for	   the	   visualizaCon	   and	   data	   analysis	  
service	  to	  become	  ready	  or	  the	   idle	  Cme	  spent	   in	  the	  visualizaCon	  and	  data	  analysis	  
service	   waiCng	   for	   the	   simulaCon	   to	   send	   more	   data.	   This	   idle	   waiCng	   Cme	   is	  
minimized	   when	   the	   simulaCon	   and	   data	   analysis	   spend	   the	   same	   amount	   of	   wall	  
clock	  Cme	  between	  transfers.	  Although	  not	  demonstrated	  in	  this	  work,	  it	  is	  possible	  to	  
“auto-‐balance”	  the	  work	  between	  simulaCon	  and	  data	  analysis	  by,	  at	  every	   iteraCon	  
of	   the	   simulaCon,	   transfer	   data	   to	   the	   data	   analysis	   if	   and	   only	   if	   the	   data	   analysis	  
service	   is	   ready	   to	  accept	  more	  work.	  The	  disadvantage	  of	   such	  an	  approach	   is	   that	  
the	   idle	  process	  Cme	  could	  be	   replaced	  with	  unnecessary	  extra	  data	  analysis	  or	   less	  
data	   analysis	   than	   necessary.	   However,	   we	   suspect	   that	   controlling	   the	   amount	   of	  
visualizaCon	   and	   data	   analysis	   performed	   through	   job	   allocaCon	   sizes	   fits	  well	   with	  
users’	  rules	  of	  thumb	  about	  resource	  allocaCon.	  

Conclusions	  

Memory	  overhead	  will	  be	  an	  important	  trade-‐off	  space. 	  	  
	  
The	  baseline	  amount	  of	  memory	  added	  to	  the	  CTH	  job	  to	  perform	  in	  situ	  processing	  is	  
roughly	   100MB	   per	   core.	   Considering	   that	   our	   embedded	   in	   situ	   library	   is	   a	   fully	  
featured	   visualizaCon	   toolkit	   containing	   over	   2	  million	   lines	   of	   code	   and	   algorithms	  
developed	  over	   almost	   2	   decades,	   this	   overhead	   is	   not	   unreasonable.	  Nevertheless,	  
this	  footprint	  can	  be	  problemaCc	  for	  simulaCons	  already	  Cght	  on	  memory.	  Because	  of	  
this,	  efforts	  are	  already	  underway	  to	   improve	  our	  memory	  footprint	  by	  making	  finer	  
modules	   and	   being	   more	   selecCve	   on	   the	   available	   algorithms.	   This,	   of	   course,	  
requires	   a	   compromise	   between	   the	   size	   of	   the	   library	   and	   the	   algorithms	   that	   are	  
dynamically	  available.	  We	  also	  note	  that	  our	  algorithm	  has	  the	  potenCal	  to	  generate	  
sizable	  meshes	  of	  its	  own.	  Thus,	  it	  may	  be	  fruisul	  to	  pursue	  and	  support	  incremental	  
algorithms	  where	  possible.	  

Conclusions	  

Ini?aliza?on	  ?me	  maGers	  
	  
Our	  scaling	  efforts	  to	  date	  focus	  on	  the	  scalability	  of	  the	  algorithms	  invoked	  during	  the	  
run	  of	  a	  simulaCon.	  The	  iniCalizaCon	  cost,	  a	  one-‐Cme	  penalty,	  has	  yet	  to	  be	  seriously	  
considered.	  However,	  based	  on	  our	  HPCToolkit	  measurements,	  iniCalizaCon	  becomes	  
a	  significant	  cost	  at	  high	  process	  counts.	  
	  
Disk-‐based	  I/O	  is	  not	  dead	  .	  .	  .	  yet. 	  	  
	  
Our	  iniCal	  assumpCon	  was	  that	  it	  would	  not	  be	  feasible	  to	  output	  full	  results	  at	  a	  fine	  
enough	  temporal	  resoluCon	  from	  CTH	  to	  disk	  storage	  to	  perform	  our	  high	  fidelity	  data	  
analysis.	  However,	  our	  control	  workflow	  shows	  that	  although	  the	  overall	  Cme	  to	  write	  
data	  to	  disk	  and	  then	  read	  back	  again	  incurs	  a	  large	  cost,	  it	  is	  sCll	  realisCc	  to	  do	  so.	  
Thus,	  users	  may	  sCll	  choose	  to	  incur	  the	  extra	  overhead	  to	  use	  a	  tradiConal	  offline	  
post-‐processing	  visualizaCon	  and	  data	  analysis	  workflow.	  

Conclusions	  

BeGer	  job	  scheduling	  is	  important	  
	  
One	  of	  the	  more	  complicated	  parts	  of	  running	  an	  in	  transit	  workflow	  is	  scheduling	  the	  
simulaCon	   job	   and	   service	   job	   to	   run	   in	   tandem.	   Frankly,	   the	   capabiliCes	   of	   the	  
scheduler	  are	  inadequate	  for	  our	  needs.	  We	  cannot	  start	  and	  stop	  jobs	  independently	  
and	  make	  reconnecCons	  dynamically.	  Another	  experiment	  we	  would	  like	  to	  do	  but	  is	  
challenging	  to	  schedule	  is	  to	  allow	  simulaCon	  and	  service	  to	  share	  nodes.	  Since	  each	  
node	   has	   16	   cores,	   perhaps	  we	   could	   get	   beSer	   transfer	   performance	   by	   allocaCng	  
one	  core	  per	  node	  for	  service	  and	  the	  rest	  for	  simulaCon.	  A	  similar	  scheduling	  scheme	  
will	  be	  important	  to	  take	  advantage	  of	  burst	  buffers	  in	  future	  architectures.	  

Future	  Work	  

§  Algorithm	  comparison.	  	  Three	  similar	  algorithms	  with	  three	  
different	  scaling	  behaviors	  
§  Contour	  algorithm	  (perfectly	  scalable)	  
§  Refined	  water	  Cght	  contours	  (reasonably	  scalable)	  
§  Baseline	  water	  Cght	  contours	  (not	  scalable)	  

§  No-‐wait	  analysis	  (in	  transit)	  
§  Perform	  analysis	  if	  and	  only	  if	  the	  service	  is	  ready	  

§  InvesCgate	  iniCalizaCon	  cost	  of	  in	  situ	  vis	  
§  Zero	  copy	  transfers	  (in	  transit)	  
§  AddiConal	  apps	  at	  Cielo	  scale	  
§  Improved	  OS	  and	  runCme	  support	  

§  Scheduling,	  placement,	  node	  sharing,	  specialized	  runCmes,	  …	  
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Summary	  

§  Milestone	  4745	  “Data	  Co-‐Processing	  for	  Extreme	  Scale	  
Analysis”	  was	  successfully	  completed	  on	  Cme,	  and	  
demonstrated	  against	  the	  leSer	  and	  spirit	  of	  stated	  
Milestone.	  

§  The	  Milestone	  Team	  completed	  over	  9	  million	  node	  hours	  of	  
Cielo	  tests	  on	  both	  in	  situ	  and	  in	  transit	  analysis	  capabiliCes	  
on	  a	  problem	  provided	  by	  a	  Sandia	  analyst.	  

§  The	  results	  of	  these	  experiments	  have	  been	  detailed	  in	  a	  
SAND	  report,	  which	  is	  published	  as	  an	  unclassified	  unlimited	  
release	  document,	  available	  to	  the	  enCre	  mod/sim	  
community	  
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