
SANDIA REPORT
SAND2010-6118
Unlimited Release
Printed September 2010

Visualization on Supercomputing
Platform Level II ASC Milestone
(3537-1B) Results from Sandia

Kenneth Moreland, Nathan Fabian, Pat Marion, Berk Geveci

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2010-6118
Unlimited Release

Printed September 2010

Visualization on Supercomputing Platform
Level II ASC Milestone (3537-1B) Results

from Sandia

Kenneth Moreland
Data Analysis and Visualization
Sandia National Laboratories

P.O. Box 5800 MS 1323
Albuquerque, NM 87185-1323

kmorel@sandia.gov

Nathan Fabian
Data Analysis and Visualization
Sandia National Laboratories

P.O. Box 5800 MS 1323
Albuquerque, NM 87185-1323

ndfabian@sandia.gov

Pat Marion
Kitware, Inc.

28 Corporate Dr.
Clifton Park, NY 12065
pat.marion@kitware.com

Berk Geveci
Kitware, Inc.

28 Corporate Dr.
Clifton Park, NY 12065
berk.geveci@kitware.com

Abstract

This report provides documentation for the completion of the Sandia portion of the
ASC Level II Visualization on the platform milestone. This ASC Level II milestone is
a joint milestone between Sandia National Laboratories and Los Alamos National Lab-
oratories. This milestone contains functionality required for performing visualization
directly on a supercomputing platform, which is necessary for peta-scale visualization.
Sandia’s contribution concerns in-situ visualization, running a visualization in tandem
with a solver.

3

4

Contents

Executive Summary . 7
Motivation . 9
Develop a coprocessing library . 11
Demonstrate the ParaView Coprocessing Library . 12
Characterize the running time . 14

Large Interactive Sessions . 14
Memory Usage of Coprocessing within CTH . 15
Memory Usage of Coprocessing within NPIC . 16
PHASTA Coprocessing on CCNI . 17
PHASTA Coprocessing on Intrepid . 18
Write Time Comparison . 20

Conclusion . 21
References . 22

Appendix

A Signoff Memos . 23

Figures

1 Different modes of visualization. 10
2 ParaView coprocessing plugin. 12
3 Coprocessing library outputs. 13
4 Running time for interactive isosurfaces. 14
5 Running time for interactive rendering. 15
6 Memory usage in CTH. 16
7 Memory usage in NPIC. 16
8 Summary of memory usage in NPIC. 17
9 Running time of extracting slices from PHASTA data. 17
10 Time to write slices extracted from PHASTA data. 18
11 Running time of extracting slices and decimating geometry. 19
12 Time to write slices and decimated geometry. 19
13 Comparison of write times. 20

5

6

Executive Summary

This report provides documentation for the completion of the Sandia portion of the ASC
Level II Visualization on the platform milestone. This ASC Level II milestone is a joint
milestone between Sandia National Laboratories and Los Alamos National Laboratories.
The milestone text is shown below with the Sandia portions highlighted in boldfaced text.

Visualization and analysis of petascale data is limited by several factors which
must be addressed as ACES delivers the Cielo platform. Two primary difficulties
are:

1. Performance of interactive rendering, which is most computationally inten-
sive portion of the visualization process. For terascale platforms, commodity
clusters with graphics processors(GPUs) have been used for interactive ren-
dering. For petascale platforms, visualization and rendering may be able to
run efficiently on the supercomputer platform itself.

2. I/O bandwidth, which limits how much information can be written
to disk. If we simply analyze the sparse information that is saved
to disk we miss the opportunity to analyze the rich information
produced every timestep by the simulation. For the first issue,
we are pursuing in-situ analysis, in which simulations are coupled
directly with analysis libraries at runtime.

This milestone will evaluate the visualization and rendering performance of
current and next generation supercomputers in contrast to GPU-based visualiza-
tion clusters, and evaluate the performance of common analysis libraries
coupled with the simulation that analyze and write data to disk dur-
ing a running simulation. This milestone will explore, evaluate and
advance the maturity level of these technologies and their applicabil-
ity to problems of interest to the ASC program.

Scientific simulation on parallel supercomputers is traditionally performed in four sequen-
tial steps: meshing, partitioning, solver, and visualization. Not all of these components are
necessarily run on the supercomputer. In particular, the meshing and visualization typically
happen on smaller but more interactive computing resources. However, the previous decade
has seen a growth in both the need and ability to perform scalable parallel analysis, and this
gives motivation for coupling the solver and visualization.

7

To objectively determine whether we meet the intention of the milestone, we selected
this list of success criteria that must be completed.

1. Develop a “coprocessing” library: a simple interface to the ParaView post-
processing tools that can be leveraged by solver codes.

(a) Enable specification of processing via Python scripts that can be gen-
erated by ParaView and edited.

(b) Enable “hard-coded” processing.

2. Demonstrate the use of the coprocessing library to perform processing in
situ with two preexisting solvers.

(a) Demonstrate the run-time selection of coprocessing calculations with
the use of Python scripts.

3. Characterize the running time of the ParaView framework up to at least
1000 cores.

(a) Instrument the overhead of the ParaView framework in successively
larger groups.

(b) Instrument the operation of some basic post-processing operations.

i. Isosurface extraction

ii. Slicing

iii. Surface rendering

iv. Data export (to file)

In addition to these minimum success criteria, we also set for ourselves a stretch goal to
perform the characterization of criteria 3 for up to 10,000 cores.

8

Motivation

Although many projects integrate visualization with the solver to various degrees of
success, for the most part visualization remains independent of the solver in both research
and implementation. Historically, this has been because visualization was most effectively
performed on specialized computing hardware and because the loose coupling of solver and
visualization through reading and writing files was sufficient.

As we begin to run solvers on supercomputers with computation speeds in excess of
one petaFLOP, we are discovering that our current methods of scalable visualization are no
longer viable. Although the raw number crunching power of parallel visualization computers
keeps pace with those of petascale supercomputers, the other aspects of the system, such as
networking, file storage, and cooling, do not and are threatening to drive the cost past an
acceptable limit [1]. Even if we do continue to build specialized visualization computers, the
time spent in writing data to and reading data from disk storage is beginning to dominate
the time spent in both the solver and the visualization [3].

Coprocessing, running the visualization and analysis in tandem with the solver, can be an
effective tool for alleviating the overhead for disk storage [6], and studies show that visualiza-
tion algorithms, including rendering, can often be run efficiently on today’s supercomputers;
the visualization requires only a fraction of the time required by the solver [7].

Whereas much of the other previous work in visualization coprocessing completely couples
the solver and visualization components, thereby creating a final visual representation, our
work provides a framework for the more general notion of salient data extraction. Rather
than dump the raw data generated by the solver, our framework extracts the information
that is relevant for analysis, possibly transforming the data in the process. The extracted
information has a small data representation, which can be written at a much higher fidelity
than the original data, which in turn provides more information for analysis. This difference
is demonstrated in Figure 1.

A visual representation certainly could be one way to extract information (and one which
we demonstrate), but there are numerous other ways to extract information. A simple
means of extraction is to take subsets of the data such as slices or subvolumes. Other
examples include creating isosurfaces, deriving statistical quantities, creating particle tracks,
and identifying features.

The choice and implementation of the extraction varies greatly with the problem, so it
is important that our framework is flexible and expandable. To this end, our coprocessing
framework is based on the ParaView scalable visualization system. This provides us with a
large set of analysis algorithms already available and also helps integrate our system with
the ParaView application to simplify the specification of processing.

To demonstrate the necessary progress we made in providing coprocessing technology we

9

!"#$%&'

()*+'

!,"&-.%'

/)*0-#)1-2"3'

40##'5%*6'

!"#$%&'

()*+'

!,"&-.%'

/)*0-#)1-2"3'

78-.%*'

!"#$%&'

()*+'

!,"&-.%'

4%-,0&%*'9'

!,-2*2:*'

!-#)%3,'(-,-'

/)*0-#)1-2"3'

Figure 1: Different modes of visualization. In the traditional mode of visualization at left,
the solver dumps all data to disk. Many in-situ visualization projects couple the entire
visualization within the solver and dump viewable images to disk, as shown in the mid-
dle. Although the ParaView Coprocessing Library supports this mode, we encourage the
more versatile mode at right where the coprocessing extracts salient features and computes
statistics on the data within the solver.

first describe the development of the ParaView Coprocessing Library, then demonstrate its
use, and finally characterize the running time of the parallel system.

10

Develop a coprocessing library

Our ParaView Coprocessing Library is a C++ library with interfaces to C, FORTRAN,
and Python. It has two categories of input information: the simulation data (simulation
time, time step, mesh, and fields) and the information that specifies what the ParaView
Coprocessing Library extracts and when it gets outputted. The ParaView Coprocessing
Library is built on the Visualization Toolkit (VTK) [4] and ParaView [5], and is currently
maintained in and distributed from the ParaView code repository.

Since most use cases for the ParaView Coprocessing Library will be an extension of
a current solver code, we cannot expect the API for the library to be able to easily and
efficiently deal with all possible solver codes. The solution to this is to develop adaptors to
translate data structures between the simulation code and what is specified for the API of
the ParaView Coprocessing Library.

The ParaView Coprocessing Library is designed to be linked against the simulation ap-
plication and requires that the solver code be modified to invoke it at given points during
the solution. The solver code calls an adaptor module that is responsible for passing control
information between the simulation code and the ParaView Coprocessing Library as well as
converting the simulation code data structures to VTK data structures. The adaptor module
has to be created for each simulation code with different data structures, but this results in
the ParaView Coprocessing Library being independent of the solver codes.

Because of the separation between the solver and the ParaView Coprocessing Library,
the solver may not be directly aware of when the coprocessing should be performed or what
information is required in order to do the coprocessing. The adaptor is responsible for passing
the simulation time and time step to the ParaView Coprocessing Library, which determines
if any coprocessing needs to be performed for that invocation. If coprocessing is needed for
that invocation, the adaptor returns what field information (i.e. temperature, velocity, etc.)
is required. The adaptor then constructs the required information for the actual coprocessing
computation.

One of the big advantages of basing the ParaView Coprocessing Library on the ParaView
system is that almost all of the features within ParaView are also available within the
ParaView Coprocessing Library. Any reader, source, filter, or writer available in ParaView
is also available in the ParaView Coprocessing Library. The same parameters and options
are available in both. There are some caveats, of course. Functions dependent on the GUI
(such as Qt components) are not available because the Qt components are not compiled in
the coprocessor. Filters that attempt to control time (such as the temporal interpolator)
will probably not behave as expected as there is generally only data for the current iteration
from the solver.

11

Demonstrate the ParaView Coprocessing Library

As a demonstration of the adaptability of the ParaView Coprocessing Library, we have
integrated it with several solver codes: Sandia National Laboratories’ CTH and ALEGRA,
Los Alamos National Laboratories’ NPIC, and Rensselaer Polytechnic Institute’s PHASTA.
These codes have been run on a variety of computing platforms, the largest of which are
RedSky at Sandia National Laboratories, the CCNI BlueGene/L at Rensselaer Polytechnic
Institute, and the Intrepid BlueGene/P at Argonne National Laboratory.

There are multiple ways to specify a visualization pipeline from within a solver. The first
method is to “hard-code” the pipeline in C++. That is, from within the C++ interface code,
establish a predefined pipeline. We have an adaptor for CTH that does just this. The CTH
adaptor plugs into the Spymaster interface [2] and exposes a new command to its S-Lang
interface.

Figure 2: Using ParaView, the coprocessing plugin, and a proxy geometry to define an input
script for coprocessing.

However, for much greater flexibility, the ParaView Coprocessing Library provides a
means for the adaptor to supply a Python script that defines the visualization tasks to
perform. This Python script may be loaded at runtime via, for example, from an input
deck or read from a file. To assist in generating these scripts, ParaView provides a plugin
that allows a user to establish a visualization pipeline in ParaView (generally with a proxy
geometry) as shown in Figure 2 and then capture the state as a python script that can be
loaded by the ParaView Coprocessing Library. Using this flexible input, we are capable of
extracting and saving a variety of information including summary statistics in CSV files,
mesh topology with field data, and rendered images such as those shown in Figure 3. Simply
changing the Python script used, which can be done at runtime, can change the outputs
generated from the same data, such as between Figures 3f and 3g.

12

(a) CTH ball and brick test
problem.

(b) CTH exploding pipe. (c) CTH projectile.

(d) NPIC instability of plasma within a current sheet.

(e) ALEGRA impact-
ing spheres

(f) PHASTA abdominal aortic aneurysm
surface pressure.

(g) PHASTA abdominal aortic
aneurysm speed through slices.

Figure 3: Outputs from the ParaView Coprocessing Library running in tandem with a solver.
The CTH, NPIC, and ALEGRA coprocessing generated images. The PHASTA coprocessing
generated polygonal geometry.

13

Characterize the running time

To demonstrate that the ParaView Coprocessing Library is viable for large-scale visu-
alization, we have performed several scaling studies both on the ParaView parallel services
in isolation and when coupled with a solver via the ParaView Coprocessing Library. These
tests monitor the performance of several common visualization operations as we move to
larger numbers of processes and, nominally, larger data sizes.

Large Interactive Sessions

Our first set of experiments were performed on Sandia National Laboratories’ RedSky
cluster to determine the scalability of the interactive parallel ParaView server. Although
these experiments did not exercise the ParaView Coprocessing Library itself, they do exer-
cise the underlying parallel service that both the ParaView Coprocessing Library and the
interactive server share.

For each of these experiments, we generated a data set using ParaView’s wavelet source,
which samples a three dimensional sinusoidal function on a uniform grid. This source pro-
vides a data set with nontrivial contours for many isosurface values and is easy to scale to
arbitrary size. Because we can arbitrarily size this data, we used this source to perform a
weak scaling study. That is, we made the size of the grid proportional to the number of
processes so that across all experiments each process had roughly the same number of cells.
Perfect scaling occurs when the execution time remains constant.

Our experiments involved creating the wavelet source, extracting several contours from
the wavelet field, and then rendering the resulting surfaces. The experiment was repeated
using 512, 1024, 2048, and 4096 cores, respectively.

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Is
os
ur
fa
ce
 C
re
a,

on
 T
im

e
(s
ec
)

Cores

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Co
nt
ou

r
Ra

te
 (b

ill
io
n
ce
lls
/s
ec
)

Cores

Figure 4: Running time and rate of extracting isosurfaces from a wavelet source.

Figure 4 shows the running time for various numbers of cores. As is clearly shown, the
scaling for this isosurface algorithm is, by all practical measurements, perfect. The total run

14

time remains constant and if you consider the rate of computation measured in terms of cells
per second, we see a linear speedup.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
ve
ra
ge
 R
en

de
r
Ti
m
e
(s
ec
)

Cores

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Re
nd

er
 R
at
e
(M

ill
on

s
Po

ly
go
ns
/s
ec
)

Cores

Figure 5: Running time and rate of rendering isosurfaces from a wavelet source.

Figure 5 shows the running time for various numbers of cores. The time shown is the
average of multiple renders with an error bar showing the range of values. The scaling
performance of our rendering is quite good.

Memory Usage of Coprocessing within CTH

This set of experiments was run on Sandia’s RedSky computing platform using the CTH
solver integrated with the ParaView Coprocessing Library. The source data comes from
CTH and is identical for each of these experiments.

We ran two sets of experiments, first running CTH with no coupled analysis and then
running CTH integrated with the coprocessor that extracted an isosurface and rendered
it. Both sets of experiments were repeated on 256, 512, and 1024 cores of RedSky. Each
experiment ran for 2–4 hours. While the experiments were running, we used the UNIX free
command to periodically determine how much memory was being used on each node of the
job (each node contains 8 cores). We can now use this data to compare the memory overhead
of running with the coprocessor.

Figure 6 presents a detailed plot of the memory usage of each RedSky node. We present
the usage this way because the important metric is to not exceed the available memory on
any node. As can be seen, the overhead of using the ParaView Coprocessing Library is
significantly smaller than the overall memory usage of the solver itself. For example, in the
experiment run on 512 cores, it appears that partitioning decisions within CTH cause the
maximum per-node memory to exceed that of running with the coprocessor (although the
total amount of memory consumed without the coprocessor is, as expected, marginally less).

15

Cores Coproces s ing

0 1 2 3 4 5 6 7 8 9 10 11
Memory Us ed per Node (GB)

256 No

Y es

512 No

Y es

1024 No

Y es

Figure 6: Plot of the memory usage of each RedSky node for each of the six CTH experiments.
Darker hashes represent measurements taken later in the simulation.

Memory Usage of Coprocessing within NPIC

This set of experiments was run on Sandia’s RedSky computing platform using the NPIC
solver integrated with the ParaView Coprocessing Library. The source data comes from
NPIC and its size is scaled linearly with respect to the number of processors used. In each
case, every core processes 12,800 cells.

We ran two sets of experiments, first running NPIC with no coupled analysis and then
running NPIC integrated with the coprocessor that extracted an isosurface and rendered
it. Both sets of experiments were repeated on 256, 512, and 1024 cores of RedSky. Each
experiment ran for 3.5–4 hours. While the experiments were running, we used the UNIX
free command to periodically determine how much memory was being used on each node
of the job (each node contains 8 cores). We can now use this data to compare the memory
overhead of running with the coprocessor.

Cores Coproces s ing

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Memory Us ed per Node (GB)

256 No

Y es

512 No

Y es

1024 No

Y es

Figure 7: Plot of the memory usage of each RedSky node for each of the six NPIC experi-
ments. Darker hashes represent measurements taken later in the simulation.

Figure 7 presents a detailed plot of the memory usage of each RedSky node. We present
the usage this way because the important metric is to not exceed the available memory on
any node. As can be seen, the overhead of using the ParaView Coprocessing Library is
significantly smaller than the overall memory usage of the solver itself. Figure 8 presents a
summary of the overhead by showing the maximum amount of memory needed per node that
we encountered and the overhead added by the ParaView Coprocessing Library. According
to these figures, the memory overhead incurred by the ParaView Coprocessing Library never
exceeds 10% of the total memory.

16

0 1 2 3 4 5 6 7 8

256

512

1024

Maximum Memory Used in Node (GB)

Co
re
s

No Coprocessing

With Coprocessing

Overhead

Figure 8: Summary of the maximum memory usage needed in each RedSky node with
and without the ParaView Coprocessing Library. The computed overhead of the ParaView
Coprocessing Library is also given.

PHASTA Coprocessing on CCNI

This set of experiments was run on the CCNI BlueGene/L using the PHASTA solver
integrated with the ParaView Coprocessing Library. The source data comes from PHASTA
itself and remains constant, as uniformly scaling it is not possible in general. Thus, we used
this source to perform a strong scaling analysis. Perfect scaling occurs when the running
time is inversely proportional to the number of processes.

Our experiments involved slicing the data by a number of cutting planes and then writing
the sliced polygons to disk where they can be loaded later. The writing to disk included
a collection operation that reduced the amount of contention on the BlueGene disks. The
experiment was repeated using 512, 1024, 2048, 4096, and 8192 cores, respectively. The
coprocessing was run for 10 separate time steps during the course of the simulation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Sl
ic
e
Ti
m
e
(s
ec
)

Cores

Figure 9: Running time of extracting slices from PHASTA data. The dashed line represents
perfect scaling.

Figure 9 shows the running time of the slice filter. The times for each run are averaged
over the ten time steps, although the variance between the running times amongst time steps
is negligible. As can be seen, the running time drops significantly as cores are added and

17

closely follows perfect scaling.

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

W
ri
te
 T
im

e
(s
ec
)

Cores

Figure 10: Time to write slices extracted from PHASTA data.

Figure 10 shows the running time for writing the data on various numbers of cores. The
running times shown for each run are averaged over ten time steps with an error bar showing
the range of values.

The running times are mostly level, and this is about as close to optimal as we can get
with file I/O because although we are increasing the amount of computing resources, we are
using about the same amount of file I/O resources each time. Also, the uptick in time for
the larger jobs is misleading. Notice the large amount of variance in the write times. We
believe that for some of the time steps there was contention with the file I/O that sabotaged
performance and consequently increased the average time. Note that the minimum write
time, when contention did not exist, is nearly constant.

PHASTA Coprocessing on Intrepid

This set of experiments was run on the Intrepid BlueGene/P using the PHASTA solver in-
tegrated with the ParaView Coprocessing Library. The source data comes from the PHASTA
itself and remains constant, as uniformly scaling it is not possible in general. Thus, we used
this source to perform a strong scaling analysis. Perfect scaling occurs when the running
time is inversely proportional to the number of processes.

Our experiments involved slicing the data by a number of cutting planes and then writing
the sliced polygons to disk where they can be loaded later. The experiments also ran a
decimation algorithm on the full 3D mesh and wrote that resulting geometry to disk as well.
The writing to disk included a collection operation that reduced the amount of contention
on the BlueGene disks. The experiment was repeated using 4096, 8192, 16,384, and 32,768
cores, respectively. The coprocessing was run for 9 separate time steps during the course of
the simulation.

Figure 11 shows the running time of the slice filter and the decimate filter. The times for

18

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 5000 10000 15000 20000 25000 30000 35000

Sl
ic
e
Ti
m
e
(s
ec
)

Cores

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5000 10000 15000 20000 25000 30000 35000

D
ec
im

at
e
Ti
m
e
(s
ec
)

Cores

Figure 11: Running time of extracting slices (left) and decimating geometry (right) from
PHASTA data. The dashed lines indicate perfect scaling.

each run are averaged over the nine time steps, although the variance between the running
times amongst time steps is negligible in both cases. As can be seen, the running time drops
significantly as cores are added. Although the running time diverges a bit from perfect
scaling, the scaling is still quite good, particularly for a strong scaling study with running
times under 0.1 seconds.

0

2

4

6

8

10

12

14

16

18

20

0 5000 10000 15000 20000 25000 30000 35000

Sl
ic
e
W
ri
te
 T
im

e
(s
ec
)

Cores

0

2

4

6

8

10

12

14

0 5000 10000 15000 20000 25000 30000 35000

D
ec
im

at
e
W
ri
te
 T
im

e
(s
ec
)

Cores

Figure 12: Time to write slices (left) and decimated geometry (right) extracted from
PHASTA data.

Figure 12 shows the running time for writing the data on various numbers of cores. The
running times shown for each run are averaged over nine time steps with an error bar showing
the range of values.

Ideally the running times would be level; although we are adding more computing re-
sources, we are using about the same amount of file I/O resources each time. In our case, the
write time is actually increasing a bit even though we are writing roughly the same amount
of data. This is probably caused by added contention in the file system as more processes
attempt to access it. For future work, it appears that we could use a file I/O format and
library that does a better job coordinating writes. We also notice that there appears to be
file contention with other jobs accessing the same filesystem during some of the writes where
the time increases drastically. There is little we can do about this contention.

19

Write Time Comparison

The main motivating factor for coprocessing within a solver is to circumvent problematic
file I/O speeds. The assertion is that by performing our analysis before writing to disk, we
can save time overall. To prove this assertion we compare the time it takes to write out a
full mesh and the time it takes to write the data generated by our analyses.

0 1 2 3 4 5

1024

2048

Write Time (sec)

Co
re
s

Full Mesh

Slice

Decimate

Figure 13: A comparison of the write times for full PHASTA mesh and the results of our
slice and decimate filters.

Figure 13 compares the time spent writing the full image from a PHASTA simulation
and the time spent writing the results of our slice and decimate filters described previously.
These measurements were taken on the Intrepid BlueGene/P.

In each case the time spent writing the analysis results is significantly smaller than that
to write out the entire data set. Even when considering the time spent in performing the
analysis, the overall time is smaller. Were we to perform an analysis on a larger mesh, we
would expect even greater savings.

20

Conclusion

As required by the milestone we have developed a common analysis library, demonstrated
its use while coupled with multiple simulations, and evaluated its performance. We have also
demonstrated the scalability of several common visualization operations.

Most of the operations we tested scale extremely well. Isosurfacing, slicing, decimating,
and rendering all have near linear speedup. Of the operations we tested, writing is the
most problematic. This is of no surprise as relatively poor file I/O performance is one
of the main motivating factors for this work. Because our coprocessing system extracts
relevant information and reduces the overall data in situ, we can tame the cost of file I/O.
Nevertheless, our experiments suggest that optimizing the efficiency of our file I/O is one of
the critical issues to address moving forward. For this we hope to leverage the wide breadth
of research and development currently underway in file I/O systems.

21

References

[1] Hank Childs. Architectural challenges and solutions for petascale postprocessing. Journal
of Physics: Conference Series, 78(012012), 2007. DOI=10.1088/1742-6596/78/1/012012.

[2] D. A. Crawford. Spymaster user’s guide. Technical report, Sandia National Laboratories,
February 2002.

[3] R B Ross, T Peterka, H-W Shen, Y Hong, K-L Ma, H Yu, and K Moreland. Visualization
and parallel I/O at extreme scale. Journal of Physics: Conference Series, 125(012099),
2008. DOI=10.1088/1742-6596/125/1/012099.

[4] Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit: An Object
Oriented Approach to 3D Graphics. Kitware Inc., fourth edition, 2004. ISBN 1-930934-
19-X.

[5] Amy Henderson Squillacote. The ParaView Guide: A Parallel Visualization Application.
Kitware Inc., 2007. ISBN 1-930934-21-1.

[6] David Thompson, Nathan D. Fabian, Ken D. Moreland, and Lisa G. Ice. Design issues
for performing in situ analysis of simulation data. Technical Report SAND2009-2014,
Sandia National Laboratories, 2009.

[7] Tiankai Tu, Hongfeng Yu, Leonardo Ramirez-Guzman, Jacobo Bielak, Omar Ghattas,
Kwan-Liu Ma, and David R. O’Hallaron. From mesh generation to scientific visualiza-
tion: An end-to-end approach to parallel supercomputing. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, 2006.

22

A Signoff Memos

23

Exceptional Service in the National Interest

 Operated for the U.S. Department of Energy by
 Sandia Corporation

 Albuquerque, New Mexico 87185

 date: September 9, 2010

 to: Sudip S. Dosanjh, Ph.D.

subject: Achievement of Visualization on Supercomputing Platform Level II ASC Milestone 3537

Sudip:

On Thursday, September 9, 2010 we held a formal review of ASC Level II Milestone 3537:
Visualization on Supercomputing Platform. The review was held in CSRI 148. The review
team consisted of Bruce Hendrickson, Senior Manager of Computer Science and
Mathematics Group, Rob Hoekstra, Manager for Applied Math and Applications
Department, Erik Strack, Manager for Comp. Shock and Multiphysics Department, Ron
Brightwell, Manager Scalable System Software Department, and Greg Weirs, code developer
in Comp. Shock and Multiphysics Department. Also in attendance were Kenneth Moreland
and Nathan Fabian, members of the Milestone team.

Kenneth Moreland and I presented the Milestone results from both LANL and Sandia, with
emphasis on the work done by Sandia’s team members. Kenneth presented evidence that
demonstrated the delivery of an open source, VTK-based analysis library that can be coupled
with simulations, allowing them to perform a range of analysis and visualization operations
at runtime. In particular, Kenneth showed that this is a general purpose library by showing
results from running the library coupled with NPIC (LANL), CTH (SNL) and preliminary
results from Alegra (SNL). In addition, Kenneth presented evidence of interactive runs on
4K processors (utilizing the same underlying analysis code), as well as results from in-situ
runs up to 32K cores by collaborators at Kitware on Argonne’s Intrepid Supercomputer.

Based on the success of these results, Kenneth and I also presented the preliminary plan for
follow up work in FY11 and FY12, which includes collaboration with the Sierra code team,
and continued engagement with external partners leveraging and contributing to this open
source library.

The review team all agreed that the Sandia Milestone work was fully completed.

Sincerely,

David H. Rogers,
Manager, Department 1424 Data Analysis and Visualization

24

DISTRIBUTION:

1 Pat Marion
Kitware, Inc.
28 Corporate Drive
Clifton Park, NY 12065

1 Berk Geveci
Kitware, Inc.
28 Corporate Drive
Clifton Park, NY 12065

2 MS 1323 Kenneth Moreland, 1424

1 MS 1323 Nathan Fabian, 1424

1 MS 1323 David Rogers, 1424

1 MS 1318 Andrew Salinger, 1414

1 MS 1322 Sudip Dosanjh, 1420

1 MS 1319 Ronald Brightwell, 1423

1 MS 1319 James Ang, 1422

1 MS 0899 Technical Library, 9536 (electronic copy)

25

26

v1.35

	Executive Summary
	Motivation
	Develop a coprocessing library
	Demonstrate the ParaView Coprocessing Library
	Characterize the running time
	Large Interactive Sessions
	Memory Usage of Coprocessing within CTH
	Memory Usage of Coprocessing within NPIC
	PHASTA Coprocessing on CCNI
	PHASTA Coprocessing on Intrepid
	Write Time Comparison

	Conclusion
	References
	Signoff Memos

