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Scientific Discovery at the Exascale

1 Executive Summary

In February 2011, the Department of Energy (DOE) Office of Advanced Scientific Computing Research
(ASCR) convened a workshop to explore the problem of scientific understanding of data from High Perfor-
mance Computation (HPC) at the exascale. The goal of this workshop report is to identify the research and
production directions that the Data Management, Analysis, and Visualization (DMAV) community must
take to enable scientific discovery for HPC as it approaches the exascale (1 quintillion floating point calcu-
lations per second = 1 exaflop). Projections from the international TOP500 list [20] place that date around
2018–2019.

Extracting scientific insight from large HPC facilities is of crucial importance for the nation. The scientific
simulations that run on the supercomputers are only half of the “science”; scientific advances are made
only once the data produced by the simulations is processed into an output that is understandable by an
application scientist. As mathematician Richard Hamming famously said, “The purpose of computing is
insight, not numbers.” [29] It is precisely the DMAV community that provides the algorithms, research, and
tools to enable that critical insight.

The hardware and software changes that will occur as HPC enters the exascale era will be dramatic
and disruptive. Not only are scientific simulations forecasted to grow by many orders of magnitude, but
also current methods by which HPC systems are programmed and data are extracted are not expected to
survive into the exascale. Changing the fundamental methods by which scientific understanding is obtained
from HPC simulations is a daunting task. Specifically, dramatic changes to on-node concurrency, access
to memory hierarchies, accelerator and GPGPU processing, and input/output (I/O) subsystems will all
necessitate reformulating existing DMAV algorithms and workflows. Additionally, reductions in inter-node
and off-machine communication bandwidth will require rethinking how best to provide scalable algorithms
for scientific understanding.

Principal Finding: The disruptive changes imposed by a progressive movement toward the exascale in
HPC threaten to derail the scientific discovery process. Today’s successes in extracting knowledge from
large HPC simulation output are not generally applicable to the exascale era, and simply scaling existing
techniques to higher concurrency is insufficient to meet the challenge.

Recommendation: Focused and concerted efforts toward co-designing processes for exascale scientific
understanding must be adopted by DOE ASCR. These efforts must include research into effective in situ
processing frameworks, new I/O middleware systems, fine-grained visualization and analysis algorithms to
exploit future architectures, and co-scheduling analysis and simulation on HPC platforms. Such efforts must
be pursued in direct collaboration with the application domain scientists targeting exascale architectures.
To ensure effective delivery to scientists, DMAV researchers require access to “testbed” systems so that they
can prototype and pilot effective solutions.

Our full set of findings and recommendations may be found in Section 8 “Conclusion: Findings and
Recommendations” on page 31.

2 Prior Work

Work toward extreme-scale data understanding has occurred for many years. The research roadmap outlined
in this workshop report builds upon decades of prior work done by the DMAV community and others.
The two primary programmatic efforts within DOE that have been fertile ground for advances in scientific
understanding have been the National Nuclear Security Administration’s (NNSA) Advanced Simulation and
Computing (ASC) program and the two phases of the Scientific Discovery through Advanced Computing
(SciDAC) program of the Office of Science. These two programs have advanced parallel data analysis,
visualization, and scientific data management into the petascale era though their direct support of NNSA
and ASCR mission objectives. For a detailed look at how these two programs have dramatically affected
scientific discovery, see Appendix A on page 36.
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3 Workshop and Report Overview

The two-day exascale workshop was broken into two major activities, information gathering and collaborative
exchange, each on a separate day. Information gathering consisted of presentations by experts in the field.
For a full list of workshop participants, please see Appendix B on page 38.

First, Andy White of Los Alamos National Laboratory and Stephen Poole of Oak Ridge National Labo-
ratory (ORNL) gave presentations on expected exascale hardware and system architectures.

Then a select group of application scientists presented their computational domains with an eye toward
the scientific understanding challenges they expect at the exascale. Gary Strand, National Center for At-
mospheric Research, summarized the needs of the computational climate community. Bronson Messer of
ORNL described the needs of physicists simulating astrophysics, particularly core-collapse supernovae.
Jackie Chen of Sandia National Laboratories discussed the needs of the computational combustion commu-
nity and presented successful in situ frameworks at the petascale. C-S Chang, New York University, outlined
the data understanding needs of the computational fusion community.

The participants rounded out the day with presentations from members of the DMAV community, who
discussed research directions with potential for meeting the needs of the application scientists as exascale
computing approaches. Hank Childs of Lawrence Berkeley National Laboratory (LBNL) presented techniques
for scalable visualization. Scott Klasky of ORNL presented his work on scalable I/O infrastructures
and techniques for automating scientific workflow processes. John Wu, LBNL, summarized the latest
techniques for data indexing and I/O acceleration. Nagiza Samatova of North Carolina State University
presented techniques for enhancing scientific datasets through the general framework of scalable analytics.

The workshop continued on the second day with two sessions of breakout groups to promote collaborative
exchange. The first session featured three groups:

• Concurrent Processing & In Situ led by Kwan-Liu Ma of the University of California–Davis

• I/O and Storage led by Scott Klasky of ORNL

• Data Postprocessing led by Alok Choudhary of Northwestern University

This was followed by a second session with two breakout groups:

• Visualization and Analysis led by Valerio Pascucci of the University of Utah

• Scientific Data Management led by Terence Critchlow of Pacific Northwest National Laboratory

Each breakout group presented its findings and recommendations to the plenary session in the afternoon as
the workshop closed out.

In this workshop report, we attempt to follow the same format as the workshop itself. We first present the
architectural changes expected as we progress to the exascale (Section 4 below). We present a summary
of direct application needs (Section 5 on page 4). We then outline our recommended research roadmap
(Section 6 on page 15), roughly broken into the categories of the five breakout groups of the workshop.
We round out the report with identified areas for co-design and collaboration (Section 7 on page 30) and
conclude with our findings and recommendations (Section 8 on page 31).

4 Future Architectures – Overview and Implications

The most significant changes at the exascale come from architectural changes in the underlying hardware
platforms. In the 1980s and 1990s, researchers could count on a Moore’s Law doubling of scalar floating
performance every 18 months; and in the 2000s, the HPC community saw sizable gains in scaling distributed
memory execution as the nodes maintained a fairly standard balance between memory, I/O, and CPU
performance. The exascale, however, will see an age of significant imbalances between system components.
These imbalances, detailed below, will necessitate a sea change in how computational scientists exploit HPC
hardware.
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4.1 Exascale System Architecture

Potential exascale system architecture parameters are shown in Table 1. The table provides projected
numbers for the design of two “swim lanes” of hardware design representing radically different design choices.
Also shown are the equivalent metrics for a machine today and the difference from today’s machines.

Table 1: Expected Exascale Architecture Parameters and Comparison with Current Hardware (from “The
Scientific Grand Challenges Workshop: Architectures and Technology for Extreme Scale Computing” [55]).

“2018”
System Parameter 2011 Swim Lane 1 Swim Lane 2 Factor Change

System Peak 2 Pf/s 1 Ef/s 500
Power 6 MW ≤20 MW 3

System Memory 0.3 PB 32–64 PB 100–200
Total Concurrency 225K 1B×10 1B×100 40,000–400,000
Node Performance 125 GF 1 TF 10 TF 8–80
Node Concurrency 12 1,000 10,000 83–830

Network BW 1.5 GB/s 100 GB/s 1000 GB/s 66–660
System Size (nodes) 18700 1,000,000 100,000 50–500

I/O Capacity 15 PB 300–1000 PB 20–67
I/O BW 0.2 TB/s 20–60 TB/s 10–30

From examining these differences it is clear that an exascale-era machine will not simply be a petascale
machine scaled in every dimension by a factor of 1,000. The principal reason for this is the need to control
the power usage of such a machine.

The implications for users of such systems are numerous:

• Total concurrency in the applications must rise by a factor of about 40,000–400,000, but
available memory will rise only by a factor of about 100. From a scientist’s perspective, the
ratio of memory to compute capability is critical in determining the size of the problem that can be
solved. The processor dictates how much computing can be done; the memory dictates the size of
the problem that can be handled. The disparity of growth between computing and storage means
that memory will become a much more dominant factor in the size of problem that can be solved, so
applications cannot just scale to the speed of the machine. In other words, the current weak-scaling
approaches will not work. Scientists and computer scientists will have to rethink how they are going
to use the systems; the factor of >100 loss in memory per compute thread means that there will be a
need to completely redesign current application codes, and the supporting visualization and analytics
frameworks, to enable them to exploit parallelism as much as possible. It is also important to note
that most of this parallelism will be on-node.

• For both power and performance reasons, locality of data and computation will be much
more important at the exascale. On an exascale-class architecture, the most expensive operation,
from both a power and performance perspective, will be moving data. The further the data is moved,
the more expensive the process will be. Therefore, approaches that maximize locality as much as
possible and pay close attention to their data movement are likely to be the most successful. As well
as locality between nodes (horizontal locality), it will also be essential to pay attention to on-node
locality (vertical locality), as the memory hierarchy is likely to get deeper. This also implies that
synchronization will be very expensive, and the work required to manage synchronization will be high.
Thus successful approaches will also minimize the amount of synchronization required.

• The I/O storage subsystem of an exascale machine will be, relatively speaking, much
smaller and slower compared with both the peak flops and the memory capacity. From
both an energy usage and a cost perspective, it seems likely that much less aggregate disk-based I/O
capacity and bandwidth will be available on an exascale-class machine. Thus, both the storage of
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simulation results and checkpointing for resiliency are likely to require new approaches. In fact, some
part of the analysis of simulation results is likely to be performed in situ in order to minimize the
amount of data written to permanent storage.

4.2 Potentially Disruptive New Technology — NVRAM

At the same time as these trends are occurring, new nonvolatile memory technologies are emerging that
could somewhat mitigate the issues. Probably the most well known of these is NAND flash, because of
its ubiquity in consumer devices such as phones and cameras. Today its usage is just beginning to be
explored in the realm of HPC. Compared with a regular spinning disk, flash memory has a large latency
advantage for both read and write operations. Therefore, for example, it has very attractive performance
characteristics for small I/O operations [40]. Thus augmenting a node of a HPC machine with a NVRAM-
based (nonvolatile random-access memory) device should make it possible to both improve I/O bandwidth
for checkpointing and provide a potentially attractive technology for use as a swap device to extend memory
capacity, potentially allowing us to partially mitigate both of the trends identified above. There are also other
varieties of nonvolatile memory technologies beginning to emerge, such as phase change memory (PCM) and
magnetic RAM (MRAM). These technologies all have different characteristics in terms of access times for
read and write operations, as well as reliability, durability, cost, and so on. Users of exascale machines will
have to exploit these new resources to maximize their performance as well as to improve their resiliency by
using the NVRAM device as a storage resource for checkpointing.

5 User Needs and Use Cases

To appropriately guide the research roadmap for exascale computing, we need to ground ourselves in the
specific and direct needs of the relevant DOE application communities, culling from their collective knowledge
of their computational domains. We have identified commonalities among and across these groups, distilling
prevalent use cases that can be considered cross-disciplinary.

5.1 Science Application Drivers

Representative exascale user requirements are drawn from the eight reports from the “Scientific Grand
Challenges Workshop Series.” Separate workshops were held for eight scientific domains, each attracting
approximately 50 technical leaders in the field of extreme-scale computing. The resulting reports focus on
the grand challenges of a specific scientific domain, the role for scientific computing in addressing those
challenges, and actionable recommendations for overcoming the most formidable technical issues. Each
report finds that significant increases in computing power are expected to lead to scientific breakthroughs
in their field. In the summaries that follow, we focus primarily on the visualization, analysis, and data
management requirements embedded in these reports. We distill some common themes across these reports
in Section 5.2.

5.1.1 High-Energy Physics

The High-Energy Physics Workshop was held December 9–11, 2008, in Menlo Park, California. Co-chairs
of the workshop were Roger Blandford of the SLAC National Accelerator Laboratory, Norman Christ of
Columbia University, and Young-Kee Kim of Fermi National Accelerator Laboratory. The recommendations
of that workshop are detailed in the report Scientific Grand Challenges: Challenges for the Understanding
the Quantum Universe and the Role of Computing at the Extreme Scale [7].

The Grand Challenges report details the role of massive computation related to the needs of the high-
energy physics community. The community sees large-scale computation as providing the framework within
which research into the mysteries of the quantum universe can be undertaken. The requirements of this
community are indeed extreme, enabling researchers to obtain increased accuracy in simulations, allowing
the analysis and visualization of 100 petabyte data sets, and creating methods by which simulations can be
optimized. To do these things, new software paradigms, numerical algorithms, and programming tools need
to be developed to take advantage of the extreme-scale architectures that will be designed in the exascale. In
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Figure 1: Two visualizations of an intense laser pulse (traveling from right to left) that is producing a density
wake in a hydrogen plasma, shown by colored density isosurfaces in VisIt parallel visualizations of VORPAL
simulations modeling LOASIS (LBNL) laser wakefield accelerator (LWFA) experiments. On the right, high-
energy particles are overlaid with the wake, colored by their momentum, facilitating understanding of how
these experiments produced narrow energy spread bunches for the first time in an LWFA (red). The present
simulations run on 3,500 processors for 36 hours; and visualization of the 50 GB/time snapshot datasets runs
on 32 processors, taking tens of minutes/snapshot. Future experiments will increase these demands by orders
of magnitude. Data indexing has been shown to decrease time to discovery for these types of data sets by up
to three orders of magnitude [73]. VORPAL is developed by the Tech-X Corporation, partially supported
through the SciDAC accelerator modeling program (ComPASS). Image courtesy of David Bruhwiler (Tech-X
Corporation). Image from the High-Energy Physics workshop report [7].

addition, the massive amounts of data developed and processed by these new systems will require end-to-end
solutions for data management, analysis, and visualization, and the management and automation of the
workflows associated with the simulations.

Cross-cutting issues are highly important to the high-energy physics community. These scientists recog-
nize that their use of future exascale systems is predicated on the development of software tools that take
advantage of architectural advances and the development of data exploration, analysis, and management
tools that enable the discovery of new information in their data. Because current petascale platforms are
architecturally ill suited to the task of massive data analysis, the community suggests that a data-intensive
engine be developed (something with the total memory of an exascale computer, but fewer processor nodes
and higher I/O bandwidth) for analysis of simulation results, observational data mining, and interactive
visualization and data analysis.

The opportunities offered by exascale computing will enable the optimal design of large-scale instru-
mentation and simulations that go beyond the capabilities of today’s systems. Cross-cutting issues are
paramount in developing the capability to design these experiments and analyze the resulting data. Some
specific findings of the workshop follow.

• The success of these simulation activities on new-generation extreme-scale computers requires advances
in meshing, sparse-matrix algorithms, load balancing, higher-order embedded boundaries, optimization,
data analysis, visualization, and fault tolerance.

• The understanding of highly nonlinear collective beam effects requires advances in particle-in-cell (PIC)
technologies, pipelining algorithms, multi-language software infrastructure, data analysis, visualization,
fault tolerance, and optimization. See Figure 1 for an example of beam simulation and visualization.
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• Simulations in this field require the development of multiscale, multiphysics accelerator structure frame-
works, including integrated electromagnetic, thermal, and mechanical analysis. To develop such a
framework, advances are necessary in meshing, load balancing, solver, coupling technology (e.g., mesh
to mesh), optimization, data analysis, and visualization (in situ).

• Success in many efforts requires advances in PIC methods, pipelining algorithms for quasi-static PIC
models, multi-language software infrastructure, performance, data analysis, visualization, fault toler-
ance, dynamic load balancing, and mesh refinement. Improving the fidelity and scaling of reduced
models will also require new algorithm development.

• The high-energy physics community recognizes that analysis and visualization of the resulting data
will require major changes in the current file I/O paradigm. There is a need to develop the software
infrastructure for physics analysis and visualization on the fly, in addition to enhancing the performance
of the post-processing and postmortem analysis tools. It will be imperative to identify the problems
and define the strategies to overcome I/O bottlenecks in applications running on many thousands to
many hundreds of thousands of processors. In addition, a common data representation and well-defined
interfaces are required to enable analysis and visualization.

The rewards of developing exascale systems for the high-energy physics community will be great, but the
required efforts are also great. The simulation and analysis systems developed in the past will not transfer
directly to the new generation of systems, and much work must be done to develop new methods that use
the architectural advantages of these systems. Cross-cutting disciplines are extremely important here, as the
development of new programming paradigms, numerical tools, analysis tools, visualization tools, and data
management tools will dramatically impact the success of their research programs.

5.1.2 Climate

Computational climate science aims to develop physically and chemically accurate numerical models and their
corresponding implementation in software. DOE’s ASCR program develops and deploys computational and
networking tools that enable scientists to model, simulate, analyze, and predict phenomena important to
DOE. This community issued a report in 2008 [69], later summarized in 2010 [34], that sketches out how
exascale computing would benefit climate science and makes the point that realizing those benefits requires
significant advances in areas such as algorithm development for future architectures and DMAV.

Exascale computational capacity offers the potential for significant advances in several different aspects
of climate science research. First, existing models presently run at ∼100 km grid resolution; yet accurate
physical modeling of critical climate systems, such as clouds and their impact on radiation transfer within
the atmosphere, require significantly higher spatial resolution. Some weather features, like hurricanes and
cyclones, become “visible” in simulation output only as spatial resolution increases (Figure 2). Therefore,
climate scientists expect evolution toward 1 km grid spacing, which by itself represents an increase of at
least four orders of magnitude in the size of a single dataset.

Second, temporal resolution in the present typically consists of yearly summaries over a 1000 year period.
It is likely to grow by one to two orders of magnitude as climate scientists pursue both decadal predictive
capabilities, which require very high temporal resolution, and paleoclimate studies, which attempt to model
climate changes that occur abruptly over the course of hundreds of centuries yet are missed in coarse temporal
sampling (Figure 3). Related, accurate climate modeling requires graceful accommodation of multiscale
phenomena: some processes—like the birth of cloud drops, ice crystals, and aerosols—occur over time scales
of a few minutes but interact with larger-scale and longer-time circulation systems.

A third area for growth involves models that couple different components of climate, such as atmosphere,
ocean, geochemistry, biochemistry, and aerosols. Such models represent a major potential advancement,
since a climate model’s predictive capability requires that it accurately model physics and chemistry within
each of these regimes and accurately capture fluxes among them.

Fourth, these tools and their resulting data products will increasingly be used for prediction by a diverse
set of stakeholders ranging from climate science researchers to policy makers.

Fifth, a collection of simulation runs can capture the variability that occurs across a range of different
input conditions better than individual simulations can. Such ensemble collections play an important role
in aiding understanding of the uncertainty, variability, and probability of potential climate changes.
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Figure 2: Global warming will probably change the statistics of tropical cyclones and hurricanes.
In this high-resolution simulation, using the finite volume version of NCAR’s Community Atmo-
sphere Model (CAM-5), we study how well the model can reproduce observed tropical cyclone
statistics. The simulated storms seen in this animation are generated spontaneously from the
model’s simulated weather conditions long after the initial conditions have been forgotten. The
structure of these simulated tropical cyclones is surprisingly realistic, with the strongest storms
rating as Category 4 on the Sapphir-Simpson scale. The image is a visualization of the total
vertical column integrated water vapor. Simulation data by M. Wehner (LBNL), visualization by
Prabhat (LBNL).

Finally, these software tools and their data products will ultimately be used by a large international
community. The climate community expects that datasets, collectively, will range into the 100s of exabytes
by 2020 [34, 69]. Because the simulation results are a product for subsequent analysis and model validation
by a large international community, the in situ processing model, in which visualization/analysis is performed
while simulation data is still resident in memory, is not a good match.

Distributed data. An important trend noted by the climate science reports is that an international com-
munity of climate science researchers are consumers of what will be hundreds of exabytes of data products.
These products would be distributed over a wide geographic area in federated databases. Ideally, researchers
would have a single, unified methodology for accessing such distributed data. The process of distributing the
data will impose a substantial load on future networks, requiring advances not only in throughput/bandwidth
but also in related technologies like monitoring and scheduling, movement/transmission, and space reserva-
tion. The explosive growth in data diversity will in turn require significant advances in metadata management
to enable searches, and related subsetting capabilities so researchers can extract the portions of datasets of
interest to them. It is likely that more visualization and analysis processing will happen “close to” the data,
rather than by subsequent analysis of data downloaded to a researcher’s remote machine.

Data size and complexity. Given the projected explosive growth in the size and complexity of
datasets—four to six orders of magnitude for a single dataset—visualization and analysis technologies must
evolve to accommodate larger and more complex data as input. Therefore, they must be able to take ad-
vantage of future machine architectures so they can leverage platforms with large amounts of memory and
processing capacity. Also, seamless visualization or analysis of data from coupled models is relatively new;
the existing software infrastructure is simply not designed to handle this complex new type of data.

Deployment of software and data. Given that future consumers of climate science data products
will include a large community of climate scientists as well as non-experts like policy makers, a significant
challenge is how to best approach dissemination of, and access to, data and software tools for analysis. An
increasing amount of data analysis and visualization will probably, by necessity, be conducted “close to” the
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Figure 3: Abrupt climate change. Running NCAR’s CCSM3 model, the simulation shows deglacia-
tion during the Bolling-Allerod, Earth’s most recent period of natural global warming. Image
courtesy J. Daniel (ORNL).

data. Therefore, “productizing” software tools to support rapid deployment at “analysis centers” will likely
be a priority. The exact forms these tools will take is not clear. In the past, standalone applications have
been the dominant form of distribution. In the future, alternative implementations may be more desirable to
better support use in user-customized workflow pipelines running on parallel infrastructure. One potential
schematic for implementing these capabilities is shown in Figure 4.

5.1.3 Nuclear Physics

The Nuclear Physics Workshop was held January 26–28, 2009, in Washington, D.C. The recommendations of
that workshop are detailed in the report Scientific Grand Challenges: Forefront Questions in Nuclear Science
and the Role of Computing at the Extreme Scale [74]. It focuses on five major areas in which extreme scale
computing is most relevant to nuclear science:

• Nuclear forces and cold quantum chromodynamics (QCD)

• Nuclear structure and nuclear reactions

• Nuclear astrophysics

• Hot and dense QCD

• Accelerator physics

The report notes several key data analysis, visualization, and storage developments that will enable nuclear
physics and nuclear astrophysics to advance during the evolution to extreme-scale computing:

• Scientists are concerned about storage and data access mechanisms for the tera-, peta-, and expected
exabytes of data from simulations. I/O mechanisms scaling to millions of compute cores, as well as
storage infrastructure to scale to the data sizes, will be needed.
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Figure 4: Schematic depiction of a use case supporting remote login for experts (e.g., model developers and
climate researchers) and non-experts needing fault-tolerant end-to-end system integration and large data
movement. For the expert user, the system expresses all the capabilities and complexities needed for rich
data exploration and manipulation. For the non-expert, however, a simple abstraction layer includes easy-
to-use controls for maneuvering within the system. Image courtesy of Dean Williams (Lawrence Livermore
National Laboratory).

• To contend with the data volumes generated by the simulations, scalable algorithms for data analysis
and visualization will be critical.

• The growing volume of data associated with an increasingly ambitious physics program requires suf-
ficient investment in computational resources for post-processing of the data. This will entail the
provision of computer systems that are themselves large in scale by current standards, with an aggre-
gate capacity of at least the scale of the extreme (capability) resources themselves. Thus the enterprise
of computing will require an “ecosystems” approach to staging, executing, and post-processing data
that come from extreme-scale computations.

• Data management approaches for geographically distributed teams are needed.

• Discovery-enabling visualization and analysis of multivariate (scalar, vector, and tensor), multidimen-
sional (as high as six-dimensional), spatio-temporal data must be developed to meet the needs of the
science. Comparative analyses between data-sets also are needed.

5.1.4 Fusion

Recommendations from the Fusion Energy Sciences Workshop, held March 18–20, 2009, in Washington,
D.C., are detailed in Fusion Energy Sciences and the Role of Computing at the Extreme Scale [58]. That
report identifies key areas of plasma physics that produce new insights from large-scale computations and
considers grand challenges in plasma science to enhance national security and economic competitiveness and
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Figure 5: Three-dimensional kinetic simulation of magnetic reconnection in a large-
scale electron–positron plasma with a guide field equal to the reconnecting field.
This simulation was performed on the Roadrunner supercomputer at Los Alamos
National Laboratory using the VPIC code and employing open boundary conditions
(Daughton et al. 2006). Shown are density isosurfaces colored by the reconnection
outflow velocity. Magnetic islands develop at resonant surfaces across the layer,
leading to complex interactions of flux ropes over a range of different angles and
spatial scales. Image courtesy of William Daughton (Los Alamos National Labora-
tory). Figure from the Fusion workshop report [58].

increase our understanding of the universe. The Fusion Energy Sciences workshop featured five key panels:
Burning Plasma/ITER Science Challenges, Advanced Physics Integration Challenges, Plasma-Material In-
teraction Science Challenges, Laser–Plasma Interactions and High-Energy Density Laboratory Physics, and
Basic Plasma Science/Magnetic Reconnection Physics (see Figure 5). There were also four ASCR panels:
Algorithms for Fusion Energy Sciences at the Extreme Scale; Data Analysis, Management, and Visualization
in Fusion Energy Science; Mathematical Formulations; and Programming Models, Frameworks, and Tools.

Participants in the Fusion Energy Sciences workshop identified five key issues in data analysis, manage-
ment, and visualization:

• Managing large-scale I/O volume and data movement. Techniques need to be developed to optimize
I/O performance automatically based on hardware and avoid slowdown due to insufficient rates.

• Real-time monitoring of simulations and run-time metadata generation.

• Data analysis at extreme scale.

• Visualization of very large datasets.

• Experiment–simulation data comparison.

Specific I/O challenges are presented by a few codes and result mainly from PIC techniques, which can
output up to 2 PB of data every 10 minutes. This output places severe stress on current technology for in
situ processing, as well as for post-processing. Fusion researchers need I/O with low overhead and have been
looking into a variety of techniques for reducing I/O overhead and variability. HDF5, NetCDF, and ADIOS
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Figure 6: Nuclear energy simulations involve different physical phenomena at varying
scales of interest. Figure from the Nuclear Energy workshop report [50].

are the main I/O systems used in fusion science research. Code coupling is also expected to be important
for the I/O-like infrastructure.

New techniques that can monitor large-scale simulations easily and allow collaborative, effective moni-
toring across small groups of researchers during a simulation are needed to enable the science. Advances
in data movement are also needed to enable efficient movement of data to a group of researchers analyzing
output from the same simulation.

Multi-resolution analysis and visualization must also be deployed for visual debugging and interactive
data exploration. Key challenges at the exascale are the capability to see particles to provide insight,
techniques for query-based tools to quickly search through data, and methods for remotely visualizing data
from a supercomputer on individual laptops. Visualizations must be shared, and techniques for sharing them
must be developed for the fusion community.

Another set of challenges is associated with scaling current analysis codes to the extreme scale, given that
most of the fusion analysis codes use scripting languages such as IDL or Matlab. The use of programming
models such as Global Arrays for extreme-scale computation is recommended in the Fusion Energy Sciences
workshop report.

Finally, comparison of simulation data with experimental data must be enabled. Techniques for validation
and verification must be developed so that researchers can access, analyze, visualize, and assimilate data
between “shots” in near real-time to support decision-making during experiments.

5.1.5 Nuclear Energy

The Nuclear Energy Workshop was held May 11–12, 2009, in Washington, D.C. The recommendations from
that workshop are detailed in Science Based Nuclear Energy Systems Enabled by Advanced Modeling and
Simulation at the Extreme Scale [50], which identifies the key nuclear energy issues that can be impacted by
extreme computing:

• Performance issues surrounding integrated nuclear energy systems

• Materials behavior

• Verification, validation, and uncertainty and risk quantification

• Systems integration

The extreme-scale simulations to illuminate these issues will create significantly larger and more complex
data sets than those currently considered by the visualization and analysis community. Simulations will
consider a variety of time and length scales (see Figure 6), that present significant challenges in exploration,
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Figure 7: Calculated magnetic spin dynamics in an iron-platinum nanoparticle embedded in a random
alloy. Left image is initial state (nonmagnetic); right image is final state (ferromagnetic). Image courtesy of
Malcolm Stocks, Aurelian Rusanu, Markus Eisenbach, and Don Nicholson (Oak Ridge National Laboratory);
and Yang Wang and Greg Foss (Pittsburgh Supercomputer Center). Image from the Basic Energy Sciences
workshop report [24].

detection, and synthesis. The uncertainty quantification effort will lead to ensembles of simulations with as
many as one million members, requiring new techniques for understanding the data sets. And very large
energy groups, which essentially define a function at every location in the mesh, challenge the existing
techniques for multivariate analysis. In terms of scale, a variety of factors will spur increases in data
size: improved geometry fidelity (e.g., more complex computational domains), numerical fidelity (e.g., finer
resolution and/or higher-order schemes), and physics fidelity (e.g., “more physics”). Finally, although the
size of data sets was not explicitly discussed in the report, it should be noted that current thermal hydraulics
calculations already contain billions of degrees of freedom per variable per time slice, and that data volume
will only increase as more computing power becomes available.

5.1.6 Basic Energy Sciences

Recommendations from the Basic Energy Sciences Workshop, which took place August 13–15, 2009, in Wash-
ington, D.C., are detailed in the report Scientific Grand Challenges—Discovery in Basic Energy Sciences:
The Role of Computing at the Extreme Scale [24]. The report identifies the scientific challenges in basic
energy sciences that could be solved or aided by high-performance computing at the extreme scale. The par-
ticipants identified the following topical areas as the most pressing and critical issues requiring computational
modeling and simulation at the extreme scale:

• Excited states and charge transport

• Strongly correlated systems

• Free energy landscapes, rare events, and phase space sampling

• Bridging of time and length scales

• Materials, molecules, and nanostructures by scientific design (see Figure 7);

• Systems and processes out of equilibrium

• Materials properties, including phase diagrams, solvent effects and dielectric properties

The Basic Energy Sciences workshop report stresses a deep concern for the infrastructure that aids in
managing and analyzing large data sets. It states that the data challenges will require interdisciplinary
developments to design new algorithms, optimization techniques, advanced statistical analysis methods,
methods of automated data mining, multidimensional histogramming techniques, data inversion, and image
reconstruction. The report notes that data management and analysis infrastructure in use today by the
scientific community does not fully exploit new hardware developments such as multicore processors. New
and future hardware developments need to be taken into account in addressing these challenges. Data
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management and analysis challenges are strongly connected both with the output of simulations and with
experimentally collected data. There is also a need for real-time analysis in both cases—simulation and
experiment. The report stresses repeatedly the need for dedicated resources for analysis, processing and
development, stating that “Major computing systems are not appropriate, nor should they be used, for this
type of work.”

5.1.7 Biology

The Biology Workshop was held August 17–19, 2009, in Chicago. Its recommendations are detailed in the
report “Scientific Grand Challenges: Opportunities in Biology at the Extreme Scale of Computing” [54]. The
vision of the grand challenges confronting the biology community over the next few years showcases several
different types of data management challenges arising from the extreme volumes of data being produced by
simulation, analysis, and experiment. Ranging from the understanding of the fundamental connections be-
tween the chemistry of biomolecules and the function of whole organisms, to the processing and interpretation
of complex reaction pathways inside organisms used in bioremediation, to the simulation and understanding
of the human brain itself, these complex “challenge problems” use data in ways that extend the requirements
for extreme-scale data management and visualization.

In particular, the Biology workshop report highlights four distinct areas of grand challenges in the science:

• Understanding the molecular characterization of proteins and biological macromolecules

• Understanding the reaction pathways of cells and the organizational construction of organelles

• Describing and exploring emergent behavior in ecosystems

• Building a computational model of human cognition

In all of these grand challenge areas, data visualization, analysis, and management play a key part; in-
deed, the final chapter of the report is devoted entirely to that topic. In all of the key biological research
areas addressed, there is an important intersection between simulation data and experimental data. Thus
analysis and visualization tasks oriented around large data integration and verification are prominent in
the requirements. In fact, one of the key concerns highlighted in the report has to do with innovations in
high-throughput sequencing equipment; it is not concerned solely with large simulation data volumes. From
the perspective of the report, the extreme-scale computing challenges in biology will depend heavily on the
ability to adequately support data management, analysis, and visualization.

5.1.8 National Security

The National Security workshop was held on October 6–8, 2009 in Washington, D.C. The report Scientific
Grand Challenges in National Security: The Role of Computing at the Extreme Scale [41] summarizes the
findings and recommendations from this workshop. The participants organized panels in five topic areas,
each including some unique needs for data management, analysis, and visualization:

• Multiphysics Simulation: Data analysis techniques must span distinct solution spaces in both
space and time and must include capturing and analyzing “voluminous data” such as that from sensor
networks.

• Nuclear Physics: Scales between the nuclear and the atomic must be bridged not just by simulation
codes themselves but also by the visualization and analysis tools.

• Materials Science specifically stated a broad need for visualization and analysis research and devel-
opment targeted for exascale simulation data.

• Chemistry: Extracting thermophysical properties of localized regions of space requires a higher tem-
poral analysis than is possible using storage and post-analysis techniques.

• Science of Non-proliferation: The panel describes this area as a data-driven science. Data extrac-
tion and aggregation spans massive, disparate types of data; and machine-assisted analysis is required
to aid human analysts in detecting anomalous behavior through sorting, filtering, classification, and
visual metaphors.

• Uncertainty Quantification: Data management is just as critical for the properties of the computed
data as for the computed data itself. Data exploration in this space is particularly confounded by the
explosion in dimensionality and the exabytes of data produced.
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Several cross-cutting issues were identified among the workshop panels, including uncertainty quantifi-
cation, image analysis, and data management tools. A number of these areas depend heavily on the ability
to organize, analyze, and visualize data; in its conclusion, the report recommends that the national secu-
rity areas need a “balanced and complete infrastructure” associated with extreme-scale facilities, including
“supporting software, data storage, data analysis, visualization, and associated analytical tools.”

5.2 Common Themes and Cross-Cutting Issues in Science Application Areas

While the previous section discusses a diverse range of science questions and challenges, there are a number
of cross-cutting themes that span the surveyed science areas.

Science applications are impacted by the widening gap between I/O and computational
capacity. I/O costs are rising, so, as simulations increase in spatiotemporal resolution and higher-fidelity
physics, the need for analysis and visualization to understand results will become more and more acute. If
I/O becomes prohibitively costly, it seems likely that the need to perform analysis and visualization while
data is still resident in memory will similarly become increasingly acute.

Science applications will be producing more data than ever before. The expanded capacity will
result in higher spatiotemporal resolution in computations. Researchers in many areas of science express
concern that their traditional approach of writing files for subsequent analysis/visualization will become
intractable as data size and complexity increase and the cost of I/O rises. The greater spatiotemporal
resolution, combined with increasing complexity and alternative mesh types, puts stress on existing data
management, data modeling, and data I/O software and hardware infrastructure. The familiar problems
of storing, managing, finding, analyzing/visualizing, sharing, subsetting, and moving data are projected to
become increasingly acute as we head into the exascale regime.

Some science applications will leverage increased computational capacity to compute new
data types not seen before in visualization and analysis. For example, emerging nuclear transport
codes in nuclear physics and astrophysics compute “energy groups,” which essentially define a function
at every mesh location. The function may be, for example, radiation flux at different frequencies and
azimuthal/elevation angles. Such data types, especially for very “wide” energy groups, are outside the scope
of most traditional visualization and analysis tools.

Many science applications will increasingly compute ensembles to study “what-if” scenarios,
as well as to understand the range of potential behaviors over a range of different conditions.
Whereas traditional approaches for visualization and analysis typically facilitate examining one dataset at a
time, the growth in ensemble collections of simulations will make it increasingly important to quantify error
and uncertainty across the ensemble, as well as between ensembles. Visualizing uncertainty and error is an
ongoing research challenge, as is managing increasingly large and diverse ensemble data collections.

Many science areas will need dedicated computational infrastructure to facilitate experi-
mental analysis. One recurring theme is that much scientific activity focuses on experimental analysis, often
on dedicated computational infrastructure that is not of the same capacity as the largest supercomputers.
This issue is also critical for applications that enable verification and validation leveraging both simulations
and experiments. Multiple areas of science have indicated that their experimental analysis is increasing, yet
their software infrastructure is incapable of leveraging current, much less emerging, multicore/many-core
platforms.

Exposure to transient failures will increase the need for fault-tolerant computing. It is
widely accepted that mean time between failure (MTBF) will go down as processor count goes up and
system complexity increases. Yet the path forward for having science codes, including visualization and
analysis, become fault-tolerant is not entirely clear.

Most existing science applications are written in MPI, which will likely be inadequate at
billion-way concurrency. The path forward to creating scalable codes that run at billion-way concur-
rency and that are portable to different classes of machine architectures is not yet clear. Many groups are
investigating hybrid-parallelism using combinations of MPI for distributed-memory parallelism and other
approaches, like POSIX threads and/or CUDA/OpenCL, for shared-memory parallelism. Many teams are
likely to rely on evolution of fundamental core mathematical infrastructures, like linear algebra solvers, to
take advantage of future architectures, rather than undertake performing their own research on portable,
high-concurrency solvers.
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Automation of science workflows. In order to deal with the massive data sets developed and pro-
cessed by these new systems, most science areas have a need for end-to-end solutions for DMAV and au-
tomation of the workflows associated with the simulations.

6 Research Roadmap

The research roadmap outlines the results of the breakout groups at the exascale DMAV workshop, which
explored the driving forces behind exascale analysis needs and possible solutions. They summarize our
suggestions for fruitful research directions as the community heads toward exascale. Section 6.1 describes
the challenges exascale computing imposes on our current visualization methods, including a push toward
significantly increasing processing done concurrently with the simulation. Many of the upcoming changes in
computer architecture alter design decisions for visualization algorithms and necessitate a fundamental shift
in the data analysis workflow. Section 6.2 addresses visualization gaps formed by changes in user needs and
discusses new abstractions required to understand the new forms of data expected by the science domains.
Section 6.3 considers fundamental changes in the storage hierarchy and proposes a possible I/O system that
is a first-class citizen in any data analysis framework. Finally, Section 6.4 describes the inadequacies of our
current data-management tools and proposes new technologies to better organize and use data.

6.1 Data Processing Modes

This section describes the changes that are expected in the methods by which scientific discovery for HPC
is performed, that is, changes in how simulation data is processed. Possibly more than any other area,
the methods by which data is being processed will be affected by the future architectural changes outlined
in Section 4. One of the strongest messages from the exascale workshop was that processing data in situ,
concurrently with the simulation, will become preeminently important in the next 5–8 years. Of course,
traditional post-processing will still form a critical part of any analysis workflow. We discuss both topics in
the following section.

6.1.1 In situ processing

Post-processing is currently the dominant processing paradigm for visualization and analysis on ASCR
supercomputers (and other supercomputers): simulations write out files, and applications dedicated to visu-
alization and analysis read these files and calculate results. However, supercomputers that have come on line
recently are increasing memory and FLOPs more quickly than I/O bandwidth and capacity. In other words,
the I/O capability is decreasing relative to the rest of the supercomputer. It will be slow to write data to
disk, there will not be enough space to store data, and it will be very slow to read data back in. (See details
at the third bullet in Section 4.1.) This trend hampers the traditional post-processing paradigm; it will force
simulations to reduce the amount of data they write to disk and force visualization and analysis algorithms
to reduce the amount of data they read from disk. Recent research has tried to address the “slow I/O” issue
through a variety of techniques, including in situ processing, multi-resolution processing, and data subsetting
(e.g., query-driven visualization). However, at the exascale, a second architectural factor will strongly favor
in situ processing alone: power limits will discourage moving data between nodes. Although techniques like
data subsetting and multi-resolution will still be used, the exascale machine will force them to be applied in
situ: data will have to be compressed, discarded, or otherwise processed while it is being generated by the
simulation on the large HPC resource.

Benefits of in situ processing. Sparing some supercomputing time to process, structure, reduce, or
visualize the data in situ during the simulation offers several benefits. In particular, when data reduction
becomes inevitable, only during the simulation time are all relevant data about the simulated field and any
embedded geometry readily available at the highest resolution and fidelity for critical decision making. After
data reduction, all such relevant data and information would be prohibitively expensive to collect again and
compute during a post-processing step. The key aspect of in situ processing is that data are intelligently
reduced, analyzed, transformed, and indexed while they are still in memory before being written to disk or
transferred over networks. In situ analysis and visualization can extract and preserve the salient features
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in the raw data that would be lost as a result of aggressive data reduction, and can characterize the full
extent of the data to enable runtime monitoring and even steering of the simulation. In situ data triage can
effectively facilitate interactive post-processing visualization.

Barriers to in situ processing. In situ processing has been successfully deployed over the past two
decades [28, 31, 38, 75, 71]. However, its use still has not gone “mainstream” for three main reasons:

1. There are software development costs for running in situ. They include costs for instrumenting the
simulation and for developing in situ–appropriate analysis routines.

2. There can be significant runtime costs associated with running in situ. Running analysis in situ
will consume memory, FLOPs, and/or network bandwidth, all of which are precious to the simulation.
These costs must be sufficiently low that the majority of supercomputing time is devoted to simulation.

3. At the exascale, resiliency will be a key issue; in situ analysis software should not create additional
failures, and it should be able to perform gracefully when failures occur.

The first category, software development costs, breaks down into two main areas: (1) the costs to couple
simulation and analysis routines and (2) the costs to make analysis routines work at extremely high levels
of concurrency. These areas are discussed in more depth in the following paragraphs.

It takes considerable effort to couple the parallel simulation code with the analysis code. There are two
primary approaches for obtaining the analysis code: writing custom code or using a general purpose package.
Writing custom code, of course, entails software development, often complex code that must work at high
levels of concurrency. Often, using a general purpose package is also difficult. Staging techniques, in which
analysis resources are placed on a separate part of the supercomputer, requires routines for communicating
data from the simulation to the analysis software. Co-processing techniques, which place analysis routines
directly into the memory space of the simulation code, requires data adapters to convert between the sim-
ulation and analysis codes’ data models (hopefully in a zero-copy manner) as well as a flexible model for
coupling the two programs at runtime.

Further, making analysis routines work at very high levels of concurrency is an extremely difficult task.
In situ processing algorithms thus must be at least as scalable as the simulation code on petascale and
exascale machines. Although some initial work has been done that studies concurrency levels in the tens
of thousands of MPI tasks [45, 15, 30], much work remains. This work is especially critical, because slow
performance will directly impact simulation runtime. As an example of the mismatched nature of analysis
tasks and simulation tasks, consider the following: the domain decomposition optimized for the simulation
is sometimes unsuitable for parallel data analysis and visualization, resulting in the need to replicate data
to speed up the visualization calculations. Can this practice continue in the memory-constrained world of
in situ processing?

Open research questions with in situ processing. To make situ processing a reality, we must funda-
mentally rethink the overall scientific discovery process using simulation and determine how best to couple
simulation with data analysis. Specifically, we need to answer several key questions and address the corre-
sponding challenges:

• To date, in situ processing has been used primarily for operations that we know to perform a priori.
Will this continue to be the case? Will we be able to engage in exploration-oriented activities that
have a user “in the loop?” If so, will these exploration-oriented activities occur concurrently with the
simulation? Or will we do in situ data reduction that will enable subsequent offline exploration? What
types of reductions are appropriate (e.g., compression, feature tracking)?

• How do simulation and visualization calculations best share the same processor, memory space, and
domain decomposition to exploit data locality? If sharing is not feasible, how do we reduce the data
and ship it to processors dedicated to the visualization calculations?

• What fraction of the supercomputer time should be devoted to in situ data processing/visualization?
As in situ visualization becomes a necessity rather than an option, scientists must accept “embedded
analysis” as an integral part of the simulation.
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• Which data processing tasks and visualization operations are best performed in situ? To what extent
does the monitoring scenario stay relevant, and how is monitoring effectively coupled with domain
knowledge-driven data reduction? If we have little a priori knowledge about what is interesting or
important, how should data reduction be done?

• As we store less raw data to disk, what supplemental information (e.g., uncertainty) should be generated
in situ?

• What are the unique requirements of in situ analysis and visualization algorithms? Some visualization
and analysis routines are fundamentally memory-heavy, and some are intrinsically compute-heavy.
Thus some are not usable for in situ processing. We will need to reformulate these calculations.
Furthermore, some analysis requires looking at large windows of time. We may need to develop
incremental analysis methods to meet this requirement.

• What similarities can be exploited over multiple simulation projects? Can the DMAV community
develop a code base that can be re-used across simulations? Can existing commercial and open-source
visualization software tools be directly extended to support in situ visualization at extreme scale?

In situ successes to date. In situ processing is clearly a promising solution for ultrascale simulations.
Several preliminary attempts to realize in situ processing in both tightly and loosely coupled fashions have
shown promising results and resulted in lessons learned, partially addressing some of the issues mentioned.

There have been some successes, including

• Tightly integrating with the simulation [63, 37] and developing highly scalable visualization algo-
rithms [76, 13]

• Decoupling I/O from the simulation [36], staging data to a second memory location, and enabling other
codes to interface to the data

• Conducting data triage and reduction according to scientists’ knowledge about the modeled phenom-
ena [67, 68]

• Converting data into a compact intermediate representation, facilitating post-processing visualiza-
tion [61, 62]

• Adding support for in situ visualization to open-source visualization toolkits such as ParaView [42, 6]
and VisIt [71]

Strategies for advancing the state of the art for in situ processing. Further research and experi-
mental study are needed to derive a set of guidelines and usable visualization software components to enable
others to adopt the in situ approach for exascale simulation. It is imperative that simulation scientists and
visualization researchers begin to work closely together. In fact, this effort must be cross-cutting, also involv-
ing experts in applied math, programming models, system software, I/O, and storage to derive an end-to-end
solution. It should be a collective effort beyond the DOE community to include the National Aeronautics
and Space Administration, the National Science Foundation, the Department of Defense, and international
partners. A successful approach will lead to a new visualization and data understanding infrastructure,
potentially changing how scientists do their work and accelerating the process of scientific discovery.

Blending in situ processing with data post-processing. In situ processing can generate only data
products that were specifically requested when a simulation was launched. If all final data products are
generated in situ, and no data is written out for post-processing, serendipitous and exploratory scientific
discovery is essentially precluded. There will always be the need, across all scientific disciplines, to pose
scientific questions that were not known at the time the simulation was run. Rather than being seen as
simply a limitation of in situ processing, this situation can be treated as an opportunity to blend in situ
and post-processing modes. In situ processing is well positioned to create intermediate data products that
are significantly smaller than raw data sets, and indeed there have been projects that demonstrate success
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Figure 8: A workflow that blends in situ and post-processing elements for processing combustion and fusion
simulations. This diagram was adapted from slides presented at the workshop by Jackie Chen, Sandia
National Laboratories.

in doing exactly this. The data post-processing mode can thus use these intermediate products to enable
discovery after the fact. Analysis frameworks and algorithms that can be used in either an in situ or a
post-processing mode will go a long way toward bridging the gap between the two methods. See Figure 8
for an example of a successful blended workflow.

6.1.2 Data post-processing

Post-processing, or offline, data analysis is the most common approach being applied today in scientific
applications. The current widespread use of post-processing data analysis is due in part to its ease of
implementation relative to in situ analysis, as well as its ability to facilitate “serendipitous” discoveries in
scientific data by freeing scientists from the need to pre-define the type of analysis and the data regions
to be analyzed. It can also accommodate any type of data analysis technique, from simple statistics like
mean and range to more complex evaluations like a priori rule mining, p-value estimation, or domain-specific
preprocessing and analytic kernels. However, the dramatic disparity between FLOPs and memory capacity
versus I/O bandwidth expected from future architectures will take conventional post-processing approaches
past the breaking point, necessitating a paradigm shift in how offline data analysis is performed.

One consequence of the coming data explosion is that some form of data reduction, such as data sampling
and dimension reduction, will be necessary in future scientific applications even before post-processing. Thus
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post-processing data techniques must be able to handle the associated uncertainty, necessitating advances
in uncertainty quantification.

Future trends in HPC also predict at least three major challenges to offline data analytics. (1) The
amount of memory per core is expected to decrease significantly as the number of compute cores increases,
forcing future applications and analytics algorithms to be more memory-conscious. Moreover, this problem
is not unique to data analysis; e.g., generating checkpoint data often requires additional memory to convert
the data for permanent storage [23, 51]. (2) The future power costs of computing are expected to increase
dramatically, creating a need for power-aware and energy-conserving approaches. (3) Finally, as the number
of processors climbs, there will be a greater and greater need for highly scalable algorithms, especially those
that take advantage of emerging new trends in hardware such as solid state drives (SSDs) and NVRAM.

In analyzing the volumes of data produced by the simulations of tomorrow, future analytics approaches
will need to extract meaningful information in a scalable and power-efficient manner from ever-larger datasets
with proportionally less memory per core. Note that the per-node architectural changes that will bring about
the exascale (e.g., greatly increased on-node concurrency, low memory per core, very low I/O per core) will
also be seen on local and desktop resources. Thus the methods for local post-processing, even on relatively
smaller datasets, are likely to dramatically change. Four nonexclusive strategies for dealing with these
challenges and the massive scale of future data are

• Out-of-core analytics

• Approximate analytics

• Index-based analytics

• The use of heterogeneous computing environments

Out-of-core analytics, the use of nonvolatile storage (e.g., hard disk, SSDs, or NVRAM) to store interme-
diate results, will help offset the reduction in memory per core and improve energy efficiency. The use of
approximate techniques and index-based methods for data analysis can reduce the computational and energy
cost. And taking advantage of emerging heterogeneous architectures like GPGPUs (general-purpose graphics
processing units) can improve scalability and energy use.

Out-of-core data analytics. Out-of-core algorithms save the intermediate values of a computation to
secondary storage to conserve the relatively scarce memory resources of the system. Because of the significant
and widening gap between memory and I/O performance, such approaches are typically bound by the
performance of the institutional I/O infrastructure and have had little success. Worse yet, large parallel
systems typically use a single file system that is shared among all of the users of the systems, creating
contention and significant variation in performance. Fortunately, emerging storage technologies like SSDs
(see Section 4.2) have the potential for low-power, low-latency, and high-capacity parallel I/O within a local
machine. As these types of devices are integrated into nodes in high-performance machines, out-of-core
analysis is likely to become more practical and effective.

Approximate analytics. The use of approximate analytics has the potential to reduce the complexity
of data mining techniques by several orders of magnitude, resulting in substantial energy savings and the
capability to handle substantially larger amounts of data.

In many cases, existing data analytics approaches are already approximate. Tasks like data clustering,
rule mining, and predictive model fitting all provide results relative to some error, whether by heuristically
minimizing a clustering measure, maximizing rule confidence, or minimizing training error. Additionally,
data in many domains are subject to inherent noise and uncertainty owing to the ways the data was collected
or the models used to process the data. In the biological domain, for example, protein interaction data may
contain a large number of spurious (false positive) interactions [66, 52]. And there are many cases where exact
results are not necessary. Finally, approximate algorithms can provide a cheap way (in terms of compute
time and system resources) to evaluate and fine-tune parameters or to identify areas of interest that merit
further exploration. The use of a coarse-grained visualization of the data space to guide data analysis is
known as visualization-guided analytics.
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Figure 9: Illustration of machine with heterogeneous architecture. Each node has multiple CPU
cores, and some of the nodes are equipped with additional computational accelerators, such as
GPUs.

Index-based computation. Another important tool for improving the performance and energy-efficiency
of exploratory analytics techniques, the use of data indices, can drastically reduce the amount of computation
required for data selection (e.g., identifying all variable values that fall within a specified range) or calculating
simple statistics such as mean, median, maximum, and minimum. Pre-generating simple histograms using
indexing has also been shown to be I/O-efficient and conducive to rapid scientific discovery [73]. Indexing
may also be incorporated into various data mining techniques to improve performance. For example, a
subtree in a decision tree can be viewed as a clustering of records satisfying the decisions applied to the root
of the subtree, and using data indices to retrieve the necessary values can reduce overall computation time.
Indices may also be used in computations involving much redundant computation (e.g., all-pairs similarity
search [3]), resulting in large computational and energy savings.

Heterogeneous architectures. Given the massive scale of future data analysis applications, future ap-
proaches must take advantage of the acceleration offered by alternative hardware architectures (e.g., GPG-
PUs, FPGAs, accelerators). These specialized architectures offer various programmatic challenges, but they
can achieve significant time savings over traditional general-purpose CPUs for algorithms adapted to their
specific requirements. For example, applying GPGPUs to analytic algorithms with strong data independence
can speed up calculation by more than an order of magnitude compared with state-of-the-art CPU-based
algorithms [2]. Figure 9 illustrates a potential future heterogeneous high-performance system equipped with
GPUs and SSDs.

6.2 Data Abstractions

One of the clear take-away messages from the Scientific Grand Challenges Workshop Series reports is that
the dramatic increases in computational power to come as we approach the exascale will allow exploration
of scientific disciplines and physics that have not yet been practical to explore. As one example, the next
several years of HPC climate simulation will involve the addition of sea ice to global climate models and
the simulation of the full carbon, methane, and nitrogen cycles. These new areas of scientific exploration
are all likely to require new fundamental visualization and analysis techniques. This section discusses some
of the new data abstraction methods required for understanding new scientific phenomena. In addition, we
review software engineering and infrastructure changes that will be necessary to deploy these new methods
of understanding.

A major challenge in integrated DMAV is the need for coherent development of a large class of algorithmic
techniques that satisfy the constraints of the computing environment described in the previous sections,
including, for example, the ability to exploit computing resources in both in situ and post-processing modes.
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Techniques can be classified in terms of the class of data abstractions and exploration modes that they
provide to aid scientists in extracting knowledge from large, complex datasets derived from experiments
and from petascale and upcoming exascale simulations. Fundamental advances are needed in these areas to
ensure that bottlenecks in this infrastructure do not invalidate the major investments made to accelerate the
scientific discovery process.

6.2.1 Extreme Concurrency

Existing visualization and analysis tools are primarily geared toward CPU-based architectures. Many of
these analysis tools, including ParaView [53] and VisIt [33], are also adept at effectively using distributed
memory parallel machines and can scale to current leadership computing platforms [16]. However, with the
proliferation of hybrid architectures, effective ways to fully exploit these new computers are critical. See
“Heterogeneous architectures” in Section 6.1.2.

Existing visualization algorithms need to be redesigned to make efficient use of multi-core CPUs and
GPU accelerators. Scalable implementations of visualization and analysis software to fully exploit the diverse
future systems—including hybrid cores, nonuniform memory, various memory hierarchies, and billion-way
parallelism—will be needed to meet the needs of the science. Effective programming models must be leveraged
toward this effort.

6.2.2 Support for Data Processing Modes

In situ processing is a necessary technology for data processing, as discussed in Section 6.1.1. The technology
is also important for building and using data abstractions. Directly embedding data analysis and visualization
within simulations will enable them to interact with simulations as they run, to monitor and understand their
progress, as well as help in setting up new simulations. Given the growing complexity of computer systems,
visualization and analysis will be key to helping debug simulations and identify performance bottlenecks.
Both the fusion and the basic energy sciences communities (Sections 5.1.4 and 5.1.6, respectively) specifically
note the need for real-time monitoring and analysis of simulations.

Another key investment area is a co-scheduling mechanism to couple visualization resources with compu-
tation resources. Since not all needs can be met by running visualization and analysis in the same program
space as simulation, co-processing is a likely alternative that retains many direct coupling characteristics,
including full access to all simulation data. This was identified as a key research area in the Scientific
Data Management breakout group (see Section 6.4). A likely solution for co-scheduling is the use of I/O
middleware as described in Section 6.3.2. Both high-energy physics and fusion (Sections 5.1.1 and 5.1.4,
respectively) call for an I/O paradigm for analysis and code coupling.

Although in situ analysis is essential for exascale computing, post-processing is expected to remain a
fundamental exploratory mode. (See Section 6.1.2 for a complete treatment.) When data abstractions are
generated in post-processing mode, the I/O time required to read data is critical. Data generated by simu-
lations may be in a format optimized for minimizing the I/O time of the simulation and may not be optimal
for future analysis [46]. These formats are typically not optimized for reading by visualization and analysis
applications. Furthermore, little if any metadata is added to help support the analysis. Generating and
serving data abstractions efficiently and interactively requires data formats that are friendly to visualization
and analysis, with efficient layout for I/O, and multi-resolution and hierarchical layouts that allow for better
navigation on scales from global to local [1]. Therefore, data formats are a key technology for exascale. They
are highlighted by the climate and nuclear physics communities (Sections 5.1.2 and 5.1.3, respectively), and
scientific data formats are of great interest to DMAV in general (see Section 6.3.3 for a detailed discussion.)

6.2.3 Topological Methods

A new class of data analysis techniques based on topological constructs has become popular in recent years
because of their proven ability to extract features of interest for science applications [32, 27, 18, 9, 10, 39] and
their basis in robust combinatorial constructs that make them insensitive to numerical approximation and
noise in the data. These topological methods can achieve massive data reduction while representing complete
families of feature spaces that scientists can still explore in the knowledge extraction process. Providing wide
access to these methods by exascale simulations will yield major advantages for scientists, but fundamental
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research is still needed to achieve the needed level of maturity. Specific investment is needed in their
approximation and parallelization, since they are usually based on constructs requiring global propagation
of information, especially if computed exactly. Multiscale representations will also have a central role, since
they are primary enablers of orders-of-magnitude improvements in data reduction with explicit control of
the quality of the information preserved. Research is also needed to generalize discrete methods that have
been successful in Morse theoretical frameworks [21, 22] so they can be applied to more general vector field
representation and analysis. This long-term investment in mathematical and and computer science research
should include the development of new standardized file formats for the compact representation of feature
spaces that can be computed in situ and that users can explore in real time or in post-processing.

6.2.4 Statistical Methods

Simulations and data harvesting instruments continue to increase their spatiotemporal resolution and con-
tinue to add new physics components, resulting in higher data density. This increased data density runs
counter to decreasing memory-per-compute-cycle ratio trends discussed in Section 4. The old mantra of
mathematical statistics to extract maximum information (read “use maximum cycles”) from minimal data
(read “use minimal memory”) comes back as we go toward exascale. Data economy becomes synonymous
with power economy. Here, maximum information from minimal data is still the relevant optimization
problem, but its context is different. Data are now highly distributed and sampling of data runs counter
to efficient cache utilization. Optimal sampling theory of mathematical statistics is highly developed and
includes rigorous uncertainty quantification but it too needs further research and tool development for this
new context. Fast progress requires interdisciplinary teams that understand mathematical statistics as well
as future computer architectures.

Statistical analytics are aimed toward gaining insight into a postulated data generation process (often
termed the “statistical model” or the “likelihood”). Usually, the entire spatial and time extents of the data
are used to estimate the parameters and uncertainties of the data generation process. This is true of both
frequentist and Bayesian methods. Bringing these important methods and their uncertainty quantification to
the exascale requires careful redesign of the underlying estimation algorithms toward a single pass through the
data. While completely novel approaches are possible they will be evaluated with respect to current methods,
which possess data optimality properties that lead to their original design. Progress here requires a complete
redesign of the underlying mathematics with a clear understanding of target computer architectures.

6.2.5 Support for Large Distributed Teams

Grand challenges in modern simulation and experimental science are increasingly tackled by large teams
of people. To solve complex multiscale, multiphysics, multimodel challenges, simulation teams consist of
individuals from diverse backgrounds. They are geographically distributed, often with collaborating insti-
tutions in different countries or continents. This trend is increasing, as massive computing and storage
resources cannot be replicated in too many locations, and the network infrastructure is growing in capacity
and performance even as the amount of data produced is exploding.

Although many analysis tools, including VisIt and ParaView, are capable of bridging distance via remote
client/server architectures, and are often used for this purpose, it is also commonplace to transfer large
amounts of results data for analysis, visualization, and archiving. Remote visualization is a well studied
problem, but we can identify several potential problems at exascale. First, supercomputing facilities typ-
ically employ batch-based job submission, and at exascale we expect visualization jobs must share these
facilities [14]. However, interactive visualization jobs must be launched on interactive queues so that they
will start while the user is available. Interactive queues require nodes to remain idle so that jobs can be
created immediately. This is contrary to traditional queuing policies that keep the computer as busy as
possible.

Another issue is that analysis and visualization codes, which already prefer computers with “fat memory”
to support their data-intensive operations, have not been designed to be memory-conservative. For example,
a ParaView executable itself can take up to 200 MB of memory. As computing moves to future architectures
characterized by their low memory footprint per core, the architecture of such tools needs to be modified to
use as little memory as possible.
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Because they are usually run for short time scales, data analysis and visualization tools are also generally
poor at fault tolerance. With system faults expected to be more common at exascale, visualization and
analysis tools will need to incorporate fault-tolerant algorithms as well as implementations. No existing
visualization toolkit supports fault tolerance, and investment in this effort is required.

Remote visualization must extend beyond communication between a single data host and single user,
as science is increasingly collaborative and teams are distributed worldwide. The climate community (Sec-
tion 5.1.2) in particular calls for a consortia of tools and extreme-scale data serviced over a wide area
network. The nuclear physics and fusion communities (Sections 5.1.3 and 5.1.4, respectively) also require
data management and collaboration among geographically distributed teams. An infrastructure that enables
scientists to collaborate effectively to solve problems will be critical in the exascale computing era. Data
streaming mechanisms and multi-resolution techniques will also be essential for exploring remote data. Fast
access to progressively refined results, with clear understanding of error bounds, will be critical to the remote
visualization infrastructures to be deployed.

6.2.6 Data Complexity

Many factors lead to an increased data complexity to be managed at exascale. Most of the science application
drivers reviewed in Section 5.1 cite the need for multiscale, multiphysics, and time-varying simulations.
Effective visualization and analysis algorithms of these results are necessary to meet the needs of the science.
Investment will be needed to incorporate novel techniques, including machine learning, statistical analysis,
feature identification and tracking, and data dimensionality reduction, all to make the data more tractable.

Moving forward in response to the complexity of the science being studied, it will be common for different
simulation codes to operate at different scales, both physical and temporally. These coupled codes will
provide input to one another during the simulation process and probably will also produce independent
results that need to be visualized at the same time for maximum insight. Existing tools do not have the
needed infrastructure to do so in a straightforward manner. Even more, the existing systems do not provide
feedback to the end user about uncertainties introduced in the mapping.

Scientists already recognize several limitations of current data abstractions. Fusion (Section 5.1.4) re-
quires better methods to visually analyze particles and better query-based tools to quickly search through
data. Nuclear energy (Section 5.1.5) notes that current multivariate techniques are not satisfactory for
visualizing energy groups, which define a function at every location in a mesh. Basic energy sciences (Sec-
tion 5.1.6) calls for a variety of new techniques, including advanced statistical methods, automated data
mining, multidimensional histograms, data inversion, and image reconstruction.

As science becomes increasingly multi-domain in nature, multiphysics and multiple scales lead to more
complex data structures. Hierarchies are becoming finer-grained, with more applications refining smaller
groups of elements—sometimes even refining elements individually. High-order fields have become more
common outside of finite element codes, and high dimensionality is used more frequently as physics algorithms
become more sophisticated. Increasingly expressive data structures are being generated that use graphs,
hierarchies, and blocks with data mapped to various topological elements and overlaid meshes. Additionally,
scientists need to be able to understand time-varying phenomena, which requires the capability to stride over
these complex datasets. To effectively draw insight from these complex data, new techniques are needed,
including tensors, topology, information theory, and data mining.

6.2.7 Comparative Visualization

Analyzing data from extreme-scale computing requires advanced comparative techniques. For example, sci-
ence applications like fusion (Section 5.1.4) require experiment-to-simulation data comparison. Comparisons
among simulations also will become commonplace. Increases in the availability of computing cycles do not
always lead to increasing dataset sizes. Rather, increased computing cycles can also be used to run the same
simulation multiple times, thereby generating a number of datasets. Infrastructure continues to be limited
in providing for ways to quantitatively compare the results of different simulations.
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6.2.8 Uncertainty Quantification

Uncertainty quantification is a technique for measuring the envelope of potential physical responses to an
envelope of possible input conditions by repetitively running a simulation over samples of the possible input
conditions. The most prevalent example of this in the last 10 years is climate simulation (Section 5.1.2).
Nuclear energy research (Section 5.1.5) will require uncertainty quantification using ensembles with as many
as one million members. However, visualization of uncertainty quantification has been a research topic for
over 10 years, and tools have yet to be deployed. Although uncertainty quantification is used increasingly
in multiple scientific domains, methods for visualizing ensembles [49], as well as uncertainty in general [48],
are still in their infancy. Furthermore, the uncertainty needs to be appropriately handled in the various
components involved, including the physics employed and the math solvers used.

6.3 I/O and storage systems

As computing power in the DOE facilities continues to grow, I/O continues to challenge applications and
effectively limit the amount of science that can be performed on the largest machines. Reducing the I/O
impact on calculations is a major challenge for I/O researchers. It is generally difficult to achieve good levels
of performance for both restart data and analysis/visualization data on large- scale parallel file systems. I/O
performance often limits application scientists, reducing the total amount of data they write, and they often
make ad hoc decisions about where and when to write out data.

As exascale computing approaches, it is useful to review lessons learned from the DOE computing facilities
and consider research conducted to enhance our knowledge about how to create fast I/O systems and link
visualization, analysis, and data reduction in an easy-to-use system. Research has shown it is possible to
create self-describing file formats that have simple APIs (e.g., HDF5 [60], Parallel NetCDF [64], ADIOS [35]),
and use I/O middleware such as MPI-IO, commonly the backbone of many higher-level I/O systems, to enable
high-performance application I/O. Furthermore, data needs to be indexed appropriately so that complex
queries can be performed in a reasonable amount of time. The following metrics are a guide, and they need
to be carefully evaluated for future research:

• User adoption

• Read/write I/O performance, compared with the peak I/O performance of the file system

• Resiliency

• The overall energy used for I/O

This section discusses current and future storage systems, I/O middleware to bridge the gap between
storage system and application, scientific data formats for storage and transit, ways to link with application
data models, and database technologies that should be incorporated into these software layers.

6.3.1 Storage Technologies for the Exascale

A key challenge for exascale computing is efficient organization and management of the large data volumes
used and produced by scientific simulations and analyzed and visualized to support scientific investigation.
The challenge exists at three levels:

1. At the architecture or node level, to efficiently use increasingly deep memory hierarchies coupled with
new memory properties such as the persistence properties offered by NVRAM

2. At the interconnect level, to cope with I/O rates and volumes that can severely limit application
performance and/or consume unsustainable levels of power

3. At the exascale machine level, where there are immense aggregate I/O needs with potentially uneven
loads placed on underlying resources, resulting in data hot spots, interconnect congestion, and similar
issues

For future I/O systems at the exascale, we envision an environment in which, at node level, there are
multiple memory sockets; multiple coherence domains (i.e., “clusters” on a chip); multiple types of memory,
including NVRAM; and disaggregation in which certain noncoherent memory is disaggregated and reachable
via on-chip PCI or similar interconnects (see Section 4.1 for more details). Caps on power resources will
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result in tradeoffs between data movement on-chip and on-node versus movement to where analysis and
visualization computation is applied to the data. The result will be tradeoffs in data movement on-chip and
on-node versus movement to where analysis and visualization computation is applied to the data. Analysis
code can be moved to where data currently resides (in situ processing, see Section 6.1.1), but this may
introduce substantial variations in code execution times that degrade the speedup of parallel codes. A more
power-efficient solution may be moving select data to other on-node memory, including persistent memory,
before performing analysis. This may also be necessary to retain checkpoint state in case of failure and may
even require multiple copy operations (e.g., also moving data onto disaggregated memory blades) to guard
against node failure. In such cases, there is both a necessity and an opportunity to apply operations to data
as it is being moved. In summary, even on-chip and on-node, there will be tradeoffs in where and when
analysis or visualization can or should be performed. For the I/O system, the overwhelming requirement is
flexibility in which operations are applied where on-node and when they are applied—whether synchronously
with the application, thus potentially affecting its execution time, versus asynchronously and during on-node
data movement.

Beyond individual nodes, operations that require use of the interconnect are expensive in terms of both
performance and power. As a result, it may be preferable, on both counts, to perform analysis by moving data
to a smaller number of nodes —in situ data staging—prior to analysis. Data staging also offers opportunities
for hardware differentiation by endowing staging nodes with substantially more memory, large NVRAM, and
extensive flash-based storage. For I/O systems, the result is a need for multi-tier solutions to I/O that will
allow analysis or visualization tasks to be associated with I/O on-core, on-node, and in-staging, and allow in-
staging analyses, because they are inherently more asynchronous, to be substantially more complex than those
on-node. That is, in-staging computation, especially for well-endowed staging nodes, probably can operate
on multiple output steps and will be bound by timing requirements determined by output frequencies.

The final memory tier considered for I/O is large-scale disk storage. We expect that, as has been the
case in HPC for decades, storage will be attached to the periphery of the exascale machine or to ancillary
network-connected machines. It is likely that its throughput levels will be far below the aggregate I/O
throughput level of which the machine’s cores are capable. As a result, a paramount requirement for data
analysis and visualization is “to bring code to data” and to do so dynamically when (i.e., at which output
steps or simulation iterations) and where (i.e., at which parts of the simulation, and thus at which cores and
nodes) certain analyses or visualizations become important.

6.3.2 I/O Middleware

One of the main accomplishments for parallel I/O has been the inclusion of MPI I/O [59] in MPI distributions,
including MPICH2 and OpenMPI. This has enabled middleware developers to layer their software (e.g.,
Parallel NetCDF, HDF5, ADIOS) on top of this layer, giving application developers a simple stack to
generate their I/O request (MPI-I/O or POSIX writes) or use the higher-level middleware directly. As
research has shown, there are many challenges to using this multi-tier layered approach. Because of the
imbalance between compute power and I/O bandwidth in computer systems, petascale computing requires
I/O staging, which deals with the movement of data from the compute nodes to another set of nodes that
can process data “in situ” and then write data out. Data movement (synchronous versus asynchronous)
and the operations that can run on a staging resource are active areas of research that will be critical to
effectively scaling I/O performance to exascale.

As I/O infrastructure is a shared resource, performance degradation due to other concurrent I/O jobs is a
growing concern. As we move closer to the exascale, diverse networks that use different forms of remote data
memory access (RDMA) and multiple tiers of storage (NVRAM) further complicate the matter. Another
complication is the increased complexity of hundreds of cores on a node, which allows staging resources and
the computation to run on cores on the same node. If these complications are not managed and scheduled
properly, they can increase the jitter in the system significantly. Mechanisms will be needed to reduce the
variability of I/O on the system, using techniques like Quality of Service. I/O middleware will need to exploit
the diverse network topology of future interconnects to ensure that network pathways are used effectively for
data movement. Additionally, even within a node, code developers will need tools to leverage the parallel
data paths provided by multi-lane network interface cards and features including RDMA. As the number of
cores in a system and the number of researchers accessing the file system grow, new techniques to adaptively
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write out data are needed. File formats, typically optimized for write workloads, should also support efficient
read-access for analysis and visualization. There is a critical need for research into support for data models
of simulations, as well as analysis mechanisms in file formats, efficient layout of data on storage, reduced
collectives for I/O, and on-the-fly transformation of data being written to storage into formats suited to
post-processing (see Section 6.3.3). Data reduction and analysis techniques in I/O middleware will be
critical to reduce the amount of data written to storage and provide faster insight into simulation results.
These mechanisms will need to be embedded intelligently, considering the system, simulation, and analysis
characteristics, as well as data locality.

6.3.3 Scientific Data Formats

There are several self-describing file formats. The most common formats in HPC are HDF5, NetCDF, and
ADIOS-BP (a relatively recent entry). All three of these are metadata-rich and have been used in many
communities within DOE for large simulations.

HDF5 has a versatile data model that can represent complex data objects and a wide variety of metadata.
Like all of these formats, it is portable across all architectures and has no effective limit on the number or
size of data objects in the file. The output creates a hierarchical filesystem-like structure in the file created.
HDF5 also contains APIs to write and extract subsets of variables written to the file, both sequentially and
in parallel.

NetCDF encompasses three variants: NetCDF3, NetCDF4, and Parallel NetCDF, all self-describing.
Arrays can be rectangular and be stored in a simple, regular fashion to allow the user to write and read
a subset of variables. NetCDF4, based on HDF5, is fully parallel and can read NetCDF3 files. Parallel
NetCDF is a parallel implementation of the NetCDF3 file format.

ADIOS is an I/O componentization that provides an easy-to-use programming interface and is meant
to be as simple to use as simple Fortran or C file I/O statements. ADIOS writes to NetCDF4, HDF5,
ASCII, binary, and ADIOS-BP file formats. It allows a user to view I/O in a manner similar to streams
and to operate on data (in memory) across multiple nodes as well as in files. ADIOS-BP is similar to both
NetCDF and HDF5 in that it is portable, is parallel, and allows a user to write and extract subsets of
variables. ADIOS also includes automatic generation of statistics and includes redundancy of metadata for
performance and resiliency.

Many gaps are emerging in the scientific data format technology being developed on the next-generation
systems in DOE computing facilities. This section enumerates the gaps and describes current solutions in
an attempt to minimize problems through research into scientific data formats:

1. I/O variability on simulations running at scale. There have been several attempts to reduce variability,
but the problem persists and is growing.

2. I/O performance from codes running at scale writing a small amount of data. Most of the current
technology solutions show I/O degradation when writing a small amount of data on a large number
of processors. As the concurrency increases on each node, the limited memory bandwidth will present
new challenges.

3. Read performance for visualization and analysis codes. Since datasets are growing and processors are
getting faster, the major bottleneck for most analysis and visualization will increasingly be I/O.

4. Data model mismatch. The data models used by simulation and analysis codes may not match the
array-oriented data models implemented in scientific data formats. The mismatch may result in inef-
ficient transformation of data in moving between data models.

One of the most important pieces of future research will be scaling storage systems as datasets continue
to grow. It is difficult to imagine efficiently reading and writing a single file that has grown to 1 PB. Pieces of
data can become distributed, and the DMAV community must learn to move the “correct” data closer to the
machine that will analyze it. Scientific file formats must be flexible, portable, self-describing, and amenable
to changes by the community. The file format must allow for links into other files, additional metadata,
possible redundant data with a limited lifetime, provenance, and statistics that allow additional information
to be included (so long as it does not significantly extend the size of the dataset). The file format must also
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be elastic—able to change itself when moved so that it can self-optimize on different file systems to achieve
high levels of concurrency and performance. And it must be able to cope with the many failures that can
arise in the exascale.

Looking even further ahead, the concept of a “file” may have to be revisited altogether. Scientific data
may be stored in some alternative data container, be it a database, object storage, or some other alternative.
Fortunately, the specific details of how bytes end up stored persistently can be hidden by the scientific data
libraries. Research to ensure that these abstraction layers still deliver high performance is required.

6.3.4 Database Technologies

Database systems are widely used in commercial applications. Traditional database systems are designed for
managing banking records and other types of transactional data. Users are presented with a logical view of
the data records as a set of tuples and given the Structured Query Language (SQL) for interacting with the
data [43]. This simple logical view and its associated data access SQL allow users to work with their data
without any knowledge about the physical organizations of the actual data records.

In scientific applications, the usage of databases is primarily limited to metadata, whereas most scientific
data are stored as files in a parallel file systems. However, databases are also used in a more substantial
way in a few cases. For example, a significant amount of protein and DNA data is stored in centralized
databases [65, 5]. In these cases, the volume of data is still relatively small; the bulk of raw DNA sequencing
data and spectroscope data are not stored in the database systems. The only known example of a large
amount of scientific data managed by a database system is the Sloan Digital Sky Survey (SDSS). Through
extensive collaboration with a Microsoft SQL server team, groups of astrophysicists are able to use SDSS
to conduct extensive data analysis tasks [26, 25, 57]. A number of characteristics make SDSS data well
suited for a database system. For instance, the number of records is relatively modest, there is a widely
distributed community of users, and many analyses can be done with a relatively small number of selected
data records. Other data-intensive applications may have much larger datasets, and their analyses often
require a significant fraction of the data and more complex access to the data.

ROOT is another specialized scientific database engine designed for high-energy physics [12] to manage
data produced from experiments such as those conducted on the Large Hadron Collider. ROOT uses an
object data model and does not support SQL. It uses an interpreted C++ as its programming language. The
wide use of ROOT can be taken as confirmation that SQL is not a sufficiently flexible interface for scientific
applications. Another well-regarded method of constructing a scientific database is an alternative data model
known as the array model [11], which can be seen as an extension of the vertical databases [8, 56]. A key
insight behind this design is that most scientific data can be expressed as arrays, and many of the popular
scientific data formats indeed are array based [60, 64, 47]. The basic operations in the new database, named
SciDB, will be on arrays. The designers of this system are expanding SQL to support data analyses.

The three database technologies that are most relevant to the scientific applications are data warehous-
ing [72], distributed databases [44], and NoSQL1.

Typically, a data warehouse has many more data records than a transactional database and demands
more advanced acceleration techniques to answer queries efficiently. Many of these acceleration techniques,
such as compression and indexing, can be applied directly to scientific data analysis without using a database
or data warehousing system. However, the users have to manage these auxiliary data structures explicitly
or through a library.

In distributed and parallel databases, a large portion of the data processing is done close to the disks;
the distributed file systems can only ship bytes to the clients and cannot do any further processing. This
inability to perform computation is primarily due to a limitation in the data model adapted by the file
systems, wherein the content of the data is viewed as a sequence of bytes. Most parallel and distributed
database systems are purely software based and can be distributed on any commodity hardware. In this case,
the parallel data placement, resilience, replication, and load-balancing techniques used by these database
systems can be leveraged in the design of parallel file systems at exascale. Furthermore, there are a number
of specialized parallel database systems based on specialized hardware, such as Netezza [17] and Teradata [4].
The special feature of Netezza is that it utilizes a custom disk controller to perform part of the database
operations; the special feature of Teradata is a unique interconnect network called BYNET.

1A good source of information is http://nosql-database.org/.
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As data volume increases, the performance parallel database systems become unacceptable for a number
of applications. The strategy of developing a data processing system with minimal SQL support is taking
on considerable momentum; a movement known as NoSQL has emerged recently. A prime example of such
a system is Hadoop, based on the MapReduce concept [19, 70]. The original motivation for developing the
MapReduce system was to produce an index for all Web pages on the Internet. For data on this scale, the
key operation on the database system is a simple filtering operation, such as locating a number of records
satisfying a handful of conditions. These NoSQL systems concentrate on performing a handful of simple
but essential filtering operations efficiently. By limiting the scope of operations supported and taking full
advantage of a large number of commodity computers, NoSQL systems can complete their operations on
massive amounts of data in an efficient and fault-tolerant way and at the same time keep the systems easy
to use.

6.4 Scientific Data Management

Data management is an extremely broad area, covering many research communities. This section identifies
and discusses research areas considered relevant to the ASCR portfolio. The following relevant topics are
considered:

• Workflow systems

• Metadata generation, capture, and evaluation, including standards, provenance, and semantics

• Data models, representations, and formats

• Data movement and transfer within a single machine and across machines

• Data fusion and integration

• Data management support for analysis and visualization through appropriate interfaces

• Data reuse, archiving, and persistence, including data integrity and the ability to annotate data and
retain the annotations

• Data quality metrics, including tools for statistical measures of data quality and uncertainty

• The ability to quickly identify relevant subsets of data through indexing, reordering, or transforming
the original data set

• The ability to publish and find data sets across scientific communities

The workshop panel restricted its discussions to those aspects that fall within ASCR’s mission, particularly
the impact of the emerging massively multi-core computing paradigm and the associated transition to in situ
analysis. Within these focused topical areas, there are some topics for which ASCR is driving the research
agenda for the community (e.g., scientific data models and data movement) and others in which ASCR is
not actively involved (e.g., publishing scientific data sets).

Although some may argue that improving data management technology is an end unto itself, within this
community it is seen as a means to the ultimate goal of improving scientific discovery. Data management
is expected to become the critical bottleneck for improving computational science productivity within the
next decade. This is a result of the disruptive change expected as power consumption limits improvements
in computational resources as exascale computing approaches. As has been noted in previous reports,
providing just the storage and networking bandwidth traditionally available to and desired by scientists
would significantly exceed the budget for an exascale machine without a single computational resource being
provided. Thus the new architectures will have relatively limited I/O and communication capacity compared
with their computational capability.

Enabling computational science on these platforms will require advanced data management capabilities
optimized for reducing power costs. Because moving and storing data, even within the memory hierarchy on
a single machine, requires significantly more power than computing the data does, reducing these operations
will likely become the dominant optimization strategy for HPC codes. Unfortunately, this already difficult
task will be further complicated by the trends toward coupled codes, ensemble runs, and in situ analysis
identified in other reports. The additional complexity imposed by these concurrently scheduled tasks will
make a challenging task even more demanding.

One possible approach to manage this complexity is to utilize in-memory workflows to coordinate the
tasks, orchestrate the data movement, and record provenance. This in turn will require new levels of system
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support, such as improved schedulers that can co-schedule different tasks and support for data staging.
Unfortunately, even successfully managing all of this information is unlikely to ensure bitwise reproducibility
of the results, given the expected number of faults occurring in an exascale system and the inability of the
simulations to permanently store most of their results. Indeed, as statistical analysis, user-driven analysis,
and approximate queries become more common, it is unlikely that any two runs of the same large-scale
simulation permanently store exactly the same results, which ultimately represent only a small fraction
of the volumes of information generated and analyzed to produce them. This development will drive the
need for stronger statistics and uncertainty quantification techniques to determine when simulations are
generating consistent results. Developing these specialized capabilities is probably outside the scope of the
broad research community, but it is well aligned with ASCR’s goals.

Current state-of-the art capabilities work well when applied to the problems they were designed to
overcome. Unfortunately, many of the assumptions underlying these technologies will not remain valid at
the exascale:

• Files are a traditional mechanism for transferring information between tasks. This will need to change
as the cost of writing information to disk then reading it back in will dominate computational costs.

• Workflow engines coordinate tasks within the HPC environment through the scheduler and remote
connections to the HPC machine. They do little to help orchestrate tasks that must run concurrently
and share memory-based data objects.

• Schedulers are focused on allocation of independent tasks and do not natively support dynamic schedul-
ing based on data flows.

• Memory-based data objects, such as those provided by ADIOS, provide some data staging and move-
ment capabilities, but additional work needs to be done to minimize data transfers between nodes and
ensure data remains accessible as long as necessary to complete the tasks.

In addition to breaking fundamental assumptions made by existing technologies, data management at
the exascale will incorporate two new sources of complexity: a lack of data coherence and the new NVRAM
environment. The cost of maintaining data coherence across all cores in an exascale machine is simply too
high. As a result, an exascale computer will not have the memory consistency we currently expect—data
changes in one location (core/node) will not necessarily be reflected in other processing elements. How this
lack of coherence will be managed by the software algorithms, in which conflicting updates may need to
be resolved, is still unclear. What is clear, however, is that developing approaches to accommodate these
discrepancies will add a significant data management challenge.

Exascale computers are expected to have an NVRAM layer inserted into the memory hierarchy between
DRAM and the global file system. This new memory layer will provide a way to share information between
nodes and tasks as well as maintain data persistence for the short term. However, effectively using it may
require an application to be explicitly aware of this layer in the hierarchy—an awareness that currently only
exists for files—and to manage it, possibly in competition with other tasks and the operating system. Having
to explicitly manage this limited resource, including releasing unneeded space and mapping from transient
memory to NVRAM, will add a significant level of complexity to applications and I/O middleware.

The conventional approach to addressing this problem is to develop new I/O middleware to enable
applications to manage additional complexity. While the current file-based interface provides a consistent,
straightforward approach to accessing data, it will not be sufficient for managing multiple levels of the memory
hierarchy. It is possible that a new interface capable of managing data across all layers in the hierarchy—
sharing objects between tasks, independent of whether the object is in transient memory, persistent memory,
or disk—will evolve. An alternative approach, though more challenging and controversial, is to adapt the
applications to allow the workflow layer to make control and data movement decisions based on a set of rules
and configuration information. This would likely improve the portability and performance of the application
code.

At the same time, applications sharing memory-based data objects will increasingly require the ability
to specify more complex actions over that data. For example, an interface that provides a higher level of
abstraction (e.g., mesh, cell, vertex, variable, time) may allow analysis routines to more effectively identify
relevant subsets of the data. Simple analysis steps, such as sampling or aggregating data at regular intervals,
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may also become part of this higher-level interface. Finally, schedulers will need to dynamically co-locate
tasks that share data in order to minimize data transfers. This will require a new mechanism for specifying
the complex data flow dependencies among tasks and their associated cores.

Finally, data provenance has an important role to play in supporting the validation of science at the
exascale. While detailed recordings of every event of possible interest would dominate the network and render
simulations infeasible, intelligent recording of key parameters and data sets will be crucial to understanding
exactly what occurred during the in situ visualization and analysis. This set of information should be small
enough to be persistently recorded, yet useful enough that replaying the events will lead to a statistically
similar result. Without this level of provenance, the core scientific principle of reproducibility would be lost.

There are a number of approaches under development that may help address projected shortcomings in
the exascale data management environment. Unfortunately, these activities tend to be centered within a
single research area and do not provide a holistic solution. For example, work on ArrayDB is addressing
the need for ad hoc queries of scientific data, and HBase provides a distributed query platform. However,
neither of these efforts is being informed by research occurring within the workflow, programming models, or
scheduling research communities. Although these individual technologies may ultimately be extremely useful,
there is currently no collaborative effort to define the requirements for a comprehensive data management
approach, much less active work creating interface standards that projects can use.

Development of these standards, and associated pilot implementations, is an area where ASCR’s leader-
ship could have a significant impact on focusing the research community. In particular, defining an environ-
ment capable of orchestrating these data management tasks on a leadership-class computer is an excellent
opportunity for co-design, since the environment cuts across traditional research areas, from workflow tech-
nology to schedulers, from programming models to operating systems, from networking to the memory
hierarchy. Because representatives from all of these research areas would be required to effectively address
the data management complexity facing exascale scientific application and analysis codes, ASCR is in a
unique position to enable development of a meaningful solution.

Ultimately, the transition to exascale computing will transform data management and highlight it as an
integral part of large-scale computational science. Data management will move from a file-based focus, where
the key metrics reflect disk-based read and write performance, to an integrated framework that supports
information sharing and knowledge discovery at all levels of the memory hierarchy. To reach this goal,
the traditional data management community will need to work with a much broader research community
to address the cross-cutting issues previously identified, develop new data models and abstractions, and
effectively manage the complex workflows that will be required to use this new class of machines.

7 Co-design and collaboration opportunities

Although the exascale DMAV workshop was organized under the auspices of DOE ASCR within the Office
of Science, we recognize that achieving successful data understanding at the exascale will take a concerted
collaborative effort between national laboratories, universities, industry, and other countries, as well as
cross-fertilization across federal funding programs. This is no different from the collaborations that have
successfully allowed the utilization of HPC resources at the terascale and petascale. However, as the exascale
holds unique challenges, there are also unique opportunities for collaboration.

7.1 Hardware vendor collaboration

As hardware vendors impact the design of exascale machines, in turn they impact DMAV; analysis tools will
need to run directly on these upcoming systems for certain types of analysis (including in situ processing).
In other cases, impacts will be seen indirectly, through the data generated by scientific simulation codes.

DOE, as one of the major deployers of HPC systems, has often partnered with hardware vendors. In
particular, scientific applications teams are collaborating with hardware vendors through recent co-design
efforts targeting the exascale. Although these applications teams may have in mind only a few limited goals
in the analysis and visualization arena, DMAV issues are generally cross-cutting. This raises the question
whether the current collaborations with hardware vendors are sufficient to accomplish the needs of DMAV
at the exascale.
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There are some areas in which partnering with hardware vendors would prove fruitful. As heterogeneous
systems rise to the forefront of current HPC systems, partnering with vendors of GPUs and other data
parallel devices, as well as with the CPU vendors themselves—both traditional HPC and emerging low-power
manufacturers—would lead to greater ability to take advantage of upcoming extreme on-node concurrency.
Integrators, system vendors, and interconnect designers could have roles in alleviating off-node concurrency
issues, greatly impacting DMAV use cases such as loosely-coupled in situ analysis. As technologies such as
NVRAM become integrated in future architectures, discussions with these vendors can help illuminate how
to use these new capabilities effectively, not just for scientific application codes but also for the analysis
and visualization of their data. Tightly coupled in situ techniques are likely to receive the most significant
benefit.

7.2 Software design collaborations

DOE makes heavy use of commodity hardware in the HPC systems it deploys. Commodity software is also
heavily used, but mostly at the lower system layers. Much as DOE invests in hardware, it often invests in
research and collaboration at the system software level (see the ASCR X-Stack call as a recent example). At
the higher levels, the software utilized by DOE is generally more focused on DOE mission goals and is rarely
widely available as commodity or commercial applications. This holds true for DMAV software as well. For
this reason, partnering with not just industry DMAV software vendors but also with science applications
teams, DOE and ASCR institutes, and international efforts such as DEISA (Distributed European Infras-
tructure for Supercomputing Applications) and PRACE (Partnership for Advanced Computing in Europe),
will be crucial for developing effective visualization and analysis capabilities on upcoming HPC systems.

Many visualization and analysis problems are domain-specific and require in-depth knowledge of the
domain for an effective solution. The tools to address them often are either designed by visualization
programmers with little or no knowledge of the domain, or quickly coded up by an application scientist with
limited knowledge of the visualization tools. Tools developed in this fashion tend to be difficult to deploy
and maintain.

In response, we require increased collaboration and partnerships with various computer science commu-
nities. These include applied mathematics and scalable solver developers who can better understand the
computation and physics, as well as application scientists who can better understand their visualization and
analysis needs and co-design appropriate solutions. All of these collaborations should extend across gov-
ernment agencies, including the National Science Foundation, the Department of Defense, and the National
Institutes of Health, as well as appropriate entities in industry.

8 Conclusion: Findings and Recommendations

The architectural and infrastructure changes coming as we march toward exascale computing are likely to
significantly disrupt the current methods for scientific discovery, visualization, analysis, and data movement.
Only through a concerted and focused effort toward the adaptation of existing methods and the development
of new methods designed for the dramatic limitations of the exascale platforms can we continue to employ
large HPC resources for scientific advancement. With this goal in mind, and in light of the research roadmap
detailed in the previous sections, we make the following findings and recommendations:

Finding 1: The path to implementing codes targeting architectures comprising hundreds of cores per chip
and running at billion-way concurrency is not clear. This challenge is faced by science applications as well
as by the DMAV community.

Recommendation 1: Research efforts in DMAV should closely track the evolution of emerging program-
ming environments to evaluate alternative approaches for creating robust and scalable software infrastructure.
Also, since the programming language(s)/model(s) of choice at the exascale will be unclear for some time
to come, research and development in visualization and analysis could pursue multiple approaches that aim
to enable effective use of exascale architectures in both post-processing and in situ/concurrent approaches
using these emerging programming models and execution environments.
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Finding 2: Because of the growing cost of I/O, it will become increasingly impractical for simulations
to perform writes to storage at full spatiotemporal resolution. The traditional post-processing approach
by which simulations write data for subsequent analysis and visualization will likely become less common
as a result of increasingly expensive I/O. Therefore, it is likely that an increasing amount of analysis and
visualization must take place while simulation data is still resident in memory.

Recommendation 2: While there are a few examples of successful in situ visualization going back through
the past two decades, future research in this space is needed in several important aspects of the technique to
enable its more widespread use in the future. These issues include graceful sharing of resources with simula-
tion code (e.g., memory footprint, cores in a multi-core/many-core environment), minimizing or eliminating
data copies in memory, and commoditization of in situ and concurrent visualization and analysis APIs to
minimize “one-off” solutions.

Finding 3: Any tightly-coupled in situ solution will share resources with the simulation code. In some
situations, this can prohibitively impact the running simulation. Similarly, in situ on the same node exposes
the simulation code to an additional source of failure. Though there has been fruitful research and (rarely)
production into tightly-coupled in situ analysis, it is not a complete solution.

Recommendation 3: A research effort into in situ data staging is warranted, complementing research into
in situ frameworks in general. This allows more resiliency, less resource contention, and opportunities for
hardware differentiation. Though communication is greater for in situ data staging than for tightly-coupled
in situ, it provides opportunities for balancing priorities.

Finding 4: In situ analysis and visualization is a necessity, but no panacea. Put simply, there is no way
to extract knowledge from the deluge of data in an exascale machine without performing some analysis at
the origination of the data. However, in situ analysis and visualization exhibits many restrictions that limit
exploration and serendipitous discovery.

Recommendation 4: In addition to solving the basic technical problems of coupling simulation with analy-
sis and visualization, in situ technologies must evolve to provide broader analysis and visualization techniques.
This evolution will likely involve a blending of in situ processing with post processing. Section 6.1.1 details
all these in situ challenges.

Finding 5: Although the relative cost of moving data will remain constant, experts in computer architecture
believe that the large amounts of data generated as we head to the exascale regime will make the I/O habits
of today prohibitive, especially to and from external storage. Codes from all classes of applications, including
scientific simulations as well as visualization and analysis applications, will be affected by this finding.

Recommendation 5: Future research in visualization and analysis should focus on methods that minimize
data movement throughout the memory hierarchy, but especially to and from external storage. Similarly,
future data management research should focus on techniques to improve the ability of codes to make effective
use of the memory and storage hierarchy. Minimizing data movement is a cross-cutting theme throughout
this report.
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Finding 6: Scientific data formats and file formats are relatively immature within DOE ASCR applications.
As the aggregate data set size increases, multi-physics complexity increases, and cross-dataset linking be-
comes more important, our existing methods for secondary storage will become overly constraining. Similarly,
the storage container of a “file” is already inadequate for data sets that cross the petabyte boundary.

Recommendation 6: More research into self-describing formats that provide flexibility, support for high-
dimensional fields, and hierarchical mesh types is a pressing need. These formats must be geared for DMAV
activities (reading) as well as for writing from simulation codes. See Sections 6.2.6 and 6.3.3 for more details.

Finding 7: Managing raw data from simulations is becoming impractical for I/O networking and processing
costs. As the datasets are growing in raw size, and the ratio of I/O bandwidth to FLOP count is decreasing,
the ability to write out the raw data from simulations is rapidly being crippled.

Recommendation 7: Data analysis methods should be used as means for massive data reduction that allows
saving abstract representations of features in the data instead of the raw bytes generated by the simulations.
Research is needed in the parallelization of the analysis computations constrained to low memory usage and
to maintaining the data partitioning provided by the simulations so that in situ computation is facilitated.
Research is also needed in the development of representations (such as topological or statistical) that achieve
the massive data reductions needed while preserving the semantic content needed by scientists to explore
and validate hypotheses. Section 6.2 describes the challenges creating data abstractions.

Finding 8: Future architectures will continue to reduce the amount of memory per available compute cycle.
Data economy will become synonymous with power economy. Methods of mathematical statistics for optimal
use of data will become relevant in a new setting.

Recommendation 8: Developing new techniques in mathematical statistics for optimal use of distributed
data should be a part of an interdisciplinary team strategy to address scalable visualization and analysis for
future computer architectures. Section 6.2.4 details these challeges.

Finding 9: Although solving exascale-class computational problems is a major and important challenge
facing the sciences, much day-to-day science, particularly experimental science, can benefit from advances
in DMAV software infrastructure to better support high-throughput experimental needs on current and
emerging multi-core/many-core platforms.

Recommendation 9: Research in DMAV can benefit both exascale-class and more modest, experimental-
class science. The advances needed to enable DMAV at the exascale will similarly benefit high-throughput,
experimental science. Therefore, research and partnerships between DMAV and the sciences should include
a diverse cross section of the science community to achieve the broadest possible impact.
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Finding 10: Not only is the management of scientific data from simulations necessary, but also the other
factors that contribute to generating it (e.g., operating system and compiler version) need to be captured.
As datasets continue to increase in size and complexity, assumptions and educated guesses will be made
to reduce the dataset size and manage the output. These assumptions and educated guesses need to be
captured to provide context and reproducibility. Simulation science needs to move toward more rigor in the
capture of metadata and the state of data as it moves toward saving less of it.

Recommendation 10: There is a need to develop provenance infrastructure that makes the capture and
curation of datasets automatic. It needs to be integrated with both the simulation and the analysis com-
ponents of the simulation pipeline. On the simulation side, it needs to capture metadata information about
the environment and settings of the simulation; and on the analysis side, the captured information needs to
be translated into feedback to the user (e.g., the errors introduced by sampling).

Finding 11: A review of the reports from the “Scientific Grand Challenges Workshop Series” reveals a
trend toward more complicated, and more complete, physical models using techniques that involve multiple
scales, multiple physics, and time-varying data. Also frequently cited are advanced techniques to establish
applicability, like uncertainty quantification. Each advance adds a new dimension that is not appropriately
handled by current analysis and visualization techniques.

Recommendation 11: Basic research for analyzing and visualizing these new properties is required. Often
the techniques for analyzing multiple scales, physics, and comparable runs will be inexorably tied to the
particular problem domain. Design of such visualization and analysis requires close collaboration between
science domain experts and data analysis experts.

Finding 12: The traditional design of computing is linear and compartmentalized. Hardware is built
independently of the software that will run on it. Simulations store results arbitrarily and leave analysis
options open-ended. This design strategy is convenient and logical: Dependencies are explicit, management
is straightforward, and domain experts can focus on their area of expertise. However, such a design relies
on leniency in our basic capabilities. A stable hardware design for general computing capabilities ensures
that software can be ported. An ample amount of storage ensures enough space to capture a representative
fraction of data. All predictions for exascale computing point to these leniencies being removed.

Recommendation 12: The roadmap to exascale must involve a transition from technology-driven science
to discovery-driven science. That is, science must be driven not by the computations that can be performed
nor by the physics that can be computed nor by the data that can be generated, but rather driven by the
discoveries that need to be made. The end result must be the primary consideration from the very start
of the design in computational science. Our first focus must be the discoveries we need to make. These
discovery goals drive the analysis and visualization to be performed. The analysis and visualization dictate
what data is needed and how it must be managed. The data required and its management dictate what
simulations are run, how they are run, and in coordination with which other software facilities they are run.
All of these requirements drive hardware design and procurement.

Discovery-driven science challenges all of us in the ASCR community. It commands an unprecedented
collaboration among disciplines and projects. Our independent knowledge, tools, and applications must come
together in a federated unit to address the cross-cutting issues of exascale that affect us all.
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A Appendix: Historical Perspective

This appendix provides a brief overview of research in visualization and data analysis within the DOE
community over the last decade and through Scientific Discovery through Advanced Computing (SciDAC)
initiatives in the past 5 years. Looking back on the work, a number of themes emerge. In the early days, the
research issues centered on data parallel infrastructure for handling large-scale data, and the building and
sharing of tools across the scientific community. More recently, the research has shifted to tighter integration
of analysis and visualization, data management and scalable I/O, and building domain-specific applications.

In the late 1990s, there were no open-source or commercial visualization packages that could effectively
visualize large datasets. This was a significant concern to the scientific simulation community because large-
scale results were being generated and needed analysis. A “tri-lab” (Los Alamos, Lawrence Livermore, and
Sandia National Laboratories) research initiative was launched to modify, extend, and exploit Kitware’s
Visualization ToolKit (VTK), an open-source, object-oriented visualization library.

One effort attacked the problem of running VTK in parallel. By modifying the infrastructure of VTK
to support data streaming (the ability to incrementally process a dataset), data parallelism, and distributed
computing, the new parallel toolkit was able to extend the existing full range of visualization, imaging,
and rendering algorithms available in VTK. In addition, parallel rendering algorithms were added. Another
effort explored parallelism outside VTK, providing data parallelism in a higher-level library, allowing further
optimization for data parallel distributed computing and visualization.

In this way, this powerful VTK foundation was employed by two end-user applications, ParaView and
VisIt, to provide scientific visualization applications that scaled from the desktop to the cluster, hiding
the details of the parallel configuration and the complexities of the visualization from the scientist. Both
application groups subscribed to the idea that moving to open-source software would facilitate the building
and sharing of tools across the national laboratories, academia, and industry.

In the early 2000s, explosive growth in the power of commodity graphics cards led to research in using
hardware acceleration on commodity clusters. This research was a natural extension of previous parallel,
distributed-memory approaches. The programmability of graphics processing units (GPUs) opened up en-
tirely new algorithms not only for visualization but also for various types of analysis. Multiple GPUs also
provided the high rendering speeds needed to interactively visualize large data on dedicated graphics clusters.

In 2006, the SciDAC initiative funded three major centers: the Visualization and Analytics Center for
Enabling Technologies (VACET), the Scientific Data Management Center (SDM), and the Institute for
UltraScale Visualization (IUSV). These centers moved beyond the technology required to interactively view
enormous simulation data. Instead, they focused on revealing and understanding deeper relationships found
through expanded analysis, integrated visualization, and domain-specific applications.

A.1 VACET

VACET combines a range of visualization, mathematics, statistics, computer and computational science, and
data management technologies to foster scientific productivity and insight. It has provided new capabilities
to science teams that aid in knowledge discovery. Scientists are able to see, for the first time, features
and attributes that were formerly hidden from view. VACET accomplishments range from the development
of a production-quality, petascale-capable, visual data analysis software infrastructure that is being widely
adopted by the science community as a demonstration of how science is enabled at the petascale, to the
scientific impacts resulting from the use of that software.

Specific examples of VACET contributions include

• Topological analysis work that allowed scientists new insight into the fundamental processes of com-
bustion

• A new capability for accelerator researchers to see for the first time all particles that meet a minimum
level of being “scientifically interesting” in 3 dimensions and in conjunction with multi-modal visual
presentation

• Multi-modal (traditional computational fluid dynamics variables, vector-valued magnetic field, multi-
frequency radiation transport) visual data exploration of supernova simulation results from a petascale-
class machine
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• Very-high-resolution climate models run on petascale-class platforms and containing new features pre-
viously not visible, since these massive datasets cannot typically be processed using “standard” desktop
visualization applications;

• The new capability for science teams to perform visual data analysis and exploration on uncommon
computational grids (e.g., mapped-grid adaptive mesh refinement in fusion science and geodesic grids
in climate science) to achieve higher levels of efficiency of parallel platforms

• For DOE’s Nuclear Energy program, visual data exploration and analysis infrastructure to study
complex flow fields

• Support for effective parallel I/O to a SciDAC climate science team through design and implementation
of a data model and parallel I/O library for use on the Cray XT4 platforms at the National Energy Re-
search Scientific Computing Center/LBNL and the Oak Ridge Leadership Computing Facility/ORNL

• Direct support to a SciDAC fusion science center to enable parallel I/O of fusion (and accelerator)
simulation data where that effort will “spill over” to help numerous other projects that now use or will
use those same simulation codes

A.2 SDM

SDM provides an end-to-end approach to data management that encompasses all stages from initial data
acquisition to final data analysis. It addresses three major needs: (1) more efficient access to storage systems
through parallel file system improvements that enable writing and reading large volumes of data without
slowing a simulation, analysis, or visualization engine; (2) technologies to facilitate better understanding of
data, in particular the ability to effectively perform complex data analysis and searches over large data sets,
including specialized feature discovery, parallel statistical analysis, and efficient indexing; (3) robust workflow
tools to automate the process of data generation, collection and storage of results, data post-processing, and
result analysis.

Specific examples of SDM contributions include

• Integration of Parallel NetCDF, successfully used by the large-scale National Center for Atmospheric
Research Community Atmosphere Model

• Enhancement of I/O efficiency for the Lustre file system by as much as 400% using partitioned collective
I/O (ParColl) without requiring a change in file format

• Development of the Adaptable I/O System (ADIOS), a simple programming interface that abstracts
transport information and speeds up I/O on Cray XT, InfiniBand clusters, and IBM Blue Gene/P
through the use of a new file format, BP (binary-packed), that is highly optimized for checkpoint
operations

• Development of FastBit, an efficient indexing technology (performing 50–100 times faster than any
known indexing method) for accelerating database queries on massive datasets. FastBit received an
R&D 100 award in 2008.

• Use of FastBit to achieve 1,000 times speedup of particle search for the Laser Wakefield Particle
Accelerator project and 1,000 times speedup for identification of gyrokinetic fusion regions

• Development of an open-source library of algorithms for fast, incremental, and scalable all-pairs simi-
larity searches that achieves orders of magnitude (100,000 fold) speedup

• Bringing into production open-source ProRata statistical software, which has been downloaded more
than 1,000 times and has been used by the DOE bioenergy centers and Genomics:GTL projects

• Development of an integrated framework, currently being used in production runs by scientists at the
Center for Plasma Fusion Edge Simulation, which includes the Kepler workflow system, a dashboard,
provenance tracking and recording, parallel analysis capabilities, and SRM-based data movement.

A.3 IUSV

IUSV has introduced new approaches to large-scale data analysis and visualization, enabling scientists to
see the full extent of their data at unprecedented clarity, uncover previously hidden features of interest in
their data, more easily validate their simulations, possibly interact with their data to explore and discover,
and better communicate their work and findings to others. The Institute’s research effort is targeted at
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the design and evaluation of parallel visualization technology, in situ data triage and visualization methods,
time-varying multivariate data visualization techniques, distance and collaborative visualization strategies,
and novel visualization interfaces. IUSV also combines a complementary research component and outreach
and education component for communication and collaboration. Through working with other SciDAC Insti-
tutes, Centers for Enabling Technologies, and application projects, IUSV has already made many research
innovations and demonstrations of new technologies. Likewise, through outreach activities, IUSV provides
leadership in research community efforts focusing on extreme-scale visualization. These activities include
hosting specialized workshops and panels at leading conferences to stimulate widespread participation.

Selected IUSV accomplishments include

• in situ data triage and visualization solutions demonstrated at large scale, driving further development
of this technology in the research and SciDAC community

• Parallel volume rendering algorithms scalable to hundreds of thousands of processors, enabling high
utilization of the most powerful supercomputer for demanding visualization tasks

• Multi-GPU rendering and visualization libraries for building visualization clusters at different scales

• A framework for data reduction, quality assessment, and LOD (level of detail) visualization facilitating
interactive exploration of large data streams

• A set of interactive visualization techniques supported by scalable data servers for browsing and simul-
taneous visualization of time-varying multivariate data

• Advanced visualization facilities for climate data analysis, including web-enabled collaborative visual-
ization support in the Earth System Grid, a query language for visualizing probabilistic features, and
4-dimensional correlation analysis and visualization

• Advanced study of optimized use of leading-edge parallel I/O in large-scale parallel visualizations

• Transfer of new technologies to end users through ParaView

• A well-attended Ultrascale Visualization Workshop at the annual Supercomputing Conferences over the
past 5 years, which highlights the latest large data visualization technologies, fosters greater exchange
among visualization researchers and the users of visualization, and facilitates new collaborations

• More than a dozen tutorials in large data analysis and visualization

B Appendix: Workshop Participants

Sean Ahern, Oak Ridge National Laboratory
Jim Ahrens, Los Alamos National Laboratory
Ilkay Altintas, San Diego Supercomputing Center
E. Wes Bethel, Lawrence Berkeley National Laboratory
Eric Brugger, Lawrence Livermore National Laboratory
Surendra Byna, Lawrence Berkeley National Laboratory
C-S Chang, New York University
Jackie Chen, Sandia National Laboratories
Hank Childs, Lawrence Berkeley National Laboratory
Alok Choudhary, Northwestern University
John Clyne, National Center for Atmospheric Research
Terence Critchlow, Pacific Northwest National Laboratory
Ryan Elmore, National Renewable Energy Laboratory
Jinghua Ge, Louisiana State University
Mark Green, Tech-X Corporation
Kenny Gruchalla, National Renewable Energy Laboratory
Chuck Hansen, University of Utah
Jian Huang, University of Tennessee
Keith Jackson, Lawrence Berkeley National Laboratory
Chris Johnson, University of Utah
Ken Joy, University of California–Davis
Chandrika Kamath, Lawrence Livermore National Laboratory

Page 38



Scientific Discovery at the Exascale

Scott Klasky, Oak Ridge National Laboratory
Kerstin Kleese-van Dam, Pacific Northwest National Laboratory
Quincey Koziol, The HDF Group
Rob Latham, Argonne National Laboratory
Terry Ligocki, Lawrence Berkeley National Laboratory
Gerald Lofstead, Sandia National Laboratories
Kwan-Liu Ma, University of California–Davis
Jeremy Meredith, Oak Ridge National Laboratory
Bronson Messer, Oak Ridge National Laboratory
Steve Miller, Oak Ridge National Laboratory
Kennneth Moreland, Sandia National Laboratories
Lucy Nowell, Department of Energy
George Ostrouchov, Oak Ridge National Laboratory
Mike Papka, Argonne National Laboratory
Manish Parashar, Rutgers University
Valerio Pascucci, University of Utah
Hanspeter Pfister, Harvard University
Norbert Podhorszki, Oak Ridge National Laboratory
Stephen Poole, Oak Ridge National Laboratory
Dave Pugmire, Oak Ridge National Laboratory
Doron Rotem, Lawrence Berkeley National Laboratory
Nagiza Samatova, North Carolina State University
Karsten Schwan, Georgia Institute of Technology
Arie Shoshani, Lawrence Berkeley National Laboratory
Gary Strand, National Center for Atmospheric Research
Xavier Tricoche, Purdue University
Amitabh Varshney, University of Maryland
Jeff Vetter, Oak Ridge National Laboratory
Venkatram Vishwanath, Argonne National Laboratory
Joel Welling, Pittsburgh Supercomputing Center
Dean Williams, Lawrence Livermore National Laboratory
Matthew Wolf, Georgia Institute of Technology
Pak Wong, Pacific Northwest National Laboratory
Justin Wozniah, Argonne National Laboratory
Nick Wright, Lawrence Berkeley National Laboratory
Kesheng Wu, Lawrence Berkeley National Laboratory
Yong Xiao, University of California Irvine

Page 39



DOE ASCR 2011 Workshop on Exascale Data Management, Analysis, and Visualization

References

[1] James P. Ahrens, Jonathan Woodring, David E. DeMarle, John Patchett, and Mathew Maltrud. Inter-
active remote large-scale data visualization via prioritized multi-resolution streaming. In Proceedings of
the 2009 Workshop on Ultrascale Visualization, November 2009.

[2] M. Andrecut. Parallel GPU implementation of iterative PCA algorithms. Journal of Computational
Biology, 16(11):1593–1599, 2009.

[3] Amit C. Awekar, Nagiza F. Samatova, and Paul Breimyer. Incremental all pairs similarity search for
varying similarity thresholds with reduced i/o overhead. In IKE’09, pages 687–693, 2009.

[4] Carrie Ballinger and Ron Fryer. Born to be parallel: Why parallel origins give teradata an enduring
performance edge. IEEE Data Engineering Bulletin, 20(2):3–12, 1997. An updated version of this paper
is available at http://www.teradata.com/library/pdf/eb3053.pdf.

[5] Dennis A. Benson, Mark S. Boguski, David J. Lipman, James Ostell, B. F. Francis Ouellette, Barbara A.
Rapp, and David L. Wheeler. GenBank. Nucleic Acids Research, 27(1):12–17, 1999. Data available at
http://www.ncbi.nlm.nih.gov/Genbank/GenbankOverview.html.

[6] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J.-G. Piccinali. Parallel computational steering
and analysis for HPC applications using a ParaView interface and the HDF5 DSM virtual file driver.
In Proceedings of Eurographics Parallel Graphics and Visualization Symposium, April 2011.

[7] Roger Blandford, Young-Kee Kim, Norman Christ, et al. Challenges for the Understanding the Quantum
Universe and the Role of Computing at the Extreme Scale. Technical report, ASCR Scientific Grand
Challenges Workshop Series, December 2008.

[8] Peter A. Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-pipelining query execution.
In CIDR, pages 225–237, 2005.

[9] P.-T. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell. Analyzing and tracking burning structures in
lean premixed hydrogen flames. IEEE Transactions on Visualization and Computer Graphics, 16(2):248–
260, 2010.

[10] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. B. Bell. Interactive exploration and anal-
ysis of large scale simulations using topology-based data segmentation. IEEE Trans. on Visualization
and Computer Graphics, page to appear, 2010.

[11] Paul G. Brown. Overview of SciDB: large scale array storage, processing and analysis. In SIGMOD,
pages 963–968. ACM, 2010.

[12] R. Brun and F. Rademakers. ROOT : An object oriented data analysis framework. Nuclear instruments
& methods in physics research, Section A, 289(1-2):81–86, 1997.

[13] H. Childs, M. Duchaineau, and K.-L. Ma. A scalable, hybrid scheme for volume rendering massive data
sets. In Proceedings of Eurographics Sympoisum on Parallel Graphics and Visualization, pages 153–162,
2006.

[14] Hank Childs. Architectural challenges and solutions for petascale postprocessing. Journal of Physics:
Conference Series, 78(012012), 2007. DOI=10.1088/1742-6596/78/1/012012.

[15] Hank Childs, David Pugmire, Sean Ahern, Brad Whitlock, Mark Howison, Prabhat, Gunther Weber,
and E. Wes Bethel. Extreme Scaling of Production Visualization Software on Diverse Architectures.
IEEE Computer Graphics and Applications, 30(3):22–31, May/June 2010. LBNL-3403E.

[16] Hank Childs, David Pugmire, Sean Ahern, Brad Whitlock, Mark Howison, Prabhat, Gunther H. Weber,
and E. Wes Bethel. Extreme scaling of production visualization software on diverse architectures. IEEE
Computer Graphics and Applications, 30(3):22–31, May/June 2010.

Page 40



Scientific Discovery at the Exascale

[17] G. S. Davidson, K. W. Boyack, R. A. Zacharski, S. C. Helmreich, and J. R. Cowie. Data-centric com-
puting with the netezza architecture. Technical Report SAND2006-3640, Sandia National Laboratories,
2006.

[18] M. Day, J. Bell, P.-T. Bremer, V. Pascucci, V. Beckner, and M. Lijewski. Turbulence effects on cellular
burning structures in lean premixed hydrogen flames. Combustion and Flame, 156:1035–1045, 2009.

[19] Jeffrey Dean. Experiences with MapReduce, an abstraction for large-scale computation. In PACT ’06,
pages 1–1, New York, NY, USA, 2006. ACM.

[20] J.J. Dongarra, H. W. Meuer, H. D. Simon, and E. Strohmaier. Top500 supercomputer sites. www.

top500.org, (updated every 6 months).

[21] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete
Comput. Geom., 28:511–533, 2002.

[22] R. Forman. Combinatorial vector fields and dynamical systems. Math. Z., 228(4):629–681, 1998.

[23] B. Fryxell, K. Olson, P. Ricker, F. Timmes, M. Zingale, D. Lamb, P. MacNeice, R. Rosner, and H. Tufo.
FLASH: An adaptive mesh hydrodynamics code for modelling astrophysical thermonuclear flashes. pages
131–273, 2000.

[24] Guilia Galli, Thom Dunning, et al. Discovery in Basic Energy Sciences: The Role of Computing at the
Extreme Scale. Technical report, ASCR Scientific Grand Challenges Workshop Series, August 2009.

[25] Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex Szalay, David J. DeWitt, and Gerd Heber.
Scientific data management in the coming decade. SIGMOD Rec., 34(4):34–41, 2005.

[26] Jim Gray and Alexander S. Szalay. Where the rubber meets the sky: Bridging the gap between databases
and science. IEEE Data Engineering Bulletin, 27(4):3–11, December 2004.

[27] Attila Gyulassy, Vijay Natarajan, Mark Duchaineau, Valerio Pascucci, Eduardo M. Bringa, Andrew
Higginbotham, and Bernd Hamann. Topologically clean distance fields. IEEE Transactions on Computer
Graphics, Proceedings of Visualization 2007, 13(6), November/December 2007.

[28] Robert Haimes. pV3: A distributed system for large-scale unsteady CFD visualization. In AIAA paper,
pages 94–0321, 1994.

[29] Richard Hamming. Numerical Methods for Scientists and Engineers. 1962.

[30] Mark Howison, E. Wes Bethel, and Hank Childs. MPI-hybrid parallelism for volume rendering on large,
multi-core systems. In Eurographics Symposium on Parallel Graphics and Visualization (EGPGV), May
2010. LBNL-3297E.

[31] C.R. Johnson, S. Parker, and D. Weinstein. Large-scale computational science applications using the
SCIRun problem solving environment. In Proceedings of the 2000 ACM/IEEE conference on Supercom-
puting, 2000.

[32] D. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci. Understanding the structure of
the turbulent mixing layer in hydrodynamic instabilities. IEEE Trans. Visualization and Computer
Graphics (TVCG) / Proc.of IEEE Visualization, 12(5):1052–1060, 2006.

[33] Lawrence Livermore National Laboratory. VisIt User’s Manual, October 2005. Technical Report UCRL-
SM-220449.

[34] Dawn Levy. Exascale Supercomputing Advances Climate Research. SciDAC Review, Special Issue,
2010.

[35] J. Lofstead, Zheng Fang, S. Klasky, and K. Schwan. Adaptable, metadata rich IO methods for portable
high performance IO. In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on, pages 1–10, 2009.

Page 41



DOE ASCR 2011 Workshop on Exascale Data Management, Analysis, and Visualization

[36] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, metadata rich IO methods for portable
high performance IO. In Proceedings of IPDPS‘09, May 2009.

[37] K.-L. Ma. In-situ visualization at extreme scale: Challenges and opportunities. IEEE Computer Graph-
ics and Applications, 29(6):14–19, November-December 2009.

[38] K.-L. Ma, C. Wang, H. Yu, and A. Tikhonova. In situ processing and visualization for ultrascale
simulations. Journal of Physics (also Proceedings of SciDAC 2007), 78, June 2007.

[39] A. Mascarenhas, R. W. Grout, P.-T. Bremer, E. R. Hawkes, V. Pascucci, and J.H. Chen. Topological fea-
ture extraction for comparison of terascale combustion simulation data. Mathematics and Visualization.
Springer, 2010. to appear.

[40] N.M. Master, M. Andrews, J. Hick, S. Canon, and N.J. Wright. Performance analysis of commodity
and enterprise class flash devices. In Petascale Data Storage Workshop (PDSW), 2010 5th, pages 1 –5,
nov. 2010.

[41] Paul Messina, David Brown, et al. Scientific Grand Challenges in National Security: the Role of
Computing at the Extreme Scale. Technical report, ASCR Scientific Grand Challenges Workshop
Series, October 2009.

[42] Kenneth Moreland, Nathan Fabian, Pat Marion, and Berk Geveci. Visualization on supercomputing
platform level II ASC milestone (3537-1b) results from Sandia. Technical Report Tech Report SAND
2010-6118, Sandia National Laboratories, September 2010.

[43] Patrick O’Neil and Elizabeth O’Neil. Database: principles, programming, and performance. Morgan
Kaugmann, 2nd edition, 2000.

[44] M. Tamer Ozsu and Patrick Valduriez. Principles of Distributed Database Systems. Prentice Hall, 2nd
edition, 1999.

[45] Tom Peterka, Hongfeng Yu, Robert Ross, Kwan-Liu Ma, and Rob Latham. End-to-end study of parallel
volume rendering on the IBM blue gene/p. In Proceedings of the ICPP’09 Conference, September 2009.

[46] Tom Peterka, Hongfeng Yu, Robert Ross, Kwan-Liu Ma, and Rob Latham. End-to-end study of parallel
volume rendering on the IBM blue gene/p. In Proceedings of ICPP 09, Vienna, Austria, 2009.

[47] Milo Polte, Jay Lofstead, John Bent, Garth Gibson, Scott A. Klasky, Qing Liu, Manish Parashar,
Norbert Podhorszki, Karsten Schwan, Meghan Wingate, and Matthew Wolf. ...and eat it too: high read
performance in write-optimized hpc i/o middleware file formats. In PDSW ’09, pages 21–25, New York,
NY, USA, 2009. ACM.

[48] K. Potter, J. Kniss, R. Riesenfeld, and C.R. Johnson. Visualizing summary statistics and uncertainty.
Computer Graphics Forum (Proceedings of Eurovis 2010), 29(3):823–831, 2010.

[49] Kristin Potter, Andrew Wilson, Peer-Timo Bremer, Dean Williams, Charles Doutriaux, Valerio Pas-
cucci, and Chris R. Johnson. Ensemble-vis: A framework for the statistical visualization of ensemble
data. In IEEE ICDM Workshop on Knowledge Discovery from Climate Data: Prediction, Extremes,
and Impacts, December 2009.

[50] Robert Rosner, Ernie Moniz, et al. Science Based Nuclear Energy Systems Enabled by Advanced
Modeling and Simulation at the Extreme Scale. Technical report, ASCR Scientific Grand Challenges
Workshop Series, May 2009.

[51] K. Schuchardt, B. Palmer, J. Daily, T. Elsethagen, , and A. Koontz. I/o strategies and data services
for petascale data sets from a global cloud resolving model. 78, 2007.

[52] B. A. Shoemaker and A. R. Panchenko. Deciphering protein-protein interactions. 3:e43, 2007.

Page 42



Scientific Discovery at the Exascale

[53] Amy Henderson Squillacote. The ParaView Guide: A Parallel Visualization Application. Kitware Inc.,
2007. ISBN 1-930934-21-1.

[54] Rick Stevens, Mark Ellisman, et al. Opportunities in Biology at the Extreme Scale of Computing.
Technical report, ASCR Scientific Grand Challenges Workshop Series, August 2009.

[55] Rick Stevens, Andrew White, et al. Architectures and technology for extreme scale computing. Technical
report, ASCR Scientific Grand Challenges Workshop Series, December 2009.

[56] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel Ferreira,
Edmond Lau, Amerson Lin, Samuel Madden, Elizabeth J. O’Neil, Patrick E. O’Neil, Alex Rasin, Nga
Tran, and Stanley B. Zdonik. C-store: A column-oriented DBMS. In VLDB, pages 553–564, 2005.

[57] Alexander S. Szalay, Ani R. Thakar, and Jim Gray. The sqlLoader data-loading pipeline. Computing
in Science and Engineering, 10(1):38–48, 2008.

[58] Bill Tang, David Keyes, et al. Scientific Grand Challenges in Fusion Energy Sciences and the Role
of Computing at the Extreme Scale. Technical report, ASCR Scientific Grand Challenges Workshop
Series, March 2009.

[59] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing mpi-io portably and with high
performance. In In Proceedings of the 6th Workshop on I/O in Parallel and Distributed Systems, pages
23–32. ACM Press, 1999.

[60] The HDF Group. HDF5 user guide. http://www.hdfgroup.org/HDF5/doc/UG/index.html, 2011.

[61] A. Tikhonova, C. Correa, and K.-L. Ma. Visualization by proxy: A novel framework for deferred
interaction with volume data. IEEE Transactions on Visualization and Computer Graphics, 16(6):1551–
1559, 2010.

[62] A. Tikhonova, Hongfeng Yu, C. Correa, and K.-L. Ma. A preview and exploratory technique for large
scale scientific simulations. In Proceedings of the Eurographics Symposium on Parallel Graphics and
Visualization, 2011.

[63] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L. Ma, and D. O’Hallaron. From mesh
genertion to scientific visualization: An end-to-end approach to parallel supercomputing. In Proceedings
of ACM/IEEE Supercomputing 2006 Conference, November 2006.

[64] Unidata. The NetCDF users’ guide. http://www.unidata.ucar.edu/software/netcdf/docs/

netcdf/, 2011.

[65] UniProt. The universal protein resource (UniProt) 2009. Nucleic Acids Research, 37:169–174, 2009.

[66] C. von Mering, R. Krause, B. Snel, and et al. M. Cornell. Comparative assessment of large scale data
sets of protein-protein interactions. 417:399–403, 2002.

[67] C. Wang, H. Yu, and K.-L. Ma. Importance-driven time-varying data visualization. IEEE Transactions
on Visualization and Computer Graphics, 14(6):1547–1554, October 2008.

[68] C. Wang, H. Yu, and K.-L. Ma. Application-driven compression for visualizing large-scale time-varying
data. IEEE Computer Graphics and Applications, 30(1):59–69, January/February 2010.

[69] Warren Washington et al. Challenges in Climate Change Science and the Role of Computing at the
Extreme Scale. Technical report, ASCR Scientific Grand Challenges Workshop Series, November 2008.

[70] Tom White. Hadoop - The Definitive Guide: MapReduce for the Cloud. O’Reilly, 2009.

[71] B. Whitlock, J. M. Favre, and J. S. Meredith. Parallel in situ coupling of simulation with a fully featured
visualization system. In Proceedings of Eurographics Parallel Graphics and Visualization Symposium,
April 2011.

Page 43



DOE ASCR 2011 Workshop on Exascale Data Management, Analysis, and Visualization

[72] Robert Wrembel and Christian Koncilia, editors. Data Warehouses and OLAP: Concepts, Architectures
and Solutions. IGI Global, 2006.

[73] K. Wu, S. Ahern, E.W. Bethel, J. Chen, H. Childs, E. Cormier-Michel, C. Geddes, J. Gu, H. Hagen,
B. Hamann, W. Koegler, J. Laurent, J. Meredith, P. Messmer, E. Otoo, V. Perevoztchikov, A. Poskanzer,
O. Ruebel, A. Shoshani, A. Sim, K. Stockinger, G. Weber, and W.-M. Zhang. Fastbit: Interactively
searching massive data. J. of Physics: Conference Series, 180(1), 2009.

[74] Glenn Young, David Dean, Martin Savage, et al. Forefront Questions in Nuclear Science and the Role of
High Performance Computing. Technical report, ASCR Scientific Grand Challenges Workshop Series,
January 2009.

[75] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma. In-situ visualization for large-scale combustion
simulations. IEEE Computer Graphics and Applications, 30(3):45–57, May-June 2010.

[76] H. Yu, C. Wang, and K.-L. Ma. Parallel volume rendering using 2-3 swap image compositing for
an arbitrary number of processors. In Proceedings of ACM/IEEE Supercomputing 2008 Conference,
November 2008.

Page 44








