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As the HPC community starts focusing its efforts towards exascale, it be-
comes clear that we are looking at machines with a billion way concur-
rency. Although parallel computing has been at the core of the perfor-
mance gains achieved until now, scaling over 1,000 times the current
concurrency can be challenging. As discussed in this paper, even the
smallest memory access and synchronization overheads can cause
major bottlenecks at this scale. As we develop new software and adapt
existing algorithms for exascale, we need to be cognizant of such pit-
falls. In this paper, we document our experience with optimizing a fairly

// Run classify algorithm (determine how many cells are passed).
ClassifyResultType classificationArray;
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common and parallelizable visualization algorithm, threshold of cells
based on scalar values, for such highly concurrent architectures. Our ex-
periments help us identify design patterns that can be generalized for
other visualization algorithms as well. We discuss our implementation
within the Dax toolkit, which is a framework for data analysis and visual-
ization at extreme scale. The Dax toolkit employs the patterns discussed
here within the framework’s scaffolding to make it easier for algorithm
developers to write algorithms without having to worry about such scal-
Ing issues.
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scheduler.Invoke(dax: :worklet::ThresholdClassify<dax::Scalar>(0.07, 1.90),
grid,
inArray,
classificationArray);

// Build thresholded topology.

ScheduleGenerateTopologyType resolveTopology(classificationArray);
UnstructuredGridType outGrid;
scheduler.Invoke(resolveTopology, grid, outGrid); , :
Automatic point
merging IS
opTional.

// Compact scalar array to new topology.
ArrayHandleScalar outArray;
resolveTopology.CompactPointField(inArray, outArray);

template<typename ValueType>
class ThresholdClassify : public dax::exec:
{
public:
typedef void ControlSignature(Topology,Field(Point), Field(Out));
typedef 3 ExecutionSignature( 2);

:WorkletMapCell

DAX_CONT_EXPORT
ThresholdClassify(ValueType thresholdMin, ValueType thresholdMax)
: ThresholdMin(thresholdMin), ThresholdMax(thresholdMax) { }

template<typename CellTag> DAX EXEC _EXPORT dax::Id operator()(
const dax::exec::CellField<ValueType,CellTag> &values) const

1
ThresholdFunction<ValueType> threshold(this->ThresholdMin,
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this->ThresholdMax); Accegs free p
dax::exec: :VectorForEach(values, threshold); ”Qhr' ﬂHTh @¥;
return threshold.valid; Con Weighy

} 'hWneFS
private:
ValueType ThresholdMin; TOpOIOgy TOpOIOgy
ValueType ThresholdMax; Worklet Worklet
¥
class ThresholdTopology : public dax::exec::WorkletGenerateTopology 3
{ Topology [ [e]e]e][0]s)Y,
public: Worklet Worklet
\\
typedef void ControlSignature(Topology, Topology(Out)); _‘.emp\a-\-gd ce
typedef void ExecutionSignhature(Vertices( _1),Vertices( 2)); +a0s Specia\'\ze
’ || Type
for ce
template<typename InputCellTag, typename OutputCellTag>
DAX_EXEC_EXPORT

void operator()(const dax::exec::CellVertices<InputCellTag> &inVertices,
dax::exec::CellVertices<OutputCellTag> &outVertices) const

{
outVertices.SetFromTuple(inVertices.GetAsTuple());

}
s
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Our end performance tests show both that our optimizations to the threshold algorithm are effective in pro-
viding efficient parallel performance and that these optimizations can be hidden beneath a generic tem-
plated programming interface. In addition to demonstrating the base performance of our code on many de-
vices, we also compare to VTK and PISTON as good representations of the state of the art. (The modified
PISTON is changed to make its output compatible with Dax.)



