
Kenneth Moreland
Sandia National Laboratories

Utkarsh Ayachit
Kitware, Inc.

Berk Geveci
Kitware, Inc.

Kwan-Liu Ma
University of California at Davis

Robert Maynard
Kitware, Inc.

Optimizing Threshold for Extreme Scale Analysis

Scheduler

Array Compact

Topology Reconstruction

D
ax Fram

ew
ork

Count
Worklet

Count
Worklet

Count
Worklet

Count
Worklet

Topology
Worklet

Topology
Worklet

Topology
Worklet

Topology
Worklet

template<typename ValueType>
class ThresholdClassify : public dax::exec::WorkletMapCell
{
public:
 typedef void ControlSignature(Topology,Field(Point), Field(Out));
 typedef _3 ExecutionSignature(_2);

 DAX_CONT_EXPORT
 ThresholdClassify(ValueType thresholdMin, ValueType thresholdMax)
 : ThresholdMin(thresholdMin), ThresholdMax(thresholdMax) { }

 template<typename CellTag> DAX_EXEC_EXPORT dax::Id operator()(
 const dax::exec::CellField<ValueType,CellTag> &values) const
 {
 ThresholdFunction<ValueType> threshold(this->ThresholdMin,
 this->ThresholdMax);
 dax::exec::VectorForEach(values, threshold);
 return threshold.valid;
 }
private:
 ValueType ThresholdMin;
 ValueType ThresholdMax;
};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:
 typedef void ControlSignature(Topology, Topology(Out));
 typedef void ExecutionSignature(Vertices(_1),Vertices(_2));

 template<typename InputCellTag, typename OutputCellTag>
 DAX_EXEC_EXPORT
 void operator()(const dax::exec::CellVertices<InputCellTag> &inVertices,
 dax::exec::CellVertices<OutputCellTag> &outVertices) const
 {
 outVertices.SetFromTuple(inVertices.GetAsTuple());
 }
};

Trial

CP
U

 8
 C

or
e

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
PISTON Original

Dax
PISTON Modi�ed

Trial

G
PU

 E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 PISTON Original

Dax

PISTON Modi�ed

// Run classify algorithm (determine how many cells are passed).
ClassifyResultType classificationArray;
scheduler.Invoke(dax::worklet::ThresholdClassify<dax::Scalar>(0.07, 1.0),
 grid,
 inArray,
 classificationArray);

// Build thresholded topology.
ScheduleGenerateTopologyType resolveTopology(classificationArray);
UnstructuredGridType outGrid;
scheduler.Invoke(resolveTopology, grid, outGrid);

// Compact scalar array to new topology.
ArrayHandleScalar outArray;
resolveTopology.CompactPointField(inArray, outArray);

common and parallelizable visualization algorithm, threshold of cells
based on scalar values, for such highly concurrent architectures. Our ex-
periments help us identify design patterns that can be generalized for
other visualization algorithms as well. We discuss our implementation
within the Dax toolkit, which is a framework for data analysis and visual-
ization at extreme scale. The Dax toolkit employs the patterns discussed
here within the framework’s sca�olding to make it easier for algorithm
developers to write algorithms without having to worry about such scal-
ing issues.

As the HPC community starts focusing its e�orts towards exascale, it be-
comes clear that we are looking at machines with a billion way concur-
rency. Although parallel computing has been at the core of the perfor-
mance gains achieved until now, scaling over 1,000 times the current
concurrency can be challenging. As discussed in this paper, even the
smallest memory access and synchronization overheads can cause
major bottlenecks at this scale. As we develop new software and adapt
existing algorithms for exascale, we need to be cognizant of such pit-
falls. In this paper, we document our experience with optimizing a fairly

This work was supported in full by the DOE O�ce of Science, Advanced Scienti�c Com-
puting Research, under award number 10-014707, program manager Lucy Nowell.

Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.
SAND 2013-0401P http://daxtoolkit.org

Our end performance tests show both that our optimizations to the threshold algorithm are e�ective in pro-
viding e�cient parallel performance and that these optimizations can be hidden beneath a generic tem-
plated programming interface. In addition to demonstrating the base performance of our code on many de-
vices, we also compare to VTK and PISTON as good representations of the state of the art. (The modi�ed
PISTON is changed to make its output compatible with Dax.)

Trial
0

2

4

6

8

10

12

14

16

18

20

22

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

OpenMP 1 Core

TBB 1 Core
Serial STL

OpenMP 8 Core
TBB 8 Core

CUDA

VTK

Templated cell

tags specialize

for cell type.

Hazard-free access with lightweight containers.

Automatic point
merging is
 optional.

