Optimizing Threshold for Extreme Scale Analysis ~J/=i.

UCDAVIS

@ Sandia National Laboratories \\}f(Kitware

Kitware, Inc.

As the HPC community starts focusing its efforts towards exascale, it be-
comes clear that we are looking at machines with a billion way concur-
rency. Although parallel computing has been at the core of the perfor-
mance gains achieved until now, scaling over 1,000 times the current
concurrency can be challenging. As discussed in this paper, even the
smallest memory access and synchronization overheads can cause
major bottlenecks at this scale. As we develop new software and adapt
existing algorithms for exascale, we need to be cognizant of such pit-
falls. In this paper, we document our experience with optimizing a fairly

// Run classify algorithm (determine how many cells are passed).
ClassifyResultType classificationArray;

UNIVERSITY OF CALIFORNIA

Robert Maynard Kenneth Moreland Utkarsh Ayachit Berk Geveci

Sandia National Laboratories

Kitware, Inc.

common and parallelizable visualization algorithm, threshold of cells
based on scalar values, for such highly concurrent architectures. Our ex-
periments help us identify design patterns that can be generalized for
other visualization algorithms as well. We discuss our implementation
within the Dax toolkit, which is a framework for data analysis and visual-
ization at extreme scale. The Dax toolkit employs the patterns discussed
here within the framework’s scaffolding to make it easier for algorithm
developers to write algorithms without having to worry about such scal-
Ing issues.

22

20

é

scheduler.Invoke(dax: :worklet::ThresholdClassify<dax::Scalar>(0.07, 1.90),
grid,
inArray,
classificationArray);

// Build thresholded topology.

ScheduleGenerateTopologyType resolveTopology(classificationArray);
UnstructuredGridType outGrid;
scheduler.Invoke(resolveTopology, grid, outGrid); , :
Automatic point
merging IS
opTional.

// Compact scalar array to new topology.
ArrayHandleScalar outArray;
resolveTopology.CompactPointField(inArray, outArray);

template<typename ValueType>
class ThresholdClassify : public dax::exec:
{
public:
typedef void ControlSignature(Topology,Field(Point), Field(Out));
typedef 3 ExecutionSignature(2);

:WorkletMapCell

DAX_CONT_EXPORT
ThresholdClassify(ValueType thresholdMin, ValueType thresholdMax)
: ThresholdMin(thresholdMin), ThresholdMax(thresholdMax) { }

template<typename CellTag> DAX EXEC _EXPORT dax::Id operator()(
const dax::exec::CellField<ValueType,CellTag> &values) const

1
ThresholdFunction<ValueType> threshold(this->ThresholdMin,

—_—
(00]

—_
(0))

N

Kitware, Inc.

~

5
C
o
9
)
N N
w12 OpenMP 1 Core
£ ~
iim _ TBB 1 Core
O Serial STL
Scheduler s,
Q
x
“ 6
4\
OpenMP 8 Core
N—
2 TBB 8 Core
0o CUDA
Worklet Tia

Array Compact

YJoMmawel{ xeq

this->ThresholdMax); Accegs free p
dax::exec: :VectorForEach(values, threshold); ”Qhr' ﬂHTh @¥;
return threshold.valid; Con Weighy

} 'hWneFS
private:
ValueType ThresholdMin; TOpOIOgy TOpOIOgy
ValueType ThresholdMax; Worklet Worklet
¥
class ThresholdTopology : public dax::exec::WorkletGenerateTopology 3
{ Topology [[e]e]e][0]s)Y,
public: Worklet Worklet
\\
typedef void ControlSignature(Topology, Topology(Out)); _‘.emp\a-\-gd ce
typedef void ExecutionSignhature(Vertices(_1),Vertices(2)); +a0s Specia\'\ze
’ || Type
for ce
template<typename InputCellTag, typename OutputCellTag>
DAX_EXEC_EXPORT

void operator()(const dax::exec::CellVertices<InputCellTag> &inVertices,
dax::exec::CellVertices<OutputCellTag> &outVertices) const

{
outVertices.SetFromTuple(inVertices.GetAsTuple());

}
s

Topology Reconstruction

/i ¥ 'K.\.
NS

National Nuclear Security Admmlstratlon

Kwan-Liu Ma
University of California at Davis

This work was supported in full by the DOE Office of Science, Advanced Scientific Com-
puting Research, under award number 10-014707, program manager Lucy Nowell.

Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.
SAND 2013-0401P

http: //daxtoolklt -0rg

ol 014 PISTON Original

| PISTON Original
1.0 015 N Dax
9 PISTON Modified PISTON Modified

Dax

o

O
o
o
o

©

N
O
o
o

o O
EAN (O]
O
o
(@)

O
o
=

CPU 8 Core Execution Time (Seconds)
GPU Execution Time (Seconds)

O
o

0.02

o
—

0.0 0.00
Trial Trial

Our end performance tests show both that our optimizations to the threshold algorithm are effective in pro-
viding efficient parallel performance and that these optimizations can be hidden beneath a generic tem-
plated programming interface. In addition to demonstrating the base performance of our code on many de-
vices, we also compare to VTK and PISTON as good representations of the state of the art. (The modified
PISTON is changed to make its output compatible with Dax.)

