
SUMMER PROCEEDINGS 2014

The Computing Research Center at Sandia National
Laboratories

Editors:

Drew P. Kouri and Michael L. Parks

Sandia National Laboratories

December 18, 2014

CCR
Center for Computing Research

A Department of Energy 
National Laboratory

SAND#: SAND2015-3829 O

Sandia National Laboratories is a multi-program laboratory managed and operated by

Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the

U.S. Department of Energys National Nuclear Security Administration under contract

DE-AC04-94AL85000.



ii CR Summer Proceedings 2014

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors, subcon-
tractors, or their employees, make any warranty, express or implied, or assume
any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represent that its use
would not infringe privately owned rights. Reference herein to any specific com-
mercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any agency
thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A



D.P. Kouri and M.L. Parks iii

Preface

The Computing Research (CR) Center at Sandia National Laboratories organizes
a summer student program each summer, in coordination with the Computer Science
Research Institute (CSRI) and Cyber Engineering Research Institute (CERI).

CSRI brings university faculty and students to Sandia National Laboratories for
focused collaborative research on DOE computer and computational science problems.
CSRI provides a mechanism by which university researchers learn about problems in
computer and computational science at DOE Laboratories. Participants conduct
leading–edge research, interact with scientists and engineers at the laboratories and
help transfer the results of their research to programs at the labs.

CERI focuses on open, exploratory research in cyber security in partnership with
academia and industry and provides collaborators an accessible portal to Sandia’s
cybersecurity experts and facilities. CERI facilitates partnerships between Sandia’s
cyber community, industry, academia, and government. Moreover, CERI provides an
environment for visionary, threat-informed research on national cyber challenges.

A key component of CR programs over the last decade has been an active and
productive summer program where students from around the country conduct intern-
ships at Sandia. Each student is paired with a Sandia staff member who serves as
technical advisor and mentor. The goals of the summer program are to expose the
students to research in mathematical and computer sciences at Sandia and to con-
duct a meaningful and impactful summer research project with their Sandia mentor.
Every effort is made to align summer projects with the student’s research objectives
and all work is coordinated with the ongoing research activities of the Sandia mentor
in alignment with Sandia technical thrusts.

Starting this year, CERI and CSRI have combined their summer programs to form
the CR Summer Proceedings, of which this document is the first installment. Both
CERI and CSRI encourage all summer participants and their mentors to contribute a
technical article to the CR Summer Proceedings. In many cases, the CR proceedings
are the first opportunity that students have to write a research article. Not only do
these proceedings serve to document the research conducted during the summer but,
as part of the research training goals of Sandia, it is the intent that these articles
serve as precursors to or first drafts of articles that could be submitted to peer–
reviewed journals. As such, each article has been reviewed by a Sandia staff member
knowledgeable in that technical area with feedback provided to the authors. Several
articles have or are in the process of being submitted to peer–reviewed conferences or
journals and we anticipate that additional submissions will be forthcoming.

For the 2014 CR Proceedings, research articles have been organized into the
following broad technical focus areas — computational mathematics, applications,
and software and high performance computing — which are well aligned with Sandia’s
strategic thrusts in computer and information sciences.

We would like to thank all participants who have contributed to the outstanding
technical accomplishments of CSRI and CERI in 2014 as documented by the high
quality articles in this proceedings. The success of CSRI and CERI hinged on the hard
work of 17 enthusiastic student collaborators and their dedicated Sandia technical staff
mentors. It is truly impressive that the research described herein occurred primarily
over a three month period of intensive collaboration.
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CSRI and CERI benefited from the administrative help of Amy Levan, Phyllis
Rutka, Darlene Aragon, Ashley Avallone, Sandra Portlock, Denise LaPorte, Lorena
Martinez,
Bernadette Watts, Bill Goldman, John Perseo, and Bryan Trujillo. The success of
CSRI and CERI is, in large part, due to their dedication and care, which are much
appreciated. We would also like to thank those who reviewed articles for this pro-
ceedings — their feedback is an important part of the research training process and
has significantly improved the quality of the papers herein.

Drew P. Kouri
Michael L. Parks

December 18, 2014
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Computational Mathematics

The articles in this section discuss algorithms and discretizations for a physical
application problems. This includes discretizations for local and nonlocal physics,
algorithms for molecular dynamics, as well as implementation details on advanced
computational architectures.

Deng, Kouri, and Ridzal discuss the use of Trilinos components, including the
Rapid Optimization library (ROL), to solve optimization problems constrained by
nonlinear parabolic partial differential equations. In particular, the authors focus
on the optimal Neumann boundary control of nonlinear parabolic equations with
uncertain coefficients and discuss the use of risk measures to mitigate this uncer-
tainty. Lindsay and Parks introduce a modified peridynamics theory which allows
for multi-timestepping. This modification accomodates differing time scales between
physical subdomains and permits timestepping with different step sizes between sub-
domains. Rowe and Lehoucq discuss a meshfree discretization for nonlocal diffusion.
Their meshfree approach is a Galerkin method based on novel localized radial basis
functions. Kuberry and Bochev present a partitioned algorithm to handle interface
problems arising in explicit elastodynamics. This algorithm is based on variational
flux recovery and Kuberry and Bochev were able to prove second order accuracy in
space. Moe et al. describe a conservative spectral element approach for hyperbolic
physics which arise in atmospheric computations. Conservation and limiting are effi-
ciently enforced through Optimization Based Remap. Osborn and Phipps describe a
multilevel stochastic Galerkin approach to solving partial differential equations with
uncertain coefficients. This approach is both multilevel in space and stochastic vari-
ables which permits low-order polynomial chaos for high-order spatial discretization.
Mashayak et al. employ the Kokkos package to achieve performance improvements
for the LAMMPS molecular dynamics package. Using Kokkos, the authors are able to
port portions of LAMMPS to GPUs and other advanced architecures. Van Every et
al. use time-dependent density functional theory to simulate a proton passing through
several metals. The authors discuss discretization on a k-point grid and analyze the
convergence of such an approximation.

D.P. Kouri
M.L. Parks

December 18, 2014
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RISK-AVERSE OPTIMAL NEUMANN CONTROL

XIAODI DENG∗, DREW KOURI † , AND DENIS RIDZAL ‡

Abstract. In this work, we consider the optimal Neumann control of a nonlinear parabolic par-
tial differential equation (PDE) with uncertain coefficients. PDE-constrained optimization problems
arise in many engineering and scientific application problems. In particular, Neumann control prob-
lems arise when one can only influence the state of the physical system by modifying sources or sinks
on the boundary. In addition, for real-world applications, the input data for the PDE model is often
not known exactly, but rather measured from experimental data. For high-consequence applications,
it is then essential to determine Neumann controls that are risk-averse or robust to the uncertainty
in the input data. To handle this uncertainty, we employ risk measures. We conclude with some
numerical results for both the deterministic and risk-averse problems.

1. Introduction. Simulation of physical systems is becoming an integral compo-
nent of science and engineering research. As more weight is placed on computational
simulation, advanced analyses such as optimization and uncertainty quantification
of the physical system and computational simulation become increasingly important.
When a simulation is used to influence a decision, it is essential to quantify and in
some sense mitigate uncertainties in the simulation and physical model. In this work,
we discuss optimization problems constrained by partial differential equations (PDEs)
such as the optimal control or design of a physical system. When such control and
design problems influence policy or decisions, it is critical to not just quantify un-
certainties, but to mitigate uncertainty. To this end, we employ the concept of risk
measures to determine optimal controls or designs that are, in some sense, insensitive
to the uncertainty in model input data.

Optimization problems governed by PDEs with random and uncertain coefficients
have been considered in [3, 4, 5, 10, 9, 13, 6, 14]. In [3, 4, 5, 10, 9, 6] the authors
consider optimal control problems in which the controls are deterministic. For such
problems, the authors consider minimizing the expected value of the random variable
objective function. In contrast, the authors in [13, 14] consider stochastic controls and
try to match different statistics associated with the random controls and objective
functions such as moments or distribution functions.

In this work, we focus on the situation where the optimization variables (controls
or designs) are deterministic. This models the realistic situation where one must
determine a control action or design prior to observing the uncertainty. Moreover, we
employ risk measures [11, 12] to mitigate the effects of uncertain PDE parameters.

This document is structured as follows. We first present the deterministic problem
formulation. Second, we discuss how the problem changes when uncertainty is added.
In this discussion, we present the notion of risk and discuss how risk is measured.
Following the problem formulation, we discuss its implementation and conclude with
numerical results.

2. Deterministic Problem Formulation. Let Ω ⊂ R3 be a bounded domain
with boundary ∂Ω. Moreover, let Γn ⊂ ∂Ω denote the Neumann boundary and Γr ⊂
∂Ω denote the Robin boundary. We assume that Γn∪Γr = ∂Ω and Γn∩Γr = ∅. Now,
let V = V(Ω) ⊂ L2(Ω) be a reflexive Banach space of sufficiently regular functions on
Ω such that V ↪→ L2(Ω) ↪→ V∗ is a Gelfand triple. Moreover, for any T > 0, we define

∗Department of Computational And Applied Mathematics, Rice University, xiaodi.deng@rice.edu
†Sandia National Laboratories, dpkouri@sandia.gov
‡Sandia National Laboratories, dridzal@sandia.gov



4 Risk-Averse Optimal Neumann Control

the control space Z = L2(0, T ;L2(Γn)), and the state space

W = W (0, T ;L2(Ω),V) = { v : [0, T ]→ V : v ∈ L2(0, T ;V), vt ∈ L2(0, T ;V∗) }

where vt denotes the weak time derivative of v. We consider optimization problems
governed by the following weak-form nonlinear parabolic PDE with time-independent
coefficients

ut + Lu+ N(u) = Bf + b (2.1a)

u(0) = u0 (2.1b)

where L ∈ L(V,V∗), N : V → V∗, B ∈ L(Z,V∗), b ∈ V∗, and u0 ∈ L2(Ω). For our
examples, L is defined as

〈Lu, v〉V∗,V =

∫
Ω

(κ(x)∇u(x)) · ∇v(x) dx+

∫
Γr

σ(x)u(x)v(x) dx ∀u, v ∈ V (2.2)

for some κ : Ω → R3×3 satisfying κij ∈ L∞(Ω) for i, j = 1, 2, 3 and κ(x) is positive
definite for almost all x ∈ Ω, and σ ∈ L∞(Γr). In addition, B is

〈Bf, v〉V∗,V =

∫
Γn

f(x)v(x) dx (2.3)

for any f ∈ L2(Γn) and b is

〈b, v〉V∗,V =

∫
Ω

l(x)v(x) dx+

∫
Γr

g(x)v(x) dx (2.4)

for some functions l : Ω→ R and g : Γr → R. Two common examples of the nonlinear
term N are

〈N(u), v〉V∗,V =

∫
Ω

u2(x)v(x) dx and 〈N(u), v〉V∗,V =

∫
Γr

u4(x)v(x) dx.

The second nonlinearity is often referred to as a Stefan-Boltzman radiation boundary
condition. We assume that V is chosen in such a way that (2.1) has a unique solution
u = u(f) ∈ W for any f ∈ Z.

Now, let ū : L2(0, T ;L2(Ω)), w ∈ L∞(Ω), and γi > 0 for i = 1, 2, 3. We consider
the objective function J :W ×Z → R, defined as

J(u, f) =
γ1

2

∫ T

0

∫
Ω

w(x)(u(x, t)− ū(x, t))2 dxdt

+
γ2

2

∫
Ω

w(x)(u(x, T )− ū(x, T ))2 dx

+
γ3

2

∫ T

0

∫
Γn

f2(x, t) dxdt. (2.5)

Thus, the optimization problem of interest for this work is

min
f∈Z

Ĵ(f) = J(u(f), f), (2.6)

where u(f) = u ∈ W is the solution of (2.1).
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Proposition 2.1. Suppose for each f ∈ Z, there exists a unique solution to
(2.1). Let the solution operator for (2.1) be f 7→ u(f) : Z → W and assume f 7→ u(f)
satisfies:

{fn} ⊂ Z such that fn ⇀ f ∈ Z =⇒ u(fn) ⇀ u(f) ∈ W.

Then, there exists f∗ ∈ Z such that Ĵ(f) ≥ Ĵ(f∗) for all f ∈ Z.

Proof. First, note that Ĵ is well-defined since we assumed existence and uniqueness
of a solution to (2.1) for each f ∈ Z. Clearly, Ĵ is coercive since

Ĵ(f) ≥ γ3

2

∫ T

0

∫
Γn

f2(x, t) dxdt ∀ f ∈ Z.

Thus, let {fn} ⊂ Z be an infimizing sequence of Ĵ . Since Ĵ is coercive, {fn} must
be bounded. Moreover, since Z is a Hilbert space (i.e., it is reflexive), there exists
a weaky converging subsequence of {fn} denoted by {fnj} with weak limit f∗ ∈ Z.

Now, since Ĵ is a sum of weighted L2-norms squared with weight w ∈ L∞(Ω) and

f 7→ u(f) satisfies the assumptions of theorem, we have that Ĵ is weakly sequentially
lower semicontinuous. Therefore,

Ĵ(f) ≥ lim
n→∞

Ĵ(fn) ≥ lim inf
j→∞

Ĵ(fnj ) ≥ Ĵ(f∗)

for any f ∈ Z, thus concluding the proof.

3. Uncertain Coefficients. Let (Θ,F , P ) be a complete probability space.
Here, Θ is the set of outcomes, F ⊆ 2Θ is a σ-algebra of events, and P : F → [0, 1] is a
probability measure. We now consider the nonlinear parabolic problem with random
coeffcients

ut(θ) + L̂(θ)u(θ) + N̂(u(θ), θ) = B̂(θ)f + b̂(θ) (3.1a)

u(θ, 0) = û0(θ) (3.1b)

where L̂ : Θ → L(V,V∗), N̂ : V × Θ → R, B̂ : Θ → L(L2(Γn),V∗), b̂ : Θ → V∗,
and û0 : Θ → L2(Ω). We require that (3.1) holds for P -almost every θ ∈ Θ. In
addition the solution to (3.1) is a random field. We assume the random field solution,
θ 7→ u(θ) : Θ→W is a member of the Banach space L2

P (Θ;W).
To facilitate numerical computation, we assume the Finite-Dimensional Noise

Assumption [1] holds. That is, there exists a finite-dimensional random vector ξ : Θ→
RM with component random variables ξi : Θ → Ξi where Ξi is a connected interval
of R such that for P -almost all θ ∈ Θ we have L̂(θ) = L(ξ(θ)), û0(θ) = u0(ξ(θ)),

N̂(u, θ) = N(u, ξ(θ)) for any u ∈ V, B̂(θ) = B(ξ(θ)), and b̂(θ) = b(ξ(θ)) for some
L : Ξ → L(V,V∗), N : V × Ξ → R, B : Ξ → L(L2(Γn),V∗), b : Ξ → V∗, and
u0 : Ξ→ L2(Ω) where Ξ = Ξ1×·×ΞM . Moreover, we assume the component random
variables ξi have Lebesgue density ρi and define the joint density ρ = ρ1 ⊗ · · · ⊗ ρM .
Under this assumption, (3.1) becomes the parametric PDE

ut(ξ) + L(ξ)u(ξ) + N(u(ξ), ξ) = B(ξ)f + b(ξ) (3.2a)

u(ξ, 0) = u0(ξ) (3.2b)

and the solution belongs to the Banach space L2
ρ(Ξ;W). The Finite-Dimension Noise

Assumption is often satisfied by a truncated Karhunen-Loeve expansion and permits
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the use of numerous discretizations based on sampling and projection onto orthogonal
polynomials.

Now, if we assume that for each f ∈ Z, there exists a unique u(f) = u ∈
L2
ρ(Ξ;W), then we have that Ĵ(f) : Ξ→ R is a random variable. If we further assume

that Ĵ(f) ∈ Lpρ(Ξ) for some 1 ≤ p < ∞ for all f ∈ Z, then we can choose any
R : Lpρ(Ξ)→ R ∪ {∞} and solve the optimization problem

min
f∈Z

R(Ĵ(f)).

In financial mathematics and risk management, R is called a risk measure or risk
function. Since R is a blank slate, the engineer, scientist, or decision maker can
inject their own aversity to risk in the definition of R. Common choices of R are
the expected value, the mean-plus-deviation, and the conditional value-at-risk (which
corresponds to a conditional expectation over a prescribed quantile). An in-depth
discussion of risk measures is beyond the scope of this paper. We refer the interested
reader to [11, 12] for a nice overview.

4. Implementation and Numerical Results. In this section, we describe the
discretization of (2.1) in the presence of uncertain coefficients. There are numerous
approaches to discretize a PDE with uncertain coefficients. Two prevelent classes
of discretizations are projection methods such as stochastic Galerkin and polynomial
chaos [2, 8], and sample-based methods such as Monte Carlo and stochastic collocation
[1]. In this work, we focus on sample-based methods. Moreover, we discuss the
use of Trilinos [7] components to aid in this discretization and the solution of the
optimization problem.

4.1. Implementation. To discretize in physical space, we subdivided Ω with
a quadrilateral mesh. We generate this mesh using the STK capabilities in Panzer.
Moreover, we manage our degrees of freedom (both for the PDE solution and the
control variables) using Panzers degree of freedom manager. We employ standard
continuous piecewise polynomial finite elements to generate the spatial discretization.
To compute the corresponding cell-local information such as cell stiffness and mass,
we utilize Intrepid. Additionally, we use template-based automatic differentiation im-
plemented in Sacado to compute cell-residual Jacobians. To facillitate parallel com-
putation, we store finite element coefficients in Epetra multivectors. To discretize in
time, we employ a uniform partition of the temporal domain [0, T ]. We then timestep
using backward Euler. Since backward Euler is an implicit scheme, we use AztecOO
for linear solves and NOX for nonlinear equation solves at each backward Euler time
step. We precondition these solves using the algebraic multigrid preconditioners in
ML. Finally, to discretize the uncertain variables, we use the Monte Carlo and adap-
tive sparse grid techniques of the Rapid Optimization Library (ROL). To discretize
these uncertain variables, we replace any expected values in the risk measure R with
quadrature approximations. These quadrature approximations then induce a sample-
based discretization of the parametrized PDE. Once the problem is discretized, we
employ ROL’s suite of optimization algorithms to solve the resulting large-scale non-
linear programming problem.

4.2. Numerical Results. Throughout this section, we let Ω = [0, 1]3 and adopt
the notation x1, x2, x3 to denote three coordinates of x ∈ Ω. We begin with a few
deterministic examples and conclude with an example with uncertain coefficients.
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4.2.1. A Linear Parabolic Optimal Control Problem. For this example,
we assume the temperature outside of Ω is 0 and the initial temperature inside of Ω
is also 0. That is, u0 = 0. We place a heat source around the center of the surface
x3 = 0 in the form of linear Robin boundary conditions. Moreover, we apply the
control to the remaining five faces. Our objective for this example is to match the
volumetric temperature at the final time to zero. The differential operator L for this
problem is given by (2.2) with κ(x) = I where I denotes the 3×3 identity matrix and
σ ≡ 0.01. The control operator B is given by (2.3) and the source term is given by
(2.4) where g(x) = 0 and l(x) is defined as

l(x) = 20[cos(4π
√

(x− 0.5)2 + (y − 0.5)2 + z2) + 1]

if
√

(x− 0.5)2 + (y − 0.5)2 + z2 < 0.25 and 0 otherwise. Finally, the nonlinearity is
N ≡ 0 and the objective function for this example is

J(u, f) =
1

2

∫
Ω

u2(x, T ) dx+
10−4

2

∫ T

0

∫
Γn

f2(x, t) dxdt.

The results are displayed in Figure 4.1. These results display an oscillating control
that first cools and then warms. The control repeats this pattern throughout the
time interval and forms multiple ring-shaped temperature regions. These rings have
the effect of first cooling the cube to below 0, then heating the cube to cancel the
low temperature caused by the initial cooling. If viewed in more refined time steps,
this cooling-warming pattern repeats in decreasing magnitude. In the final snapshot,
temperature rings caused by the control are nearly cancelled and the heat on the face
x3 = 0 is negated by the first cooling ring produced.

4.2.2. A Semilinear Parabolic Optimal Control Problem. In this exam-
ple, we set the temperature outside of Ω to be 0 and initial temperature inside of Ω
to also be 0. Our goal is to control the heat flux on opposite sides of the cube so
that the cylinder connecting the centers of control faces (around x1 = x2 = 0.5) has
temperature close to 10 throughout the time interval [0, T ]. In the half of the cube
defined by x1 < 0.5, the conductivity in the x3 direction is 100 times larger than in
other directions. In the other half of the cube, x1 ≥ 0.5, conductivity is isotropic
and identically 1. In addition to the discontinuous heat conductivity, we also consider
a quadratic reaction term resulting in a semilinear parabolic PDE. The differential
operator L is defined by (2.2) with κ(x) satisfying

κ(x) =

1 0 0
0 1 0
0 0 100


if x1 < 0.5 and κ(x) = I otherwise, and σ ≡ 0.01. The control operator B is defined
by (2.3) and source term is b ≡ 0. The nonlinearity N for this problem is

〈N(u), v〉V∗,V =

∫
Ω

u2(x)v(x) dx.

Finally, the objective function for this example is

J(u, f) =
1

2

∫ T

0

∫
Ω

w(x)(u(x, t)− ū(x, t))2 dxdt+
10−4

2

∫ T

0

∫
Γn

f2(x, t) dxdt
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Fig. 4.1: Optimal control and optimal state for deterministic linear parabolic problem.

where ū and w are given by

ū(x, t) =

{
10, if |x1 − 0.5| < 0.1 and |x2 − 0.5| < 0.1

0, otherwise

w(x) =

{
1, if |x1 − 0.5| < 0.1 and |x2 − 0.5| < 0.1

0, otherwise ,
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respectively.

The optimal heat flux and corresponding state are depicted in Figure 4.2. The
optimal flux has larger magnitude on the side x1 < 0.5 which corresponds to large heat
conductivity in the x3 direction. This result is due to the fact that the heat profile
on the x1 ≥ 0.5 side diffuses at a much higher rate in all directions. Near t = 0.5T ,
the temperature at the center of Ω is approximately the target temperature, and as
time advances, the magnitude of the heat flux decreases.

Time

0%

20%

50%

100%

Control State

Fig. 4.2: Optimal control and optimal state for deterministic semilinear parabolic
problem.

4.2.3. A Linear Parabolic Optimal Control Problem with Time-
Dependent Target. For this example, we attempt to match a time-dependent target
temperature profile by controlling the Neumann flux on all faces but x1 = 0 and
x1 = 1. The target is moving an area of high temperature counter-clockwise with
respect to the x3 axis. The differential operator L is given by (2.2) with κ(x) ≡ I and
σ ≡ 0.01. The control operator B is again given by (2.3) and the source is given by
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b ≡ 0. The nonlinearity is N ≡ 0 as well. Finally, the objective function is given by

J(u, f) =
1

2

∫ T

0

∫
Ω

w(x)(u(x, t)− ū(x, t))2 dxdt+
10−4

2

∫ T

0

∫
Γn

f2(x, t) dxdt

where w is given by

w(x) =

{
1 if ‖x− 0.5‖∞ < 0.25

0 otherwise.

Moreover, the time dependent target ū is implemented with the following code.

double s t a t e o b j e c t i v e v a l u e (double x , double y , double z , double t ){

double T=0.03; // Hal f o f f u l l s imu la t ion time
while ( t>T) t−=T;
double cx , cy , cz ; // Center o f heated area

i f ( t < T ∗ 0 .25 ){
double p = t / (T ∗ 0 . 2 5 ) ;
cx = 0.375 + p ∗ 0 . 2 5 ;
cy = 0 . 3 7 5 ;
cz = 0 . 5 ;

}

i f ( T ∗ 0 .25 <= t && t< T ∗ 0 .5 ){
double p = ( t − T ∗ 0 . 2 5 ) / (T/ 4 ) ;
cx = 0 . 6 2 5 ;
cy = 0.375 + p ∗ 0 . 2 5 ;
cz = 0 . 5 ;

}

i f ( T ∗ 0 .50 <= t && t< T ∗ 0 .75 ){
double p = ( t − T ∗ 0 . 5 ) / (T/ 4 ) ;
cx = 0.625 − p ∗ 0 . 2 5 ;
cy = 0 . 6 2 5 ;
cz = 0 . 5 ;

}

i f ( T ∗ 0 .75 <= t ){
double p = ( t − T ∗ 0 . 7 5 ) / (T/ 4 ) ;
cx = 0 . 3 7 5 ;
cy = 0.625 − p ∗ 0 . 2 5 ;
cz = 0 . 5 ;

}

i f ( abs (x−cx )<0.125 && abs (y−cy )<0.125 && abs ( z−cz )<0.125) return 1 ;
return −1;

}

The optimal controls and states are depicted in Figure 4.3. We observe that the
control on the four sides causes the heated area to move around counter-clockwise
to match the target temperature profile. Though we are able to create a counter-
clockwise temperature profile, we do not exactly match the target function due to the
nature of diffusion.

4.2.4. A Semilinear Parabolic Optimal Control Problem with Uncer-
tain Initial Conditions. In this final example, we consider the initial condition to
be uncertain. We assume the initial temperature inside of Ω is a random perturbation
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of 0. That is u0 = ξ. We implement two different distributions for this pertubation.
In one case, we assume the perturbation ξ is uniformly distributed in [−1, 0.5] while
in the second case we assume the perturbation is uniformly distributed in [−0.5, 1].
In addition, we attempt to match the heat flux on a single face of Ω by controlling
the heat flux on the remaining faces. For this example, we consider the risk neutral
setting where R is the expected value with respect to the distribution ρ. This de-
scribes the scenario in which we must maintain a fixed tempurature in some region
of Ω in the face of uncertain initial conditions. The boundary conditions away from
the control boundaries are the Stefan-Boltzman radiation condition. Thus, the PDE
is semilinear. The differential operator L is given by (2.2) with κ ≡ I and σ ≡ 0. The
control operator B is again given by (2.3) and the source is b ≡ 0. The nonlinearity
N is given by Stefan-Boltzman boundary conditions, i.e.,

〈N(u), v〉V∗,V =

∫
Γr

u4(x)v(x) dx.

Finally, the parametric objective function for this example is

J(u(ξ), f) =
1

2

∫
Ω

u2(ξ, x, T ) dx+
10−2

2

∫ T

0

∫
Γn

f2(x, t) dxdt.

The results for the two different distributions of ξ are depicted in Figure 4.4.
This figure displays the initial optimal Neumann control. The results for ξ ∈ [−1, 0.5]
demonstrate that heating is required during the entire time interval [0, T ]. On the
other hand, the results for ξ ∈ [−0.5, 1] demonstrate that cooling is required during
the entire interval [0, T ]. Although there are scenarios in both cases that have positive
and negative initial values, the optimal control tends to heat when there is a larger
chance of negative initial temperature, and tends to cool when there is a larger chance
of positive initial temperature.
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Time
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Fig. 4.3: Optimal control and optimal state for deterministic linear parabolic problem
with a moving target.
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ξ ∈ [−1, 0.5] ξ ∈ [−0.5, 1]

Fig. 4.4: Control at time zero for two different distributions of the random initial
condition ξ.
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5. Conclusions. In this paper, we discuss the optimal Neumann control of a
nonlinear parabolic PDE and we extend the deterministic control problem to handle
PDEs with uncertain coefficients. For this problem, we discuss the treatment of
uncertainties in PDE input data. In particular, we employ risk measures to quantify
and mitigate the risk associated with the parametric uncertainties. In addition, we
discuss the implementation of such PDE-constrained optimization problems using
Trilinos components and present numerical examples exercising this implementation.
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[11] A. Ruszczyński and A. Shapiro, Optimization of risk measures, in Probabilistic and Random-
ized Methods for Design Under Uncertainty, G. Calafiore and F. Dabbene, eds., London,
2006, Springer Verlag, pp. 119–157.

[12] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on Stochastic Programming: Mod-
eling and Theory, SIAM, Philadelphia, 2009.

[13] H. Tiesler, R. M. Kirby, D. Xiu, and T. Preusser, Stochastic collocation for optimal control
problems with stochastic PDE constraints, SIAM J. Control Optim., (2012). accepted for
publication.

[14] N. Zabaras and B. Ganapathysubramanian, A scalable framework for the solution of
stochastic inverse problems using a sparse grid collocation approach, J. Comput. Phys.,
227 (2008), pp. 4697–4735.



CR Summer Proceedings 2014 15

A MULTI-TIMESTEPPING EXTENSION TO THE PERIDYNAMIC
THEORY

PAYTON E. LINDSAY ∗ AND MICHAEL L. PARKS †

Abstract. An extension to the basic theory of peridynamics is developed which enables the use
of differing timescales in different regions of the problem domain. Peridynamics, which is a nonlocal
extension of classical mechanics, is well-suited for solving many types of problems which would cause
difficulties for most classical approaches such as modeling fracture. Multi-timestepping is a method
developed for structural dynamics which enables the use of different spatial and temporal scales
in different parts of a problem domain. This paper is an attempt to apply the method of multi-
timestepping to peridynamics, and by extension to allow for larger and more complex problems to be
modeled using the peridynamic approach. A proof of concept code was also developed, and numerical
results using this code are included to illustrate the method.

1. Introduction. The classical theory of local solid mechanics is extremely ver-
satile and has been used for many years to model a wide range of physical phenomena.
However, there are many areas of interest for which classical solid mechanics ceases to
give accurate results. One of the most frequently seen examples of this is spontaneous
crack growth and propagation. Spontaneous crack growth is a common behavior in
physical problems, and yet the classical theory of solid mechanics alone cannot cap-
ture this type of behavior. The reason for this is that the partial differential equations
used in the classical theory are undefined along discontinuities. Because of this re-
striction, the classical theory must be augmented with some additional approach to
capture cracking behavior. Peridynamics is a nonlocal extension of classical solid
mechanics that attempts to circumvent this difficulty entirely by rewriting the basic
equations of mechanics in terms of integral equations. In contrast with the differen-
tiation used in the classical theory, integration is well defined along discontinuities,
and thus modeling cracking behavior becomes trivial when using this approach.

Another limitation to classical solid mechanics is the computational burden as-
sociated with solving very large or complex problems. One approach that has been
used with much success to reduce computational costs of classical problems is that of
the multi-timestepping approach of Prakash and Hjelmstad [5, 4]. Multi-timestepping
allows a problem domain to be divided into multiple subdomains, each with possibly
varying timesteps and integration techniques, and then coupled together to accurately
capture the behavior of the whole domain. Multi-timestepping has been used with
great success to reduce the computational burden of solving large or complex problems
while still retaining the accuracy and stability of the underlying methods.

In this paper we extend multi-timestepping to nonlocal models, namely peridy-
namics, using the same fundamental concepts as the multi-timestepping approach
originally developed for classical methods. For this research, the theory for the sim-
plest case of a 1D non-local spring system was first developed, and then then extended
to accommodate full 3D systems. The goal of this research is to show that two peridy-
namic subdomains at different timesteps can be efficiently coupled, and furthermore
that the coupled system accurately represents the response exhibited by the original
model. A multi-timestep peridynamic code was also developed to demonstrate these
results numerically. The results from the coupled system were compared with those
from an unmodified peridynamics model to verify accuracy. A simple cost analysis is

∗Purdue University, plindsay@purdue.edu
†Sandia National Laboratories, mlparks@sandia.gov
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also included to demonstrate the efficiency of this method compared to unmodified
peridynamics.

The remainder of this paper proceeds as follows. Section 2 gives a more detailed
introduction to the multi-timestepping method, while section 3 presents a more thor-
ough overview of peridynamics and introduces the basic peridynamic theory. Section
4 introduces the theory of multi-timestepping applied to full three-dimensional peri-
dynamics and gives a simple cost analysis of the new method compared to unmodified
peridynamics. Finally, section 5 provides numerical results and discussion, and section
6 offers some concluding remarks.

2. Multi-Timestepping Background. Fracture modeling has traditionally in-
volved very large and costly computations. One of the main reasons for this is that the
accuracy and stability requirements in a cracked region necessitates a much smaller
mesh spacing and time step than would otherwise be required for the uncracked mate-
rial. In many simulations, enforcing these tighter bounds over the entire region would
seem to be a needlessly restrictive exercise, especially if the majority of the material
remains uncracked. A method that allows for a relaxation of the temporal and spa-
tial restrictions in regions that do not require these more stringent bounds while still
retaining the accuracy of the original model in the critical region(s) would be ideal.
Such a method would have the potential to significantly lower the computational costs
of large simulations and increase the domain size that could be considered.

One particular method that has enjoyed great success is the multi-timestepping
method of Prakash and Hjelmstad, first developed in [5] and [4], and extended for
nonlinear dynamics by Prakash, Taciroglu, and Hjelmstad in [6]. This method re-
tains an accurate description of material behavior while enabling the use of spatially
varying time steps. The multi-timestepping method improves the CG method of
Gravouil and Combescure [3], which is stable but dissipative. Unlike other similar
methods, this method ensures both the accuracy and stability of the solution and is
computationally efficient. The multi-timestepping method uses a Lagrange multiplier
approach to couple the different subdomains across a non-overlapping interface and
ensure continuity of the solutions across the subdomain boundaries. For this method,
a combination of the subdomain equations of motion, Newmark-beta relations, and
linear interpolation are used to calculate the kinematic variables. Lagrange multipli-
ers, represented by nodal forces, are calculated using a combination of momentum
and velocity conservation equations across the interface, the latter being chosen for
stability.

This paper explores the practicality of applying an adapted version of the multi-
timestepping method discussed above to peridynamics and the benefits of this adapted
approach. Peridynamics is a nonlocal model, so several aspects of the existing multi-
time-step method must necessarily be modified, but the basic theory is largely identi-
cal to the local case. The concept of an interface between subdomains is generalized
to a volumetric interface region, with Lagrange multipliers acting over this region
as before. The choice of an overlapping volumetric region for the interface was in-
spired by the approach used by Burak and Parks in [1] for domain decomposition of
peridynamics. The kinematic variables are calculated similarly to the local method.
The Lagrange multipliers, now represented by body forces, are calculated again by
conservation of momentum and velocity across the volumetric interface region.

3. Peridynamics Background and Theory. As mentioned before, local solid
mechanics alone is insufficient to capture many types of physical behavior. Classical-
based models that are able to capture this behavior typically require some additional
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equations to augment the basic equations. Two of the most commonly used methods
for modeling fracture are the XFEM method by Belytschko and co-workers [2], and
the associated GFEM method by Strouboulis et al. [10]. Both of these methods add
enrichment functions to the standard finite element approximations to capture the
behavior of cracks and discontinuities.

Peridynamics is a nonlocal analog of solid mechanics that was originally developed
to address these concerns by reformulating the partial differential equations of solid
mechanics with integro-differential equations. Because discontinuous displacements
offer no added complexity for peridynamics, discontinuities can easily be modeled
at realistic length scales. Physically, peridynamics can be represented by material
points which interact with each other through nonlocal forces. The basic theory of
peridynamics was first developed by Silling in [8], and later expanded by Silling et al.
in [9] and [7].

In the general peridynamic approach, the equation of motion is given by

ρ(x)ü(x, t) =

∫
Hx

{T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉} dVx′ + b(x, t). (3.1)

Above, x represents the position of a particle and u is a displacement vector field.
Additionally, b is an external body force density field and ρ is the material density.
T is defined as the force vector state. It is a generalization of a second-order tensor
such that T[x, t]〈x′ − x〉 maps the vector x′ − x to the force vector state field. Hx is
a neighborhood of x containing all of the points x′ that x interacts with. In general,
Hx can be thought of as a sphere surrounding x of some radius δ, called the horizon.
In practice, a good choice for the horizon is usually 3. A more detailed description of
the peridynamic model can be found in the Silling et al. paper [9].

One type of material which yields a useful simplification of the peridynamic equa-
tion of motion is that of so called ordinary materials. Ordinary materials are those
which have the property that T = tM, where t is a scalar state and M is the deformed
direction vector state such that M〈x′ − x〉 is a unit vector pointing from deformed x
to deformed x′. Ordinary materials are useful because it is now possible to define the
equation of motion using a two-particle force function f , defined by

t[x, t]〈x′ − x〉 =
1

2
f(u′ − u,x′ − x). (3.2)

This allows us to reformulate the equation of motion for ordinary materials as

ρ(x)ü(x, t) =

∫
Hx

f(u(x′, t)− u(x, t),x′ − x) dVx′ + b(x, t). (3.3)

Forces are applied over a volumetric region with a width proportional to the hori-
zon. This is based on the constraints on boundary conditions established in previous
research on peridynamic theory by Silling [8]. These forces can be constant or time-
variant, and are representative of the body forces on the material which are seen in
the equation of motion. Damage is calculated by comparing the current stretch, given
by the ratio of the relative deformation between two nodes to their undeformed rela-
tive position, to some critical stretch s0. The stretch must be checked for every bond
formed with every node. If any bond stretches beyond the critical limit, that bond is
broken and is taken as zero in future calculations.

For ordinary materials, the equation of motion can be stated more simply in a
discretized form for each node i as

ρain+1 = Lin+1 + bin+1, (3.4)
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where Lin+1 is a discretized form of the force integration given above. For homogeneous
bodies the discretized form can be represented by a summation over all other nodes
p the current node i interacts with as follows:

Lin+1 =
∑
p

C(xp − xi)(upn − uin)V p, (3.5)

where C(xp − xi) is the micromodulus function of the material.

When solving discrete peridynamic systems as described above, a time-stepping
scheme must also be used to advance the solution through time. For this application,
the Newmark-Beta scheme was used.

4. Basic Theory of Multi-Timestepping Applied to Peridynamics. With
the peridynamic approach, each discretized volume section is represented by a node
in a peridynamic grid. We can further divide the grid into subdomains which will
be integrated at different timesteps based on the accuracy and stability requirements
for each specific region. In many cases, the accuracy and stability requirements in
a relatively small region of the domain dictates the timestep for the entire domain.
One common example of this is in the region surrounding a crack tip. Often, we have
neither the need nor the resources to solve the entire domain at the level of fidelity that
is required in that small region. When this occurs, the multi-timestepping method
enables us to integrate only the small region at the more restrictive timestep. The
rest of the domain is integrated at whatever time step is normally required, and the
domains are coupled together so that they will accurately model the entirety of the
domain.

For simplicity of derivation, we assume two subdomains, which we label subdo-
main A and subdomain B. However, it is useful to note that the multi-timestepping
method is trivially applicable to a general number of subdomains using a subdomain
tree approach. For a two domain case, subdomain B will refer to the collection of
nodes at the smaller timestep, while subdomain A represents the remainder of the
domain.

For multiple subdomains integrated at different time steps, there must be a vol-
umetric interface region where the nodes of the subdomains overlap of width at least
equal to the horizon δ, similar to applied forces and boundary conditions. The fol-
lowing two graphics provide a visual representation of the time steps of two general
subdomains and also an example of how a simple one dimensional, nonlocal spring-
mass system can be divided into two subdomains.

Timescale:
A |———————————————|

0 m
B |—|—|—|—|—|—|—|—|—|—|—|—|

0 j j+1
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Nodes (n nodes, coupled at nodes nB to nBδ = nB + δ):
1 ... nB − 1 nB ... nBδ

A |———|———|———|———|———|
←− δ −→

B |———|———|———|———|———|
nB ... nBδ nBδ + 1 ... n

Nodes in subdomain A can simply be integrated at a timestep chosen to adhere
to the accuracy and stability requirements for that region, which we label ∆tA Nodes
in subdomain B are in a region that requires integration at some smaller timestep
∆tB . This means we need to calculate the kinematic values for every node at each
time tj , j = 1, 2, . . . ,m, where m=∆tA/∆tB . Conversely, for the nodes in subdomain
A it becomes evident that we only need to calculate kinematic values for most nodes
at the common time tm.

Note that in the interface region (nodes nB − nBδ above), each node is in both
subdomains A and B. For each node in the interface region a Lagrange multiplier λ
must included in the equations of motion of each subdomain to couple the subdomains
together. In this sense the Lagrange multipliers can be interpreted as interface reaction
forces acting internally between the subdomains [5, 4].

The equations of motion for each node in the interface region thus become

ρaiA,m = LiA,m + biA,m + λim

ρaiB,j = LiB,j + biB,j − λij , ∀j = 1, 2, ...,m.
(4.1)

Just as before, the Newmark algorithm is used to advance the solution forward in
time. There are multiple subdomains advancing at various time steps with possibly
different Newmark-Beta coefficients, which leads to a unique set of equations for each
subdomain. The Newmark-Beta equations at each node i for subdomains A and B as
defined above are

viA,m = viA,0 + ∆tA[(1− γA)aiA,0 + γAa
i
A,m]

diA,m = diA,0 + ∆tAv
i
A,0 + ∆t2A[(1/2− βA)aiA,0 + βAa

i
A,m]

viB,j = viB,j−1 + ∆tB [(1− γB)aiB,j−1 + γBa
i
B,j ], ∀j = 1, 2, ...,m

diB,j = diB,j−1 + ∆tBv
i
B,j−1 + ∆t2B [(1/2− βB)aiB,j−1 + βBa

i
B,j ], ∀j = 1, 2, ...,m.

(4.2)

The equations of motion and the Newmark equations correspond to the kinematic
quantities of subdomain B at all time steps j = 1, 2, ...,m, and of subdomain A at
the final step m. However, the nodes in subdomain A that nodes in subdomain B can
“see” (those within its horizon) must also be defined at the finer-grained time step.
This is necessary to satisfy the equation of motion for the nodes in subdomain B that
reference them. To determine the kinematic values of those nodes in subdomain A at
the intermediate time steps j = 1, 2, ...,m − 1, linear interpolation is used. For each
corresponding node i of subdomain A we have

diA,j = (1− j/m) · diA,0 + j/m · diA,m
viA,j = (1− j/m) · viA,0 + j/m · viA,m
aiA,j = (1− j/m) · aiA,0 + j/m · aiA,m.

(4.3)
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To balance the interface reaction force at the common time step, λim, the conti-
nuity of a kinematic quantity must be enforced on the interface boundary. Previous
research on the classical multi-timestepping method has shown that the continuity of
velocity is the only choice that produces unconditionally stable results, see [3]. Nu-
merical results of multi-timestepping applied to peridynamics also support this result,
and continuity of velocity is the constraint that we elect to use as well. This leads to
an additional set of velocity conservation equations for each interface node i,

viA,m = viB,m. (4.4)

Additionally, to balance the interface reaction forces λij at the intermediate time
steps j = 1, 2, ...,m − 1, we use the following conservation of momentum equations.
For each interface node i in subdomain A we have

ρaiA,j = LiA,j + biA,j + λij ∀j = 1, 2, ...,m− 1. (4.5)

For the equations of motion on the interface, a fraction of the stiffness and mass
is distributed to each subdomain. This can be either a pre-determined value or cal-
culated at runtime based on the properties of the system. Likewise, we distribute
a fraction of the force acting on interface nodes to each subdomain. When consid-
ering nodes near the edge of the peridynamic region and nodes close to the horizon
of other nodes, we enforce the restriction that only the portion of the nodal volume
that the current node can “see” will contribute to the pairwise force function. To
obtain the amount of the nodal volume that will contribute to the pairwise force, a
simple approximation was made by taking the effective nodal volume to be the ratio
of the number of corners of the cubic nodal volume our current node can see over the
total number of corners (8 for cubic volumes). For one-dimensional problems, this
simplifies to a factor of 1/2 or 1.

To solve the coupled system, the full set of equations given above can be arranged
into a linear system and solved using standard methods. Alternatively, the equations
can be grouped in such a way that the equations corresponding to each subdomain can
be decoupled and solved separately using a bordered solution procedure. The actual
solution is then recovered through an update using the interface reaction forces. This
procedure, which allows for a much more efficient solve, is discussed in detail in [4],
and will not be covered here.

The results of this research correspond to a model representing the fracture of a
glass plate. To capture this physical phenomenon, an initial crack was included in

Fig. 4.1: Cracked Plate
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the model which cuts through the depth of the slide. This crack was idealized as a
pre-notch which was inserted in the model at the upper midpoint of the slide. For
implementation, any bonds that would normally pass through this pre-crack are taken
to be initially broken.

4.1. Cost Analysis. For any interior node, there are a given number of initially
unbroken bonds connecting it to the surrounding nodes. This number is based on the
horizon of the system and can be used to roughly approximate the cost of a simulation.
For example, if the horizon is δ = 3, there will be exactly 122 bonds connecting to an
interior node. If δ = 4, that number grows to 256, while for δ = 2, there are only 32
bonds.

We can use this value to visualize the computational gain of utilizing the multi-
time-step method with peridynamics. If we label the number of bonds at each interior
node as nb and estimate costs for all nodes using this value, we can obtain a relatively
simple value for comparison of the original system and the split system by approxi-
mating the total number of bonds to be evaluated in each. If we denote nn to be the
number of nodes in the system, and m = ∆tA/∆tB , the timestep ratio as before, the
original peridynamic system will have approximately nb ∗nn ∗m bonds to evaluate in
one large timestep ∆tA. For the split system, we further define the number of nodes
exclusively in each subdomain and in the overlap between the subdomains as nAn ,
nBn , and nOn respectively, keeping in mind that nAn + nBn + nOn = nn. Therefore, the
approximate number of bonds in the split system we must evaluate in each timestep is
nb ∗(nAn +(nBn +2nOn )∗m) This indicates that the splitting a peridynamic domain into
two subdomains as outlined in this paper will start to be cost-effective approximately
when the following condition is true: nn ∗m > nAn + (nBn + 2nOn ) ∗m, or more simply
stated as nAn (m− 1) > 2m · nOn . It is also useful to note that the relative cost-savings
between the multi-timestepping approach applied to classical mechanics and nonlo-
cal peridynamics should be approximately equal. This is because an equivalent cost
analysis for the classical method would yield the same results as peridynamics with a
horizon of one.

5. Numerical Results. The following plot shows the final result from the sim-
ulation of fracture in a plate of Duran 50 glass of size 20 × 10 × .1 mm and with
discretized element size of 0.1 mm. Results were obtained for both peridynamics
alone and also from the multi-timestepping peridynamic approach. For the multi-
timestepping case, one subdomain was taken to include 20% of the total nodes and
was located at the middle section of the plate (the region containing the crack). The
remainder of the domain was not in a region requiring as high of fidelity as the region
surrounding the crack and thus was evaluated with a timestep twice as large as the
timestep in the middle region.
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Fig. 5.1: Cracked Plate

Three results showing the displacement and damage in the nodes at a specific
instant in time are shown below. The first is when the crack first starts propagating,
the second is when branching behavior is first seen, and the third when the plate is
almost completely cracked.

Original System Split System

Fig. 5.2: Plate when the crack first starts propagating

Original System Split System

Fig. 5.3: Plate when branching behavior is first seen
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Original System Split System

Fig. 5.4: Plate when almost completely cracked

These results again show that the split system results match very well with the
original system, and further the conclusion that the multi-time-stepping method ap-
plied to peridynamics is a valid solution approach.

Time-history results for a few selected nodes from this simulation are also included
below. The nodes that were chosen correspond to the left edge of the plate, the middle
of the plate, and an interface node. The results at interface nodes for subdomains A
and B are nearly identical, so only subdomain A results are shown.
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Fig. 5.5: Kinematic Values and Errors for Subdomain A, position (0,2.5e-03,0)
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Fig. 5.6: Kinematic Values and Errors for Subdomain B, position (1e-02,9.9e-03,0)
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Fig. 5.7: Kinematic Values and Errors for Subdomain A, position (1.19e-02,0,0)

In the kinematic plots of figures (5.5-5.7), red lines represent data corresponding
to subdomain A, blue lines to subdomain B, and black lines to the original system. In
the error plots, red and blue lines correspond to the numerical errors for subdomains
A and B respectively. These figures serve to show that the numerical and analytical
errors track very well, while giving kinematic plots for a sense of scale. This, coupled
with the significant cost advantage the multi-timestepping method can offer, gives a
compelling motivation for the use of multi-timestepping in peridynamic models.

For a large system, the benefits of using multi-timestepping vs the undecomposed
system become immediately clear. For a system 100 nodes wide and a timestep
ratio of 2, with subdomain B being 10% of the total width, the simple error analysis
shown earlier indicates that the split system will be over 60% faster than the original
system. For 1000 nodes that number grows to 80% or much higher for smaller widths
of subdomain B.

6. Conclusions. From the results of the simple 1D case to the full simulation
of crack growth in a glass plate the advantages of multi-timestepping in peridynamic
simulations is evident. When a problem involves obtaining accurate solutions to com-
plex domains with widely varying time scales, it might well benefit from this type
of approach. Not only does this approach gain the inherent benefits of domain de-
composition by the splitting of a problem domain into subdomains, it also enables a
completely novel development for peridynamic theory: the ability to relax temporal
restrictions as needed. Additionally, error results not included in this paper seem to
indicate that with a proper choice of integration parameters, multi-timestepping ap-
plied to peridynamics enjoys the same rate of convergence as the underlying Newmark
method. The retention of the convergence of the underlying integration method is
also seen in multi-timestepping applied to classical problems and is another attractive
feature of this method. The combination of the ability to use restrictive timesteps
only where it is needed most and the retention of convergence makes this approach
very desirable in both cost and accuracy.
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GALERKIN RBF METHOD:A MESHFREE METHOD FOR THE
DISCRETIZATION OF NONLOCAL DIFFUSION EQUATIONS

S.T. ROWE ∗ AND R.B. LEHOUCQ †

Abstract. We discuss the computational aspects of a discretization for a nonlocal diffusion
problem using a localized basis of radial basis functions. The stiffness matrix entries are assembled
by a special quadrature routine unique to the localized basis. Combining the quadrature method with
the localized basis produces a well-conditioned, sparse, symmetric positive definite stiffness matrix.
We present convergence results for the method and discuss accelerating parts of the method with
graphics processing units using CUDA and Kokkos.

1. Introduction. The purpose of this paper is to study the numerical properties
of a meshfree discretization method for nonlocal diffusion equations. Nonlocal diffu-
sion models are being explored due to the difficulty classical diffusion models have
modeling anomalous diffusion, e.g., within heterogeneous material; see [2] a discussion.

We apply radial basis functions to develop a meshfree method for the discretiza-
tion of a variational formulation of the steady state nonlocal diffusion model. Radial
basis function methods use shifts and translates of a single univariate function to
approximate and interpolate scattered data. Radial basis functions have found use
in interpolation of scattered data, discretization methods for partial differential equa-
tions, and for surface reconstruction [6]. The discretization method we propose uses
a novel, localized basis of radial basis functions rather than directly using the shifts
and translates of a single univariate function. A quadrature method unique to the
localized basis is constructed which provides fast assembly of a sparse stiffness matrix
for the discretization of the nonlocal diffusion problem. The resulting stiffness matrix
is well-conditioned and symmetric positive definite, and the linear system may be
solved via conjugate gradient.

Previous work has explored the use of radial basis functions for the discretization
of nonlocal diffusion problems [1]. We extend the previous work by introducing a
method that offers the same benefits of the radial basis function method introduced in
[1] while decreasing the computational difficulty associated with the previous method.
The previous method required the solution of large, dense linear systems before the
stiffness matrix for the nonlocal diffusion problem could even be assembled. The
assembly of the quadrature weights, a necessary ingredient for the method, required
the solution of another large, dense linear system. The method we propose and study
similarly uses a localized basis without the need for the solution of any large, dense
linear systems. Instead, small linear systems are solved for the construction of the
localized basis we discuss in 3.1. The quadrature weights are assembled by directly
integrating the basis functions. The integration of these basis functions is efficiently
computed by exploiting parallelism. In 5.5, we discuss the assembly of the quadrature
weights in more detail. In addition to the potential computational advantages of the
method we propose, we extend the problems considered in [1] by exploring anisotropic
nonlocal diffusion.

We study the acceleration of radial basis function methods by the use of graph-
ics processing units (GPUs). Identifying and exploiting concurrency in a numerical
method can potentially provide substntial acceleration to the method. We observe
examples of concurrency within methods involving radial basis functions and consider

∗Texas A&M University, srowe@math.tamu.edu
†Sandia National Laboratories, rblehou@sandia.gv
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a parallel assembly of quadrature weights used in the RBF method used for the solu-
tion of the nonlocal diffusion equation. The methods we consider exhibit the parallel
pattern of requiring execution of the same instruction on multiple data. Furthermore,
a limited amount of memory transfers are required, which suggests the methods may
benefit from acceleration of graphics processing units. We employ NVidia’s Compute
Unified Device Architecture (CUDA) to exploit massive parallelism for the speedup
of computations involving radial basis functions. 5.5 discusses CUDA, GPUs, and the
Trilinos package Kokkos in more detail.

2. Nonlocal Diffusion. In this section, we present the nonlocal diffusion oper-
ator and we introduce the problem we aim to solve. Let Ω ⊂ Rn be an open subset
and let γ : Rn × Rn → R be a kernel such that for each x ∈ Ω, γ(x,y) = 0 for
‖x− y‖ > ε, where ε is a positive number we refer to as the horizon. The interaction
domain ΩI is defined as

ΩI := {y ∈ Rn\Ω : γ(x,y) 6= 0} (2.1)

We define the nonlocal diffusion operator L as

Lu(x) :=

∫
Ω∪ΩI

(
u(x)− u(y)

)
γ(x,y) dy (2.2)

Given f : Ω → R and g : ΩI → R the nonlocal diffusion problem seeks u :
Ω ∪ ΩI → R such that

Lu(x) = f(x) x ∈ Ω

u(x) = 0 x ∈ ΩI
(2.3)

where u : Ω ∪ ΩI → R.
It can be shown that the solution u to (2.3) formally solves a variational problem.

Let a denote the bilinear form

a(u, v) :=

∫
Ω∪ΩI

∫
Ω∪ΩI

(
u(x)− u(y)

)(
v(x)− v(y)

)
γ(x,y) dydx. (2.4)

We define the constrained energy space L2
c(Ω ∪ ΩI) by

L2
c(Ω ∪ ΩI) := {v ∈ L2(Ω ∪ ΩI) : v = 0 a.e. in ΩI}.

The variational problem we solve is to find u ∈ L2
c(Ω ∪ ΩI) such that for all v ∈

L2
c(Ω ∪ ΩI),

a(u, v) =

∫
Ω

f(x)v(x) dx. (2.5)

The paper [2] provides sufficient conditions on the kernel γ that the bilinear form
(2.4) is coercive and bounded on the space L2

c(Ω∪ΩI). By the Lax-Milgram theorem,
there exists a unique solution to (2.5). Our objective in this paper is to study a
discretization of (2.5).

We assume that the kernel γ is of the form

γ(x,y) =
(
κ(x) + κ(y)

)
Φ(‖x− y‖)

where Φ : R→ R is assumed to be a compactly supported function with horizon ε and
κ : Rn → R is a smooth function. The spatial variation in the kernel γ is generated by
what we refer to as the anisotropy function κ. By properly rescaling the operator L
with respect to the horizon ε, the nonlocal operator converges to a classical differential
operator; see [2].
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3. Radial Basis Functions. We present necessary background on radial basis
functions, introduce the localized basis we use for our proposed discretization, and
discuss the quadrature weights we employ for our method. Let Ω ⊂ Rn and let
ϕ : [0,∞) → R be a continuous function. Let X ⊂ Ω be a collection of scattered
points, referred to as centers. A set of radial basis functions is defined to be the
collection {ϕ(‖x − xj‖) : xj ∈ X}. Given a continuous function f : Ω → R, an

interpolant IXf =
∑N
i=1 ciϕ(‖x − xi‖) is constructed by enforcing the interpolation

conditions

f(xj) =

N∑
i=1

ciϕ(‖x− xi‖) j = 1, . . . , N,

provided that their exists coefficients ci which satisfy the interpolation conditions.
Let πm denote the space of degree m − 1 polynomials in Rn and let {pl}mnl=1 be

a basis for πm. We say that a function is conditionally positive definite of order m if
for any collection of scattered centers X

N∑
i=1

N∑
j=1

αiαjϕ(‖xi − xj‖) > 0

for any α ∈ Rn that satisfies

n∑
i=1

αipl(xi) = 0 l = 1, . . . ,mn.

We focus on the thin plate spline (or surface spline)

ϕ(r) =

{
r2m−n n is odd

r2m−n log(r) n is even

which is conditionally positive definite of order m on Rn. The interpolation conditions
for conditionally positive functions of order m requires the addition of a degree m− 1
polynomial to the linear combination of radial basis functions. Given centers {xi}Ni=1

and data {f(xi)} i = 1N , the interpolant

IXf(x) =

N∑
i=1

ciϕ(‖x− xi‖) +

mn∑
l=1

dlpl(x)

is constructed by enforcing the conditions

f(xj) =

N∑
i=1

ciϕ(‖xi − xj‖) +

mn∑
l=1

dlpl(xj) for j = 1, . . . , N,

0 =

N∑
i=1

cipl(xi) for l = 1, . . . ,mn

(3.1)

The geometry of the centers X controls the approximation quality of the inter-
polant IXf . The mesh norm h is defined to be the radius of the largest ball in Ω
which does not contain any centers X. The separation radius q is defined to be the
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Fig. 3.1: A ball of radius h is illustrated. The ball does not contain any of the centers.

minimal distance between any two centers. 3.1 illustrates an example of a mesh norm
for a collection of scattered points. The formulae for the mesh norm h and separation
radius q are given, respectively, by

h := sup
x∈Ω

min
xj∈X

‖x− xj‖ q := min
xj ,xi∈X

‖xj − xj‖. (3.2)

3.1. Lagrange Functions and Local Lagrange Functions. Given a collec-
tion of scattered centers X ⊂ Ω ⊂ Rn and a conditionally positive definite func-
tion ϕ of order m, there exists a collection of unique functions {χi}Ni=1 that satisfy
χi(xj) = δi,j for each center xj ∈ X. The condition δi,j = χi(xj) is enforced by
employing the conditions in (3.1). We call χi the Lagrange function centered at xi.
The construction of χi necessitates the solution of an (N + mn) × (N + mn) size
dense, linear system. The collection of Lagrange functions {χi}Ni=1 is referred to as
the Lagrange basis and interpolation of data samples {f(xi)}Ni=1 is accomplished by

IXf(x) =

N∑
i=1

f(xi)χi(x).

The local Lagrange function χ̂i centered at xi is a function designed to approx-
imate χi by using only centers nearby xi. Let r > 0 be a fixed number and let
Υi = {y ∈ X : ‖y − xi‖ < r}. We construct χ̂i by enforcing the interpolation condi-
tions (3.1) by χ̂i(xj) = δi,j for xj ∈ Υi. A detailed discussion of the construction of
local Lagrange functions on domains in Rn and on manifolds may be found in [5] and
[4], respectively. It can be shown that the choice r = Kh| log(h)| allows for optimal
order error between χi and χ̂i in the supremum norm.

3.2. Local Lagrange Quadrature. We introduce a quadrature method for
compactly supported functions in a set Ω that is imperative for the implementation
of the discretization method we propose in 4. Let X ⊂ Ω ⊂ Rn be a collection
of scattered functions and let {χ̂i}Ni=1 be a collection of local Lagrange functions
constructed from a conditionally positive definite of order m function ϕ. For f ∈
W k

2 (Ω) where n
2 < k ≤ m, we define the local Lagrange quadrature rule

QXf :=

N∑
i=1

f(xi)ŵi ŵi :=

∫
Ω

χ̂i(x) dx.

4. Discretization. We propose a discretization of (2.5) using local Lagrange
functions. Let X ⊂ Ω ∪ ΩI be a collection of centers and let XΩ. We define the
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approximation space Vh = span{χ̂i1Ω : xi ∈ XΩ} where

1A(x) =

{
1 x ∈ A
0 x /∈ A.

The 1Ω is multiplied onto the local Lagrange functions so that Vh ⊂ L2
c(Ω∪ΩI). The

local Lagrange functions are not contained within the constrained energy space since
they have nonzero values in the interaction domain. We seek uh ∈ Vh such that for
all vh ∈ Vh,

a(uh, vh) =

∫
Ω

f(x)vh(x) dx. (4.1)

Since Vh ⊂ L2
c(Ω∪ΩI), there exists a unique solution to (4.1). The resulting stiffness

A and source vector b have entries given by

Ai,j = a(χ̂i, χ̂j) bi =

∫
Ω

f(x)χ̂i(x) dx.

We apply the local Lagrange quadrature method of 3.2 to evaluate the entries of the
stiffness matrix and the source vector. We arrive at

Âi,j = 2δi,jŵi

∫
Ω∪ΩI

γ(x,xi) dx− 2ŵiŵjγ(xi,xj)

b̂i = f(xi)ŵi.

(4.2)

Applying the local Lagrange quadrature rule results in a sparse stiffness matrix. For
‖xi − xj‖ > ε, Âi,j = 0 since γ(xi,xj) = 0.

Proposition 4.1. . The condition number of the discrete stiffness matrix is
bounded independent of h or q.

5. Numerical Results. We present numerical results for experiments using the
discretization described in 4. We discuss local Lagrange function construction, L2

error computations, and condition number computations. We compare the theoreti-
cal prediction for L2 convergence and condition numbers with observed results from
numerical experiments. We consider solving two dimensional problems of the form
(2.4) with two radial kernels Φ and two anisotropy functions κ; see 5.1 and 5.2. For
all tests we consider zero Dirichlet volume constraints. The tests are computed on the
set Ω∪ΩI where Ω = (0, 1)× (0, 1) and ΩI = [− 1

4 ,
5
4 ]× [− 1

4 ,
5
4 ]\Ω. All computations

are done in MATLAB and the condition numbers of the sparse stiffness matrices are
approximated by the condest function. The sparse linear system is solved with either
MATLAB’s backslash operator or by conjugate gradient with a specified tolerance of
10−9. The number of iterations required for convergence for conjugate gradient did
not vary as h decreased.

The local Lagrange functions are constructed with linear combinations of the
surface spline ϕ(r) = r2 log(r). Each local Lagrange function is constructed using
approximately 11 log(N)2 nearest neighbor centers, where N is the total number of
centers in Ω∪ΩI . The stiffness matrix for the nonlocal problem only requires Lagrange
functions centered in Ω, although thin plate splines centered in ΩI are required for
the construction of the local Lagrange functions.

For numerically solving (4.1), a kernel γ(x,y) =
(
κ(x)+κ(y)

)
Φ(‖x−y‖) is chosen

with fixed horizon ε and a solution u ∈ L2
c(Ω ∪ ΩI) is chosen for each numerical
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Fig. 5.1: The log of h versus the log of the L2 error for the linear anisotropic experi-
ment with functions given by (5.1) is displayed.

experiment. The right hand side source function f is manufactured by computing
Lu(xi) = f(xi) for each center xi, The values of f are computed by using tensor
products of Gauss-Legendre nodes to approximate the integral (2.2).

We study L2 convergence of the discrete solution by constructing sets of uniformly
spaced centers and sets of scattered centers with various mesh norms. Uniformly
spaced collections of centersXh are constructed using grid spacing h = .04, .02, .014, .008,
and .006. Collections of scattered centers X̃h are constructed by modifying centers
in Xh by a random perturbation of magnitude at most 2h

15 . Local Lagrange functions
for each collection of centers are constructed to build the discretization space. The
convergence of the discrete solution uh to the solution u is measured by plotting the
L2 norm of the error ‖uh − u‖L2(Ω∪ΩI) against the mesh norm h. We expect for

u ∈W k
2 (Ω ∪ ΩI) that ‖u− uh‖L2(Ω) ≤ Chk‖u‖Wk

2 (Ω).

5.1. Linear Anisotropy Experiment. We choose solution a u and a kernel γ
with anisotropy function κ and radial function Φ given by


u(x) = sin(2πx1) sin(2πx2)1Ω(x)

κ(x) = 1 + x1 + x2

Φ(‖x− y‖) = exp
(
− (1− ε−2‖x− y‖2)−1

) (5.1)

and we discretize (4.1) with local Lagrange functions.

5.1 displays the observed L2 convergence rates with respect to the mesh norm h for
the uniformly spaced and scattered centers experiments. The log of the computed L2

error versus the log of the mesh norm is presented along with a best fit line to estimate
the convergence order of the observed data. 5.1 displays the condition numbers of the
discrete stiffness matrices. The observed condition numbers of the stiffness matrices
do not increase as the mesh norm decreases, which matches the result of 4.1.
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Fig. 5.2: The log of h versus the log of the L2 error for the exponential anisotropy
experiment with functions given by (5.2) is displayed.

Table 5.1: The mesh norm h, number of rows n of the stiffness matrix, and the
estimated condition number for the stiffness matrix with the linear anisotropy (5.1)
and the exponential anisotropy (5.2). The condition number of the stiffness matrices
does not increase as h decreases.

Approximate Condition Number

h n Linear Exponential
2.83e-2 625 58 89
1.41e-2 2500 59 90
9.9e-3 5041 59 90
5.7e-3 15625 60 92
4.2e-3 27889 60 92

5.2. Exponential Anisotropy Experiment. We choose solution a u and a
kernel γ with anisotropy function κ and radial function Φ given by

u(x) =
(
x1(x1 − 1)

) 3
2
(
x2(x2 − 1)

) 3
2
1Ω(x)

κ2(x) = exp(x1 + x2)

Φ(‖x− y‖) = exp
(
− (1− ε−2‖x− y‖2)−1

) (5.2)

and we discretize (4.1) with local Lagrange functions.
5.2 displays the L2 convergence plots for the experiments involving u2 and κ2. 5.1

displays the condition numbers for the discrete stiffness matrices of various values for
h. The expected h2 order convergence is observed in both the uniformly spaced centers
and the scattered centers experiment. The condition number of the discrete stiffness
matrices does not grow as the mesh norm decreases, which matches the prediction in
4.1.

5.3. Vanishing Nonlocality. We present numerical results for experiments
that investigate the effects of shrinking the horizon ε. The nonlocal operator L may
converge to a classical differential operator of the form −∇ · C · ∇ [2]. We consider
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anisotropic kernels of the form

γε(x,y) =
1

ε3
(
κ(x) + κ(y)

)
Φ(

1

ε
‖x− y‖), (5.3)

where Φ( 1
ε ‖x‖) is a compactly supported radial function with support radius ε. We in-

vestigate approximating the solution to an anisotropic differential equation by solving
an anisotropic nonlocal problem with sufficiently small horizon ε. Numerical exper-
iments demonstrate that the discrete solution to the anisotropic nonlocal problem
converges to the solution of the anisotropic differential equation.

A Taylor series expansion argument can be used to find the differential operator
D that the nonlocal operator Lε approximates in the small horizon limit. We assume
that κ, u : R → R are smooth functions. Then, for fixed x ∈ Ω, we apply a Taylor
series expansion in a ball Bε(x) to obtain for some ζ, η ∈ Bε(x)

u(y)− u(x) = u′(x)(y − x) +
1

2
u′′(x)(y − x)2 +

1

6
u′′(ζ)(y − x)3

κ(x) + κ(y) = 2κ(x) + κ′(x)(y − x) + κ′′(x)(y − x)2 +
1

6
κ′′(η)(y − x)3.

For smooth u, it follows that

Lεu(x) =
1

ε3
(
2u′(x)κ(x)

∫ ε

−ε
zΦ(

1

ε
|z|) dz + u′(x)κ′(x)

∫ ε

−ε
zΦ(

1

ε
|z|)dz

)
+

1

ε3
(
2u′′(x)κ(x)

∫ ε

−ε
z2Φ(

1

ε
|z|) dz + u′′(x)κ′(x)

∫ ε

−ε
z3Φ(

1

ε
|z|) dz + ...

)
where we have truncated the expression to exclude any of the (y − x)3 terms. The
zΦ( 1

ε |z|) integrals vanish since zΦ( 1
ε |z|) is an odd function. We exclude the z3 integrals

since

1

ε3

∫ ε

−ε
z3Φ(

1

ε
|z|) ≤ 1

2
ε‖Φ‖L∞(Ω),

which is O(ε). Eliminating these terms, we compute

Lεu(x) ≈ 2
(
u′(x)k′(x) + u′′(x)k(x)

) ∫ ε

−ε
z2Φ(

|z|
ε

) dz

= 2
(
u′(x)k′(x) + u′′(x)k(x)

) ∫ 1

−1

τ2Φ(|τ |)dτ.

Therefore, as ε decreases to zero,

Lεu(x)→ ρ
(
u′(x)k′(x) + u′′(x)k(x)

)
ρ := 2

∫ 1

−1

τ2Φ(|τ |) dτ

We numerically experiment with a Lagrange function discretization to solve the
problem Lεuε = f for anisotropic nonlocal operators. Let u denote the solution
to Du = f and let h be a given mesh norm. We solve Lεuε = f by discretizing
the problem with Lagrange functions to construct an approximate solution uε,h. We
numerically demonstrate that as ε→ 0, ‖u− uε,h‖L2(Ω∪ΩI) ∼ O(ε2).
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(a) κ(x, y) = exp(x+ y)
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(b) κ(x, y) = 1 + x+ y

Fig. 5.3: The log of ε vs. the log of the L2 error of the discrete solution uε,h is plotted.
As ε goes to zero, we observe ε2 convergence.

We let Φ( 1
ε ‖x‖) =

(
1− 1

ε2 ‖x‖2)1‖x‖<ε(x) and we consider two separate anisotropy
functions κ(x, y). We first consider a case of a linear anisotropic function of the form
κ1(x, y) = 1 + x + y and κ2(x, y) = exp(x + y). We set γε as in (5.3) with the
two choices for κ. The mesh norm h = .000075 is fixed for the experiments and
we consider a range of ε values from .075, .0625, .05, .04, and .035. We discretize the
problem Lεuε = f with Lagrange functions and a discrete solution uε,h is computed
as described in 4.

We choose

u(x) =
(
1− cos(2πx)

)
· 1[0,1](x) (5.4)

and we analytically compute Du = f , where D is the differential operator that Lε
converges to. We compute,

f(x) =

{
−2π

(
sin(2πx) + 2π(1 + x) cos(2πx)

)
for κ1

− exp(x)
(
2π sin(2πx) + 4π2 cos(2πx)

)
for κ2

In contrast to the experiments in Section 5, the right hand side is fixed, h is fixed,
and ε changes. The function f is chosen to be the solution to the problem Du = f ,
where u is the fixed function (5.4). As ε goes to zero, we expect the solution uε should
converge to u. We numerically investigate how the discrete solution to the nonlocal
problem, uε,h converges to the solution to the differential equation Du = f . As can be
seen in Figure 5.3, for both κ1 and κ2, the L2 error ‖u−uε,h‖L2[0,1] converges at about
O(ε2). The numerical results suggest it is possible to approximate the solution to an
anisotropic differential equation by discretizing and solving an anisotropic nonlocal
volume constrained equation.

5.4. Quadrature Experiment. We present a numerical experiment for the
proposed local Lagrange quadrature method introduced in 3.2. The tests are com-
puted on the set Ω ∪ΩI where Ω = (0, 1)× (0, 1) and ΩI = [− 1

4 ,
5
4 ]× [− 1

4 ,
5
4 ]\Ω. Let

X ⊂ Ω ∪ ΩI be a collection of scattered centers and let ŵi denote the quadrature
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Fig. 5.4: The log of the quadrature error (5.5) versus the log of the mesh norm h is
displayed for the function (5.6).

weight centered at the point xi ∈ X. We choose a function u : Ω ∪ ΩI → R and we
investigate how the quadrature error, given by∣∣∣∣ ∫

Ω∪ΩI

u(x) dx−
∑
xi∈X

u(xi)ŵi

∣∣∣∣, (5.5)

varies as we decrease the mesh norm. We expect the quadrature error to decrease as
O(hk) for u ∈W k

2 (Ω). We choose the function

u(x) =
(
x1(1− x1)

)2(
x2(1− x2)

)2
1Ω (5.6)

and we consider various sets of centers with mesh norms h = .04, .02, .014, .008, and
.006. 5.4 shows the results for an experiment using the polynomial function (5.6),
which exhibits a convergence rate of h2.5.

5.5. Graphics Processing Units. We consider the acceleration of radial basis
function computations using graphics processing units (GPUs). GPUs may provide
substantial acceleration for algorithms that require the same instructions to be ex-
ecuted on multiple data simultaneously. Many computations involving radial basis
functions exhibit parallelism that may be exploited. We consider the example of
computing the local Lagrange quadrature weights introduced in 3.2.

For a collection of centers X ⊂ Ω, the local Lagrange quadrature weight may be
constructed by directly integrating

ŵi :=
∑

xj∈Υi

αi,j

∫
Ω

ϕ(‖x− xj‖) +

n∑
l=1

βl,j

∫
Ω

pl(x) dx.

This requires the integration of the functions ϕ(‖x − xj‖) and subsequent multipli-
cation by the local Lagrange coefficients αi,j . Each quadrature weight ŵi has few
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coefficients as described in 3.1. The computation time is primarily the computation
of the integrals of the shifts of the radial basis function ϕ(‖x− xj‖). To numerically
evaluate these integrals, we use tensor product Gauss-Legendre quadrature nodes and
weights in Ω. We approximate

∫
Ω

ϕ(‖x− xj‖) dx ≈
G∑
g=1

ϕ(‖yg − xj‖)qg (5.7)

where yg is the quadrature node and qg is the quadrature weight. We note that with
this fixed collection of quadrature weights, the summation in (5.7) requires the same
operation repeatedly, with different input data yg − xj .

After the integrals of the shifts of ϕ are computed, each weight is assembled by
multiplying by the corresponding αi,j coefficients for xj ∈ Υi. The multiplications
require the same operation repeatedly with different input data, which may be exe-
cuted quickly on a GPU. Applying this method on a 96 CUDA core Nvidia Geforce
GT430 yielded at least a four times speed-up vs. an OpenMP implementation. For
example, the construction of 5776 quadrature weights required 550 miliseconds on the
96 CUDA core device versus 2 seconds on the CPU.

We discuss Kokkos, a Trilinos package that enables code portability for parallel
algorithms to various architectures. Kokkos supports multicore CPU parallelism such
as OpenMP and pthreads, GPU parallelism with CUDA, and parallelism on Intel Xeon
Phi co-processors. One objective of Kokkos is to minimize the amount of architecture
specific knowledge the programmer is required to know. The Kokkos API reduces the
need for the user to focus on device specific programming models without sacrificing
the performance of writing code directly in terms of the device’s native language.
Kokkos handles various architectures by correctly choosing the memory layout of
arrays depending on the device being used. Kokkos automatically chooses the optimal
layout of the arrays. The interested reader should consult [3] for details.

Kokkos provided our work with a way to rapidly implement parallel numerical
algorithms without focusing on the details of the parallel method. The same code we
wrote for OpenMP parallelism in Kokkos could be used for CUDA with no changes
necessary. With an easy to use API, the computational kernels

6. Acknowledgments. The authors would like to thank Carter Edwards and
Eric Phipps for their invaluable assistance on this project. Eric Phipps provided
access to CUDA capable computers. Without this, the GPU acceleration portion of
this project would likely not have been pursued. Carter Edwards provided essential
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A NEW PARTITIONED ALGORITHM FOR EXPLICIT
ELASTODYNAMICS BASED ON VARIATIONAL FLUX RECOVERY

PAUL KUBERRY∗ AND PAVEL BOCHEV†

Abstract. Problems involving an interface arise frequently, whether as a surface between two
distinct physical systems or in decomposing one system’s domain into two or more domains. It is
generally the case that the geometries for two domains differ greatly. When using Galerkin finite
elements to solve partial differential equations that have boundary conditions over an interface, often
finite elements of differing polynomial degree are used. From this arises the need to accurately and
stably communicate solution information across interfaces having mismatched vertices. We present
a new partitioned algorithm for explicit elastodynamics, based on variational flux recovery. This
method works by the exchange of tractions which depend on both the known state and the unknown
state at the future time step. The exchange of recovered tractions between the bodies formally
involves modification of both the forcing term and the mass matrix on each subdomain. Reliance
on the future time step distinguishes our approach from traditional partitioned solution algorithms,
which use interface conditions between subdomains and the current time step solution to define
boundary conditions for the models. Our approach offers some distinct numerical and theoretical
advantages. It passes a linear patch test and is second order accurate in space. Furthermore, if
interface grids match, our new partitioned method recovers the solution of a monolithic coupling
scheme for the solid-solid interaction problem.

Acknowledgment. This work has been funded by LDRD. We thank our col-
leagues M. Aguilo, E. Love, D. Ridzal, A. Robinson, and M. Wong for stimulating
discussions about the research problem. Special thanks are owed to D. Ridzal for help
with the Intrelab package.

Nomenclature.

Ωi – subdomain occupied by ith, i = 1, 2 elastic solid;
σ – interface between subdomains Ω1 and Ω2;
Γi – Dirichlet boundary of Ωi; Γi = ∂Ωi/σ;
H(Ωi) – Sobolev space for the displacements on Ωi;
HΓi(Ωi) – subspace of all functions in H(Ωi), which vanish on Γi;
Ωhi – finite element partition of Ω;
σhi – finite element partition of σ induced by subdomain mesh Ωhi ;
V (σhi ) – set of all interface vertices in finite element partition Ωhi ;

V (Ω̆hi ) – set of all interior vertices in finite element partition Ωhi ;
Shi – conforming finite element subspace of H(Ωi) defined on Ωhi ;
Ni,k – nodal basis of Shi ;
Shi,Γ – conforming finite element subspace of HΓi(Ωi);

Shi,σ – interface part of Shi : span of all basis functions associated with vertices in σhi ;

Shi,0 – interior part of Shi : all displacements vanishing on ∂Ωi;

Π1 interface transfer map Sh2,σ 7→ Sh1,σ;

Π2 interface transfer map: Sh1,σ 7→ Sh2,σ;
Π(u) interface transfer map, which depends on the exact solution

uhi – finite element function in Shi ;
uhi,σ – interface part of uhi ; uhi,σ ∈ Shi,σ;

uhi,0 – interior part of uhi ; uhi,0 ∈ Shi,0;

~ui – coefficient vector of uhi ;

∗Clemson University, pkuberr@clemson.edu
†Sandia National Laboratories, pbboche@sandia.gov
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~ui,σ – coefficient vector of interface part uhi,σ;

~ui,0 – coefficient vector of interior part uhi,0;

Mi – mass matrix associated with S(Ωhi );
Mi,σ – volume mass matrix associated with interface trace space Shi,σ;

M i,σ – area mass matrix associated with interface trace space Shi,σ;

Mi,0 – volumetric mass matrix associated with subspace Shi,0;

1. Introduction. In this report we present a new partitioned method for solid-
solid interaction (SSI) problems, based on variational flux recovery. Simulation of
two interacting solids appears in a variety of science and engineering problems. Our
principal driver is simulation of electromechanical systems comprising a piezoelectric
material mounted on some structure. However, since our main focus is on the coupling
procedure, it suffices to consider the case of small displacements and linear elastic
models without incorporating a piezoelectric constitutive relation into one of them.
Finally, we restrict attention to the case of spatially coincident interfaces, in which
the interfacial grids induced by subdomain partitioning may not be matching, but are
spatially coincident.

Numerical methods for such SSI problems follow two general paths. Monolithic
schemes view the governing equations together with the appropriate interface condi-
tions as a single, fully coupled system of partial differential equations. Its discretiza-
tion yields a coupled system of algebraic equations for the approximate numerical
solution of the SI problem.

Traditional partitioned methods on the other hand discretize and solve the gov-
erning equations for each one of the bodies independently and use the interface condi-
tions to couple the two problems. Typically this is accomplished by using the interface
conditions to form boundary conditions, which pass displacements and/or tractions
between the bodies.

In this paper we develop a new coupling scheme for SSI, which shares some
common elements with both monolithic and partitioned methods, but is distinct from
both. Specifically, in our approach the two solid models are discretized independently
on their respective subdomains and the fully discrete equations are advanced in time
by an explicit scheme. This part of the scheme resembles a traditional partitioned
approach. However, unlike the latter, at the beginning of each time step the two
models exchange fluxes given in terms of both the known solution at the current time
step and the unknown solution at the future time step. Exchange of subdomain fluxes
results in an update of both the forcing term on each subdomain and the subdomain
mass matrix. The latter represents modification of an operator that is independent of
the solution and so it needs to be performed once at the beginning of the simulation
and every time the mesh defining the mass operator is changed. This part of our
scheme resembles the assembly process of a monolithic problem, and in fact can be
shown to yield the same system as the latter for matching interface grids. However,
unlike monolithic schemes, we discretize the two solids completely independently from
each other without any assumptions on interface grids.

Our approach offers some distinct numerical and theoretical advantages. It passes
a linear patch test and is second order accurate in space. Furthermore, if interface
grids match, the new partitioned method recovers the solution of a monolithic coupling
scheme for the solid-solid interaction problem.

1.1. Notations. We consider two elastic bodies occupying non-overlapping bounded
regions (“subdomains”) Ω1 and Ω2 such that Ω1 ∩Ω2 = ∅ and Ω1 ∩Ω2 = σ. We refer
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to σ as the interface between the bodies, Γi = ∂Ωi/σ are the Dirichlet boundaries of
the subdomains and Ω = Ω1 ∪ Ω2 is the problem domain.

Let Ωhi denote a partition of Ωi, i = 1, 2 into finite elements. The subdomain
partitions induce finite element partitions σh1 and σh2 of the interface σ. The interface
partitions are not required to match but are assumed to be spatially coincident, i.e.,
there are no voids or overlaps between Ωh1 and Ωh2 . The mesh vertices are xi, where
i is the vertex ordinal.

A minimal requirement for any mesh-tying method is a consistency condition
called patch test. A method passes a patch test of order k if it can recover any
solution of (2.1) that is a polynomial of degree k.

1.1.1. Finite element operators. We define the interface transfer operator
Π1 : Sh2,σ 7→ Sh1,σ as the interpolant of a function u2,σ ∈ Sh2,σ in Sh2,σ. Such functions
have the form

u2,σ =
∑

k∈V (σh2 )

(~u2,σ)kN2,k(x) ,

and so it is straightforward to see that

Π1(u2,σ) =
∑

i∈V (σh1 )

u2,σ(x1,i)N1,i(x) =
∑

i∈V (σh1 )

 ∑
k∈V (σh2 )

(~u2,σ)kN2,k(x1,i)

N1,i(x) .

Because basis functions N2,k have local support, the interior sum above reduces to∑
k∈V (K23x1,i)

(~u2,σ)kN2,k(x1,i) (1.1)

where V (K2 3 x1,i) are the vertices of element K2 ∈ σh2 containing vertex x1,i from
σh1 . It follows that the coefficient vector of the function Π1(u2,σ) is given by P1~u2,σ

where P1 is |V (σh1 )| × |V (σh2 )| sparse matrix. The row of this matrix corresponding
to vertex x1,i contains the values N2,k(x1,i) for k ∈ V (K2 3 x1,i).

2. Governing equations. Consider two linear elastic bodies occupying bounded
regions Ω1 and Ω2, respectively. We assume that Ω1∩Ω2 = ∅ and denote Ω = Ω1∪Ω2,
Γ1 = ∂Ω1/σ, and Γ2 = ∂Ω2/σ; see Figure 2.1. The interface between the two bodies,
σ = Ω1∩Ω2, is a connected, non empty set. A choice of a unit normal nσ on σ orients
the interface. Without loss of generality we assume that nσ coincides with the outer
unit normal to ∂Ω1.

The coupled solid-solid interaction problem comprises a pair of governing equa-
tions 

üi −∇ · σ(ui) = f in Ωi × [0, T ]

ui(0,x) = u0(x) in Ωi

u̇i(0,x) = u̇0(x) in Ωi

ui = g on Γi × [0, T ]

i = 1, 2 (2.1)

for displacements ui(t,x), i = 1, 2 of the elastic bodies, and a pair of interface condi-
tions

u1(x, t) = u1(x, t) and σ1(x, t) · nσ = σ2(x, t) · nσ on σ × [0, T ]. (2.2)
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Fig. 2.1: Two elastic bodies occupy subdomains Ω1 and Ω2 forming a bounded region
Ω.

expressing continuity of the displacement and the traction across the interface. We
restrict attention to linear elastodynamic problems for which the stress

σ(ui) = λi(∇ · ui)I + 2µiε(ui)

and the strain

ε(ui) =
1

2
(∇ui +∇uTi )

The Lame coefficients λi and µi are allowed to have a discontinuity along σ.

3. Partitioned solution algorithm. In this report we develop a new parti-
tioned solution algorithm for (2.1) based on variational flux recovery. A formal
splitting of the problem into two “independent” mixed boundary value subdomain
equations is the starting point in the formulation. This partitioning is formal be-
cause it imposes the unknown traction value on the interface as a Neumann boundary
condition and resulting solutions satisfy a weak continuity relation in terms of an
operator that is not available in closed form. Using variational flux recovery ideas we
eliminate the unknown traction from the subdomain equations. In so doing we obtain
two fully decoupled subdomain equations which implicitly incorporate appropriate
discrete notions of the interface conditions (2.2).

3.1. Formal partitioning of the governing equations. Let ui, i = 1, 2
denote the exact solutions of (2.1)–(2.2) and

γ = σ1(x, t) · nσ = σ2(x, t) · nσ

be the corresponding exact interface traction. Suppose that γ is known exactly. Then,
displacement ui on Ωi can be determined by solving the following mixed boundary
value problem: 

üi −∇ · σi = f in Ωi × [0, T ]

ui(0,x) = u0(x) in Ωi

u̇i(0,x) = u̇0(x) in Ωi

ui = g on Γi

σi(x, t) · nσ = γ on Γi × [0, T ]

(3.1)
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The exact traction function γ provides a Neumann boundary condition on the in-
terface, which closes the subdomain problems and makes it possible to solve them
independently from each other. Note that by the uniqueness of the solutions of the
original formulation (2.1) and (3.1) it follows that the solutions of the latter necessarily
satisfy the first interface condition in (2.2), i.e., u1 = u2 on σ.

The corresponding weak forms of the subdomain equations (3.1) are to seek u1 ∈
H(Ω1) and u2 ∈ H(Ω2) such that

(ü1,v1)Ω1
+ (σ1, ε(v1))Ω1

= (f ,v1)Ω1
+ 〈γ,v1〉σ ∀v1 ∈ HΓ1

(Ω1)

(ü2,v2)Ω2 + (σ2, ε(v2))Ω2 = (f ,v2)Ω2 − 〈γ,v2〉σ ∀v2 ∈ HΓ2(Ω2)
(3.2)

Again, solutions of (3.2) necessarily satisfy the first interface condition in (2.2), i.e.,
u1 = u2 on σ. We refer to (3.1) and (3.2) as formal partitionings of the SSI problem,
because in practice the exact traction γ is not known on the interface.

3.2. Spatial discretization. To discretize (3.2) in space we restrict the test
functions vi to a finite element space Shi,Γ and seek ui ∈ Shi × [0, T ] which satisfies
the initial and boundary conditions prescribed by (3.1) and such that

(ü1,v1)Ω1
+ (σ(u1), ε(v1))Ω1

= (f ,v1)Ω1
+ 〈γ,v1〉σ ∀v1 ∈ Sh1,Γ

(ü2,v2)Ω2 + (σ(u1), ε(v2))Ω2 = (f ,v2)Ω2 − 〈γ,v2〉σ ∀v2 ∈ Sh2,Γ
(3.3)

In general the subdomain grids Ωh1 and Ωh2 induce non-matching finite element parti-
tions σh1 and σh2 of interface σ. As a result, solutions of (3.2) cannot satisfy a pointwise
version of the first interface condition in (2.2). Instead they satisfy some “weaker”
notion of displacement continuity, which we formally express as

u1,σ = Π1(u)u2,σ and u2,σ = Π2(u)u1,σ (3.4)

where Π1(u) : Sh1 7→ Sh2 and Π2(u) : Sh2 7→ Sh1 are some unknown operators.

3.3. Elimination of the surface traction. The discrete subdomain equations
(3.3) remain coupled by virtue of the interface traction γ and the weak continuity
condition (3.4). Because γ and Πi(u) are unknown, this also means that (3.3) are not
solvable in their current form. In this section we focus on the elimination of γ from
subdomain equations and the algebraic form of the resulting equations. We discuss
the handling of the displacement continuity condition and the complete separation of
the discrete problems in Section 3.4.

To explain elimination of surface traction we rewrite (3.3) in a block form corre-
sponding to the partitioning of Shi into an interfacial part Shi,σ and a zero trace part

Shi,0, along with the appropriate weak continuity equation. This form is given by
(ü1,σ, N1,i)Ω1

+ (σ(u1), ε(N1,i))Ω1
= (f , N1,i)Ω1

+ 〈γ,N1,i〉σ ∀i ∈ V (σh1 )

(ü1,0, N1,i)Ω1 + (σ(u1), ε(N1,i))Ω1 = (f , N1,i)Ω1 ∀i ∈ V (Ω̆h1 )

u1,σ = Π1(u)u2,σ

(3.5)
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on the first subdomain and
(ü2,σ, N2,i)Ω2

+ (σ(u2), ε(N2,i))Ω2
= (f , N2,i)Ω2

− 〈γ,N2,i〉σ ∀i ∈ V (σh2 )

(ü2,0, N2,i)Ω2
+ (σ(u2), ε(N2,i))Ω2

= (f , N2,i)Ω2
∀i ∈ V (Ω̆h2 )

u2,σ = Π2(u)u1,σ

(3.6)
is the analogous form on the second subdomain.

We now proceed to eliminate the unknown traction γ from (3.5) by using (3.6)
and vice versa. Solving the interface equations in (3.6) for the traction yields

〈γ,N2,i〉σ = (f , N2,i)Ω2
− (σ(u2), ε(N2,i))Ω2

− (ü2,σ, N2,i)Ω2
∀i ∈ V (σh2 ) (3.7)

Equation (3.7) defines a finite element approximation γ2 ∈ Sh2,σ of the interface trac-
tion in terms of ü2,σ and u2. It can be interpreted as variational recovery [1] of γ
from a finite element solution. To emphasize dependence of the recovered traction on
finite element solution we write γ2(ü2,σ,u2).

To complete the elimination process we approximate the unknown traction γ
in (3.5) by the interpolant Π1γ2 ∈ Sh1,σ of the recovered traction. This yields the
following system of equations on the first subdomain:

(ü1,σ , N1,i)Ω1 + (σ(u1), ε(N1,i))Ω1 = (f , N1,i)Ω1 + 〈Π1γ2(ü2,σ ,u2), N1,i〉σ ∀i ∈ V (σh1 )

(ü1,0, N1,i)Ω1
+ (σ(u1), ε(N1,i))Ω1

= (f , N1,i)Ω1
∀i ∈ V (Ω̆h1 )

u1,σ = Π1(u)u2,σ

(3.8)
Conversely, using (3.5) to eliminate γ from (3.6) we obtain an analogous equation on

Ω2:
(ü2,σ , N2,i)Ω2

+ (σ(u2), ε(N2,i))Ω2
= (f , N2,i)Ω2

− 〈Π2γ1(ü1,σ ,u1), N2,i〉σ ∀i ∈ V (σh2 )

(ü2,0, N2,i)Ω2
+ (σ(u2), ε(N2,i))Ω2

= (f , N2,i)Ω2
∀i ∈ V (Ω̆h2 )

u2,σ = Π2(u)u1,σ

(3.9)

The semi-discrete in space problems (3.8)–(3.9) have convenient matrix forms. Let
~Fi denote a vector with interface and interior parts ~Fi,σ and ~Fi,0, respectively, and
element

~F ki = (f , Ni,k)Ωi − (σ(ui), ε(Ni,k))Ωi ∀k ∈ V (Ωhi ) . (3.10)

Then, the interface equation in (3.8) can be written as

M1,σü1,σ = ~F1,σ +M1,σP1γ2(ü2,σ,u2) , (3.11)

whereas the matrix form of equation (3.7), which defines γ2, is given by

M2,σγ2 = ~F2,σ −M2,σü2,σ .

Solving the latter for γ2 yields

γ2(ü2,σ,u2) = M
−1

2,σ
~F2,σ −M

−1

2,σM2,σü2,σ .

The algebraic form of (3.8) follows by substituting this result into (3.11):
M1,σ ü1,σ +M1,σP1M

−1

2,σM2,σ ü2,σ = ~F1,σ +M1,σP1M
−1

2,σ
~F2,σ

M1,0ü1,0 = ~F1,0

u1,σ = P1(u)u2,σ

(3.12)
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Proceeding along the same lines we obtain an analogous algebraic form for (3.8):
M2,σ ü2,σ +M2,σP2M

−1

1,σM1,σ ü1,σ = ~F2,σ +M2,σP2M
−1

1,σ
~F1,σ

M2,0ü2,0 = ~F2,0

u2,σ = P2(u)u1,σ

(3.13)

3.4. Elimination of displacement continuity equations. Equations (3.12)–
(3.13) remain coupled through their dependence on interface states from both subdo-
mains. One possible decoupling strategy is to approximate Pi(ui) by a computable

operator P̃i and then use displacement continuity equations to eliminate states from
the adjacent domain, resultinging in subdomain equations that can be solved indepen-
dently from each other. Because the exact nature of Pi(ui) is not generally known,

construction of P̃i may not be straightforward. However, under some additional as-
sumptions on the matrix structure it turns out that Pi(ui) can be effectively approx-
imated by the interface interpolant Pi in which case the weak continuity equations in
(3.12)–(3.13) are replaced by

u1,σ = P1u2,σ and u2,σ = P2u1,σ , (3.14)

respectively. The key factor that enables such an approximation is to work with
diagonal mass matrices. Thus, from now on we assume that (i) assembly is performed
using node-based quadrature rules, which result in

Mi,σ = diag(mk
i,σ) and M i,σ = diag(mk

i,σ); i = 1, 2 ,

and (ii) displacement continuity conditions are given by (3.14). For clarity we ex-
plain elimination of interface states from the opposite side of the interface in a two-
dimensional seting. In this case matrix forms of interface transfer operators Πi assume
a particularly simple form with at most two non-zero elements per row. We explain
the structure of P1. Let x1,i ∈ σh1 be an arbitrary vertex on the interface of Ω1 and
K2,ki ∈ σh2 be the element from the interface of Ω2, which contains1 x1,i.

Since σ is one-dimensional, element K2,ki is an interval with endpoints x2,ki−1

and x2,ki , respectively. As a result, (1.1) reduces to the following sum∑
k∈V (K2,ki

)

~uk2,σN2,k(x1,i) = ~uki−1
2,σ N2,ki−1(x1,i) + ~uki2,σN2,ki(x1,i) (3.15)

Since basis functions form a partition of unity on every element,

N2,ki−1(x1,i) +N2,ki(x1,i) = 1

and so, there exists 0 ≤ αi ≤ 1 such that

N2,ki−1(x1,i) = α1,i and N2,ki(x1,i) = 1− α1,i

It follows that the matrix P1 is given by

(P1)ij =


α1,i if j = ki − 1

1− α1,i if j = ki

0 otherwise

(3.16)

1If x1,i is also a vertex in σh2 , then it is shared by two elements in σ2
h. In this case we can take

K2,ki to be either one of these two elements.
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where K2,ki = [x2,ki−1,x2,ki ] is the element from the interface on Ω2 containing vertex
x1,i from the interface on Ω1. Repeating the same arguments for Π2 shows that

(P2)ij =


α2,i if j = ki − 1

1− α2,i if j = ki

0 otherwise

(3.17)

where K1,ki = [x1,ki−1,x1,ki ] is the element from the interface on Ω1 containing vertex
x2,i from the interface on Ω2 and

α2,i = N1,ki−1(x2,i) and 1− α2,i = N1,ki(x2,i) .

Since interior equations are fully decoupled from the interface equations we focus
solely on the structure of the latter. Their right hand sides are given by(

~F1,σ +M1,σP1M
−1

2,σ
~F2,σ

)
j

= F j1,σ +mj
1,σ

[
α1,j

F
kj−1
2,σ

m
kj−1
2,σ

+ (1− α1,j)
F
kj
2,σ

m
kj
2,σ

]
for the interface equation on Ω1 and(

~F2,σ +M2,σP2M
−1

1,σ
~F1,σ

)
j

= F j2,σ +mj
2,σ

[
α2,j

F
kj−1
1,σ

m
kj−1
1,σ

+ (1− α2,j)
F
kj
1,σ

m
kj
1,σ

]
,

for the interface equation on Ω2.
Consider next the terms involving displacements from the opposite sides of the

interface, that is, M1,σP1M
−1

2,σM2,σü2,σ in (3.12) and M2,σP2M
−1

1,σM1,σü1,σ in (3.13).
We have that(

M1,σP1M
−1

2,σM2,σü2,σ

)
j

= mj
1,σ

[
α1,j

m
kj−1
2,σ

m
kj−1
2,σ

ü
kj−1
2,σ + (1− α1,j)

m
kj
2,σ

m
kj
2,σ

ü
kj
2,σ

]
(3.18)

and (
M2,σP2M

−1

1,σM1,σü1,σ

)
j

= mj
2,σ

[
α2,j

m
kj−1
1,σ

m
kj−1
1,σ

ü
kj−1
1,σ + (1− α2,j)

m
kj
1,σ

m
kj
1,σ

ü
kj
1,σ

]
.

(3.19)
For shape-regular grids it is not unreasonable to expect that

m
kj−1
2,σ

m
kj−1
2,σ

≈
m
kj
2,σ

m
kj
2,σ

:= µj2,σ and
m
kj−1
1,σ

m
kj−1
1,σ

≈
m
kj
1,σ

m
kj
1,σ

:= µj1,σ . (3.20)

This assumption allows us to exchange the order of interpolation and matrix multi-
plication in (3.18) to obtain(

M1,σP1M
−1
2,σM2,σü2,σ

)
j

= mj1,σµ
j
2,σ

[
α1,jü

kj−1

2,σ + (1− α1,j)ü
kj
2,σ

]
= mj1,σµ

j
2,σ(P1ü2,σ)j

Likewise, exchanging the order of operators in (3.19) gives(
M2,σP2M

−1
1,σM1,σü1,σ

)
j

= mj2,σµ
j
1,σ

[
α2,jü

kj−1

1,σ + (1− α2,j)ü
kj
1,σ

]
= mj2,σµ

j
1,σ(P2ü1,σ)j .

From the weak continuity equations (3.14) it follows that

üj1,σ = (P1ü2,σ)j and üj2,σ = (P2ü1,σ)j .
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Using these identities we can eliminate ü2,σ from (3.18) and ü1,σ from (3.19) to obtain(
M1,σP1M

−1

2,σM2,σ

)
ü2,σ ≈

(
M1,σµ2,σ

)
ü1,σ

and (
M2,σP2M

−1

1,σM1,σü1,σ

)
≈
(
M2,σµ1,σ

)
ü2,σ ,

respectively. This completes the decoupling of (3.12)–(3.13) into an independent
subdomain equation

(
M1,σ +M1,σµ2,σ

)
ü1,σ = ~F1,σ +M1,σP1M

−1

2,σ
~F2,σ

M1,0 ü1,0 = ~F1,0

(3.21)

for Ω1, and another independent subdomain equation
(
M2,σ +M2,σµ1,σ

)
ü2,σ = ~F2,σ +M2,σP2M

−1

1,σ
~F1,σ

M2,0ü2,0 = ~F2,0

(3.22)

on Ω2. The interface equations in each subdomain have the following component
form:(
mj

1,σ +mj
1,σµ

j
2,σ

)
üj1,σ = F j1,σ +mj

1,σ

[
α1,j

F
kj−1
2,σ

m
kj−1
2,σ

+ (1− α1,j)
F
kj
2,σ

m
kj
2,σ

]
; j ∈ V (σh1 )

(3.23)
and(
mj

2,σ +mj
2,σµ

j
1,σ

)
üj2,σ = F j2,σ +mj

2,σ

[
α2,j

F
kj−1
1,σ

m
kj−1
1,σ

+ (1− α2,j)
F
kj
1,σ

m
kj
1,σ

]
; j ∈ V (σh2 )

(3.24)
Modification of subdomain mass matrices in (3.23)–(3.24) can be interpreted as their
completion to bulk mass matrices on Sh1,σ ∪ Sh2,σ. Section 4.1 examines further this
connection for matching interface grids.

3.5. Fully discrete partitioned equations. For brevity, we restrict attention
to explicit time discretization of (3.23)–(3.24) using second central difference in time,
i.e., we approximate üi by

üi(t,x) ≈ ui(t+ ∆t,x)− 2ui(t,x) + ui(t−∆t,x)

∆t2
.

Let un+1
i ∈ Shi , uni ∈ Shi and un−1

i ∈ Shi denote finite element approximations of ui
at tn+∆t, tn and tn−1 = tn−∆t, respectively, D̈n+1(ui) = (un+1

i −2uni +un−1
i )/∆t2,

and (~Fi)
n be the force vector (3.10) evaluated at uni . Then, for given uni and un−1

i ,
the fully discrete partitioned formulation is to find un+1

1 such that
(
M1,σ +M1,σµ2,σ

)
D̈n+1(u1,σ) = (~F1,σ)n +M1,σP1M

−1

2,σ(~F2,σ)n

M1,0D̈
n+1(u1,0) = (~F1,0)n

(3.25)
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and un+1
2 such that
(
M2,σ +M2,σµ1,σ

)
D̈n+1(u2,σ) = (~F2,σ)n +M2,σP2M

−1

1,σ(~F1,σ)n

M2,0D̈
n+1(u2,0) = (~F2,0)n

(3.26)

for the finite element approximations un+1
i , i = 1, 2 of the subdomain solutions at

tn+1.

4. Properties of the VFR partitioned formulation. In this section we show
that for matching interface grids the partitioned formulation is equivalent to a mono-
lithic explicit elastodynamics formulation. We also show that our formulation passes
a linear patch test for arbitrary interface grids.

4.1. Equivalence to a monolithic discretization on matching interface
grids. Suppose that finite element partitions of Ω1 and Ω2 are such that interface
grids match, i.e, there is a common interface partition σh such that σh = σh1 = σh2
Then, the combined grid on the two subdomains forms a conforming partition of
Ω1 ∪ Ω2 and Sh = Sh1 ∪ Sh2 is a conforming finite element subspace of H1(Ω). This
space gives rise to a fully discrete monolithic formulation of (2.1)

MD̈n+1v = (~F )n .

where M and ~F are a diagonal mass matrix and force vector assembled using Sh.
Partitioning of mesh nodes into interface and subdomain nodes induces partitioning
of the solution vector v into coefficient vectors vσ, v1,0 and v2,0 corresponding to
interface and interior subdomain nodes, respectively. As a result, we can write the
monolithic problem in the following block diagonal form:

MσD̈
n+1(vσ) = (~Fσ)n

M1,0D̈
n+1(v1,0) = (~F1,0)n

M2,0D̈
n+1(v2,0) = (~F2,0)n

(4.1)

We now examine the relationship between the solution of (4.1) and the partitioned
SSI problem.

Theorem 4.1. Assume that interface grids σh1 and σh2 are matching and interface
displacements at all previous time steps coincide:

(~u1,σ)ν = (~u2,σ)ν ν = 1, 2, . . . , n− 1, n . (4.2)

Then the partitioned solution (~u1,σ, ~u1,0), (~u2,σ, ~u2,0) coincides with the solution
~v = (~vσ, ~v1,0, ~v2,0) of the monolithic problem:

~vσ = ~u1,σ = ~u2,σ; ~u1,0 = ~v1,0 and ~u2,0 =, ~v2,0 .

Proof. For clarity we present the proof for the two-dimensional formulation (3.21)–
(3.22). Owing to the assumption that interface grids on Ω1 and Ω2 match, it follows
that the area mass matrices M1,σ and M2,σ are identical, i.e., they have the same
dimension and with proper renumbering of their elements we can write

mj
1,σ = mj

2,σ ∀j ∈ V (σh1 ) ≡ V (σh2 )
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For matching interface grids we also have that P1 = P1 = I. As a result, the interface
equations assume the form(

mj
1,σ +mj

2,σ

)
uj1,σ = F j1,σ + F j2,σ ∀j ∈ V (σh1 )

and (
mj

2,σ +mj
1,σ

)
uj2,σ = F j2,σ + F j1,σ ∀j ∈ V (σh2 ),

respectively. Thus, for matching interface grids our partitioned SSI formulation has
the following matrix form (M1,σ +M2,σ)~u1,σ = ~F1,σ + ~F2,σ

M1,0~u1,0 = ~F1,0

(4.3)

and  (M2σ +M1σ)~u2,σ = ~F2,σ + ~F1,σ

M2,0~u2,0 = ~F2,0

(4.4)

It immediately follows that

~u1,0 = ~v1,0 and ~u2,0 = ~v2,0 .

On the other hand, it is easy to see that for matching interface partitions, the mono-
lithic volume interface mass matrix is sum of the volume interface mass matrices on
Ω1 and Ω2:

Mσ = M1,σ +M2,σ .

Furthermore, if (4.2) holds, a direct calculation shows that the monolithic interface
force vector is sum of the interface force vectors on Ω1 and Ω2:

~Fσ = ~F1,σ + ~F2,σ .

Therefore, ~u1,σ and ~u2,σ solve an identical equation, which coincides with the mono-
lithic interface equation and so,

~u1,σ = ~u2,σ = ~vσ .

4.2. Recovery of linear solutions. In this section we show that the partitioned
formulation recovers steady state linear solutions.

Theorem 4.2. Assume that uni and un−1
i correspond to a constant in time,

globally linear in space function defined on Ω1 ∪ Ω2. Then, the partitioned solution
un+1
i has the property that

un+1
i = uni . (4.5)
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Proof. Consider the equation on Ω1
(
M1,σ +M1,σµ2,σ

)
D̈n+1(u1,σ) = (~F1,σ)n +M1,σP1M

−1

2,σ(~F2,σ)n

M1,0D̈
n+1(u1,0) = (~F1,0)n

For linear functions (~F1)n = 0 and so the equations reduce to

M1D̈
n+1(u1) = 0 .

By assumption uni = un−1
i , and so

D̈n+1(u1) =
un+1

1 − un1
∆t2

.

This implies un+1
1 = un1 , which proves the theorem.

5. Computational studies.

5.1. Convergence rates. As our first test, we consider a problem with a known
solution in order to verify that the rate of convergence using the algorithm based on
variational flux recovery is second order accurate in space.

The monolithic domain, Ω, is the unit square [0, 1] × [0, 1]. We investigate two
configurations for the interface between the two subdomains Ω1 and Ω2, one vertical
and the other diagonal. The parameters we use for the linear elasticity of a homoge-
nous isotropic solid are µ = 0.01 and λ = 0.02 dyne/cm2. Throughout this paper,
the assumption is made that the density of the solid is 1 g/cm3 or that the equations
have been scaled appropriately.

The known solution for the displacement of the solid in the vertical and horizontal
directions is given by:

u =

(
sin(5πx) cos(3πy) log(1 + t)
4x4 cos(4πy)

√
t+ 2

)
(5.1)

with Dirichlet boundary conditions enforced on the boundaries of Ω, initial conditions,
and right hand side forcing terms determined by the known solution.

For the vertical interface scenario in Figure 5.1, Ω1 = [0, 0.6]×[0, 1], Ω2 = [0.6, 1]×
[0, 1], and Ω = Ω1 ∪Ω2 = [0, 1]× [0, 1]. Ω1 and Ω2 are both spatially discretized on a
uniform mesh.

Error/Rate

Mesh 1 12× 20 24× 40 48× 80

Mesh 2 20× 20 40× 40 80× 80

‖u− uh‖0 Ω1 7.97e-03/- 2.06e-03/1.95 5.12e-04/2.01

Ω2 2.58e-02/- 6.42e-03/2.01 1.59e-03/2.01

‖u− uh‖1 Ω1 5.61e-01/- 2.59e-01/1.11 1.30e-01/1.00

Ω2 2.11e+00/- 1.06e+00/1.00 5.29e-01/1.00

Table 5.1: Errors and convergence rate results using a vertical interface and uniform
meshes at time t = 0.25 s.
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Fig. 5.1: Uniform spatial discretization of Ω1 and Ω2 with a vertical interface at
x = 0.6 cm.

Fig. 5.2: Non shape regular spatial discretization of Ω into Ω1 and Ω2 with an interface
having a slope of tan(110◦) and passing through (0.6,0.5).

For the slanted interface scenario in Figure 5.2, Ω1 and Ω2 share an interface of
a line with a slope of tan(110◦) ≈ −2.7475 passing through the point (0.6,0.5) and
Ω = Ω1 ∪Ω2 = [0, 1]× [0, 1]. Ω1 and Ω2 are both spatially discretized on meshes that
are not shape regular.

Error/Rate

Mesh 1 14× 20 28× 40 56× 80 48× 80

Mesh 2 26× 20 52× 40 104× 80 48× 80

‖u− uh‖0 Ω1 8.19e-03/- 2.07e-03/1.98 5.16e-04/2.01 1.37e-04/1.92

Ω2 1.52e-02/- 3.79e-03/2.00 9.58e-04/1.99 2.48e-04/1.95

‖u− uh‖1 Ω1 5.64e-01/- 2.78e-01/1.02 1.39e-01/1.00 6.94e-02/1.00

Ω2 1.63e+00/- 8.22e-01/0.99 4.12e-01/1.00 2.06e-01/1.00

Table 5.2: Convergence rate results using a slanted interface and non shape regular
meshes at time t = 0.25 s.

We observe in Tables 5.1 and 5.2 that by using a coincidental interface with
nonmatching vertices and temporal step sizes on the order of h, the rate of convergence
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is second order regardless of the interface orientation.

5.2. Union of decomposed solutions are equivalent to monolithic solu-
tion. Using the same problem formulation and domain previously described, consider
decomposing Ω into Ω1 and Ω2 sharing an interface σ such that the vertices on the
interface are matching and coincidental. The vertical interface is at x = 0.6 cm as
before, and the slanted interface has a slope of tan(110◦) and passes through (0.6, 0.5).

Error Vertical Interface Slanted Interface

Mesh 1 24× 20 24× 20

Mesh 2 24× 20 24× 20

‖u1
h − uh‖0 Ω1 3.38e-17 9.43e-17

‖u2
h − uh‖0 Ω2 1.07e-15 1.05e-15

‖u1
h − uh‖1 Ω1 2.49e-15 7.74e-15

‖u2
h − uh‖1 Ω2 9.92e-14 1.23e-13

Table 5.3: Difference between solution computed on whole domain uh and solutions
computed on subdomains Ω1 and Ω2, uh

1 and uh
2 .

The difference in solutions, shown in Table 5.3, are equivalent up to roundoff
whether computed through the monolithic formulation or using the algorithm based
on variational flux recovery.

5.3. Preservation of linear displacements. The next test we consider is to
recover the solution to a problem determined by a steady state linear solution.

The monolithic domain, Ω, is the unit square [−1, 1] × [−1, 1]. We investigate
two configurations for the interface between the two subdomains Ω1 and Ω2, one
vertical and the other diagonal. The parameters we use for the linear elasticity of a
homogenous isotropic solid are µ = 1.5 and λ = 7 dyne/cm2. Throughout this paper,
the assumption is made that the density of the solid is 1 g/cm3 or that the equations
have been scaled appropriately.

The known solution for the displacement of the solid in the vertical and horizontal
directions is given by:

u =

(
−5x+ 50y
33x− 22y

)
(5.2)

with Dirichlet boundary conditions enforced on the boundaries of Ω, initial conditions,
and right hand side forcing terms determined by the known solution.

In the vertical interface scenario, Ω1 = [−1,−0.1]×[−1, 1], Ω2 = [−0.1, 1]×[−1, 1],
and Ω = Ω1 ∪ Ω2 = [−1, 1] × [−1, 1]. Ω1 and Ω2 are both spatially discretized on
a uniform mesh. In the slanted interface scenario, Ω1 and Ω2 share an interface
of a line with a slope of tan(65◦) ≈ 2.1445 passing through the point (-0.1,0) and
Ω = Ω1∪Ω2 = [−1, 1]× [−1, 1]. Ω1 and Ω2 are both spatially discretized on non shape
regular meshes. For both interface cases, shown in Figure 5.3, random perturbations
were made to the vertices on the interface for each domain, i.e., the vertices on the
interface for both Ω1 and Ω2 were moved a random amount tangent to the interface,



52 Explicit Partitioned Algorithm

Fig. 5.3: Uniform and non uniform domain discretizations on which to recover a linear
solution.

where a signed direction and magnitude were generated by a uniformly distributed
random number. Vertices on the interface were allowed to slide up to 20% of the
distance to the nearest vertex on the interface.

Error Vertical Interface Slanted Interface

Mesh 1 6× 3 6× 3

Mesh 2 34× 11 34× 11

‖u− uh‖0 Ω1 3.45e-15 3.54e-15

Ω2 4.00e-15 4.11e-15

‖u− uh‖1 Ω1 1.16e-14 1.59e-14

Ω2 6.42e-14 7.85e-14

Table 5.4: Patch test errors at time t = 0.05 s.

In Table 5.4 we see that even with random perturbations, ensuring mismatched
vertices on the interface between Ω1 and Ω2, the algorithm still recovers the linear
solution up to errors introduced by roundoff, regardless of the interface orientation.

6. Conclusions. We have presented a new partioned method, based on varia-
tional flux recovery, for solid-solid interaction (SSI) problems. This scheme is unique
from existing methods in that it exchanges fluxes that are given in terms of both
the known solution at the current time step and the unknown solution at the future
time step. Focusing on the case of linear elastic models based on the assumption of
small displacements, we have proven and demonstrated numerically that our algo-
rithm, when applied to spatially coincident interfaces, passes any patch test of order
one. The method is second order accurate for shape regular meshes. Also, it re-
covers the monolithic solution when the vertices on the interface are coincidental and
matched. Future work will include augmenting the method in order to conserve linear
momentum.
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A CONSERVATIVE SEMI-LAGRANGIAN SPECTRAL ELEMENT
METHOD WITH OPTIMIZATION BASED LIMITERS

SCOTT A. MOE† , PAVEL B. BOCHEV‡ , KARA J. PETERSON§ , AND DENIS RIDZAL¶

Abstract. A Spectral Element Method with Semi-Lagrangian time-stepping for the scalar ad-
vection equation is analyzed. The method is designed to efficiently advect large numbers of passive
tracers as part of a larger atmospheric model. The Semi-Lagrangian time-stepping has many ad-
vantageous properties for this application because of the need to only evolve gridpoints instead of
tracer densities. The Spectral Element space discretization allows efficient coupling with established
atmospheric models. The connection between the SLSEM and Characteristic Galerkin schemes is
commented on and exploratory work shows that the SL scheme can be modified using ideas inspired
by this connection to stabilize the method for discontinuous initial conditions. The base numerical
method is inserted as part of an Optimization Based Remap framework allowing the efficient enforce-
ment of physical constraints such as conservation. In addition this Optimization Based framework is
utilized to implement limiters. The limiters are shown numerically to not greatly disturb the high-
order convergence rate of the solution of smooth density profiles in the L1 norm, though they do
affect pointwise convergence. The optimization based limiters are generalized to equations involving
zeroth order source terms (including divergent flows) using a “fictitious density” approach to define
a quantity that should display monotonicity even when the conserved quantity itself will not.

1. Introduction.

∂q

∂t
+ ν · ∇(q) = 0 (1.1)

Equation (1.1) describes a passive tracer advected by velocity field ν. This equa-
tion is relatively simple, however atmospheric models often are required to solve it
for arbitrarily many separate tracers. Thus despite its simplicity, this equation is
responsible for a very large portion of the computational cost of many atmospheric
models. This being the case, it is important to solve this equation in a robust and
efficient manner. In addition the method used to solve equation (1.1) should use the
information already present in the main atmospheric model (ideally it would use the
same spatial discretization as the core scheme).

The Spectral Element Method (SEM) is a spatial discretization that has proven ef-
fective for atmospheric modeling [13] because of its diagonal mass matrix and arbitrary
order accuracy. However the SEM, like other high order Finite Element Methods, suf-
fers from a severe stability imposed time-step restriction for Hyperbolic PDEs. This
can be avoided by using an implicit or IMEX method, but these are not the most at-
tractive methods for advecting hundreds of passive tracers computationally. Schemes
based on the Method of Characteristics have long been used as extremely efficient
methods for solving scalar hyperbolic (or parabolic but nearly hyperbolic) equations
[4]. These methods take the Lagrangian viewpoint, directly approximating the an-
alytically known movements of “fluid particles” under the influence of the velocity
field.

An important complaint, though, about Semi-Lagrangian schemes is that they
do not necessarily preserve some properties that physically must hold. Most impor-
tantly they are not, in general, mass conservative. There has been work on combining
the Semi-Lagrangian method with a Spectral Element Space discretization [9, 15, 8].
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However in order to use a Semi-Lagrangian SEM in an actual atmospheric model it
will be necessary to have a method to enforce physical constraints. For hyperbolic
PDEs generally the weak form of the equation is more fundamental, physically, than
the differential form. So it is possible to have even strong discontinuities in solu-
tions that are physically observed. Approximation theory states that any high order
method predicated on an orthogonal function expansion must illustrate large oscilla-
tions (known as Runge or Gibbs phenomena) in this situation. Limiting is necessary
to remove these non-physical oscillations introduced by the discretization.

The basic approach that will be employed is to think of the high order numerical
scheme as the source of a very accurate approximation to the exact solution, this
will be referred to as the target. The actual solution provided by the total numerical
method will then be the solution that best approximates this target in some norm
while still satisfying a host of physical constraints. This is essentially the approach
referred to as an Optimization Based Remap (OBR) by Bochev et. al. [3]. This
framework has previously been successfully applied to an Eulerian Spectral Element
Method [10].

2. Mathematical Preliminaries.

2.1. The Scalar Advection Equation. The basic problem considered in this
work is the multi-dimensional scalar advection equation. Simple as it is, in many
atmospheric models advection of arbitrarily many tracers is a major source of com-
putational cost. A Semi-Lagrangian method would be ideal for this for two reasons.
First it would allow much larger time steps than an Eulerian method. Secondly in
Lagrangian methods the quantities that are actually advected are the points of the
grid themselves. This saves having to advect every single tracer using an integration
scheme as you would in a Eulerian scheme.

The equation of primary concern in this work is the advection equation for a
passive tracer

∂q

∂t
+ ν · ∇q = 0 (2.1)

In the atmosphere passive tracer concentrations will be augmented by an equation
describing the motion of the atmospheric fluid density.

∂ρ

∂t
+∇ · (νρ) = 0 (2.2)

The quantity ρ is a conserved quantity as is (qρ) for any passive tracer q.

2.2. Specifics of the Method. The method that will be described is very
general with respect to geometry in the sense that it can work for any type of grid.
However, boundary conditions could complicate things. Since the focus is on the
atmosphere work has been restricted to a doubly periodic domain, or to the surface
of a sphere.

The key idea of the Semi-Lagrangian method is to define x̃(t) such that

dx̃

dt
= ν (2.3)

then equation (2.1) says

dq

dt
(x̃(t)) =

∂q

∂t
+
dx̃

dt
· ∇q = 0 (2.4)

So along contours x̃(t) passive tracer q is constant.
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2.3. High-Order Space discretization. As mentioned in section 1 a Spectral
Element spatial discretization will be implemented as it matches the spatial discretiza-
tion of some established atmospheric codes. The Gauss-Legendre-Lobatto nodes are
also ideal for this type of Semi-Lagrangian method for several other reasons.

• They display asymptotically optimal Lebesgue Constant growth [14]
• They have enough degrees of freedom to maintain inter-element continuity.

This fact is key for the stability of this method. Trying to repeat the method
that will be described below using Gauss quadrature nodes, for example, will
not be stable because continuity is not enforced at cell boundaries and so
large oscillations will be introduced when interpolating.

• They have an associated quadrature rule that is only slightly less accurate
than a Gaussian quadrature rule (an important part of their popularity in
Finite Element Methods).

Let us define τ as the collection of (quadrilateral) cells that tessellate our domain Ω.
Each cell τk will posses a mapping, call it Nk(x), from τk to the reference quadrilateral.
Assume that each cell posses an (n+ 1)× (n+ 1) subgrid of points that map to GLL
nodes. Define

X = (ξi, ξj) where ξi and ξj are both members of the set of n+ 1 GLL nodes

χ = {(x1, x2)|∃k s. t. (x1, x2) ∈ τk and Nk((x1, x2)) = (ξi, ξj) ∈ X (2.5)

χ will be the set of all nodes where data will be stored. On each cell we will have a set
of points that maps to a tensor product GLL grid. So the natural basis functions to
use in this situation are tensor products of Lagrange polynomials for the GLL nodes.
So the basis functions will be nth order polynomials on the reference quadrilateral
φij((Nk(x)) such that

φij(ξl, ξk) = δliδkj

2.4. Semi-Lagrangian Time-Stepping. The Semi-Lagrangian scheme solves
equation (1.1) by breaking it up into a series of ODEs of the form (2.3) coupled with
an interpolation. The basic scheme is below:

2.4.0.1. Semi-Lagrangian Scheme.
1. ∀x ∈ χ solve for x̃(tn) subject to ˙̃x = ν with x̃(tn+1) = x
2. Then define q(x, tn+1) = q(x̃, tn)

This point x̃ is generally referred to as the “trace back” in the MMOC literature. Es-
sentially this is just using the high order spatial discretization to interpolate a function
that is transported by a time-stepping scheme that approximates the advection equa-
tion. Since the GLL nodes posseses good quadrature properties this method is also
an approximation of

(u(x, tn+1), v) = (u(x̃, tn), v)∀v ∈ Qn where ˙̃x = ν and x̃(tn+1) = x (2.6)

2.4.1. Connection to Characteristic Galerkin Methods And Conver-
gence Rates. Say that the polynomial order of the spatial discretization used for
the scheme in (2.4.0.1) is k. The scheme described in equation (2.4.0.1) approximately
solves (2.6). This is also the variational form that is central to a class of methods
known as Characteristic Galerkin Methods [11]. An interesting observation is that if it
is assumed that these integrals are evaluated exactly then optimal FEM convergence
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rates of O(hk+1) can be proven [6] for this type of method. However in general these
will not be evaluated exactly and so a lower convergence rate of O(hk) is actually
observed [7]. The SLSEM is on the cusp between the Characteristic Galerkin method
and the Semi-Lagrangian method because it uses approximately accurate quadrature
rules to maintain a diagonal mass matrix and to approximately evaluate the projection
integral on the right hand side of equation (2.6).

2.4.2. A Stable Characteristic Galerkin Semi-Lagrangian Scheme. As
mentioned in section 1, in general hyperbolic equations allow discontinuous solu-
tions. However the SL method outlined in (2.4.0.1) is not stable for discontinuous
initial conditions. Because repeated orthogonal projection is, in general, more stable
than repeated interpolation you may expect that enforcing the variational form (2.6)
would provide a more stable scheme. However, an exact orthogonal projection on
each cell (i.e. a decomposition in terms of Lagrange Polynomials) would result in a
discontinuous-galerkin like scheme that would no longer enforce inter-cell continuity.
Accurately performing the integrals involved in equation (2.6) when the solution is
not even C0 is very expensive. A compromise worth exploring is to still project onto
the same piecewise Lagrange-polynomial basis corresponding to the GLL nodes, but
to use different quadrature rules for each of the sides of the equation (2.6). On the left
hand side it is ideal to still use GLL nodes to enforce a diagonal mass-matrix. On the
right hand side a higher-order accurate quadrature rule can be used without greatly
increasing the computational cost. Let us define nl and nr such that nl = k+ 1 is the
number of GLL quadrature nodes used for the left hand side integrals, and nr is the
number of GLL quadrature nodes used for the right hand side integral.

2.4.2.1. Characteristic Galerkin Semi-Lagrangian Hybrid Scheme.
1. Define Xr = (ξi, ξj) where ξi and ξj are both in the size nr GLL nodes
2. ∀τ find all xij such that N(xij) ∈ Xr ×Xr solve for x̃ij(t

n)

subject to ˙̃xij = ν with x̃ij(t
n+1) = xij

3. And find xlm such that N(xlm) ∈ X ×X
4. q(xlm, t

n+1) = 1
J(xlm)ω

nl
l ω

nl
m

∑nr
i

∑nr
j J(xij)ω

nr
i ωnrj `nll (xi)`

nl
m (xj)q(x̃ij , t

n)

In the scheme in (2.4.2.1) what is happening is that the basis functions `i(x)
are being treated as orthogonal and essentially a function q(x̃, tn) is being approxi-
mated on each cell by the expression in equation (2.7) (the expression is slightly more
complicated in reality because of interactions between cells but this is the basic idea)

q(x, tn+1) =

nr∑
i

nr∑
j

`nli `
nl
j

∫ 1

−1

∫ 1

−1
J(ξ, η)`nli (ξ)`nlj (η)q(x̃(ξ, η), tn)dξdη∫ 1

−1

∫ 1

−1
J(ξ, η)`i(ξ)`j(η)dξdη

(2.7)

It can be shown that the one step accuracy for this approximation is actually O(hk).
So this method should theoretically not give better accuracy than that described in
(2.4.0.1). However the error from treating the GLL Lagrange polynomials as orthog-
onal is very small and it is not observed as you increase nr until h is very small, and
even then it is more accurate than the pure SL scheme. This can be seen in figure
2.1(b). In addition the example in figure 2.1(a) shows the results of using (2.4.2.1)
on an example that the method (2.4.0.1) was not able to solve. The result displays
oscillations as you would expect for the polynomial approximation of a discontinuous
function, but it is certainly not blowing up. This increased stability is the main reason
this method may be useful in some situations. The accuracy increase shown in figure
2.1(b) is not as important because it takes a much more expensive quadrature rule to
realize significant improvments.
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(a) A discontinuous initial condition
advected for 50 rotations using equa-
tion (2.4.2.1) with nr = nl + 1

(b) The L2 norm convergence rate as nr is in-
creased leaving nl fixed

Fig. 2.1: The effect of Quasi-Monotone limiters on Convergence Rate

3. Conservation. In general numerical algorithms that preserve physical con-
served quantities tend to be preferred over those that do not because they are ob-
served to produce more accurate results, especially for long time integration. However
looking at the variational form in equation (2.6) it is clear that conservation is not
guaranteed.

(q(x̃, tn), 1) 6= (q(x, tn), 1) (3.1)

This has been cited as a major problem with the MMOC and the Characteristic
Galerkin methods. In general to have a conservative method in this Lagrangian
framework requires tracking cells instead of points. The Characteristics-Mixed [2]
method and the ELLAM[12] methods both achieve approximate local conservation
this way. This still presents problems because there will be volume errors in tracking
cells, motivating methods that seek to correct these volume errors[1].

There has been an attempt to modify the MMOC to maintain conservation[5].
That method, known as, MMOCAA (Modified Method of Characteristics with Ad-
justed Advection) allows a range of possible values for the “traceback” points (defining
some perturbation around the calculated value). Conservation is achieved by solving
for values in this range.

The following section will illustrate a possible way to modify the SLSEM algorithm
so that it is theoretically conservative, however it will be apparent that it involves
evaluating certain integrals that would be very difficult to implement accurately. Thus
for this work what is actually implemented is a numerical optimization scheme that
allows the enforcement of conservation in a way that can be numerically verified not
to affect the convergence rate.

3.1. A Conservative Scheme. Starting with the variational form of the con-
servative advection equation...∫

t

∫
Ω

(ρt +∇ · (νρ))vdΩ = 0

∫
Ω

(ρn+1vn+1 − ρnvn)dΩ−
∫
t

∫
Ω

ρvtdΩdt+

∫
t

∫
Ω

(ρν · ∇(v))dΩdt
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To simplify things look for v such that

vt + ν · ∇(v) = 0

then the equation simplifies to

(ρn+1, vn+1) = (ρn, vn)

Assume the underlying grid is Cartesian, indexed by an x and a y index. v is chosen
such that vn+1

ijlk = lijl (x)lijk (y) (a GLL node Lagrange polynomial on the (i, j) cell) then
this is essentially tracing cells back in time through the basis functions. In addition

(ρn+1,
∑
l,k

vn+1
ijkl ) = (ρn+1, 1n+1

ij )

(ρn,
∑
l,k

vnijkl) = (ρn, 1nij)

and so since the method enforces

(ρn, vnijkl) = (ρn+1, vn+1
ijkl )

it is then true that

(ρn, 1nij) = (ρn+1, 1n+1
ij )

So, this preserves some notion of local conservation. However trying to do this it
would be very difficult to correctly integrate (ρn, vn) because of the difficulty evalu-
ating cell evolution accurately.

3.2. Optimization Based Conservation. The method actually chosen to en-
force conservation is to treat the physical constraint as a linear constraint in a
quadratic programming problem. Essentially the QP problem is to find the L2 min-
imal solution, compared to the result produced by interpolation at every timestep,
that is conservative. This is all done discretely at the GLL nodes. The QP with a
linear constraint is solved using a secant method that converges very quickly.

3.2.0.2. Optimization Based Conservative Scheme.
1. For each x ∈ χ solve for x̃(tn) subject to ˙̃x = ν with x̃(tn+1) = x
2. qT (x, tn+1) = q(x̃, tn)
3. Then find q that minimizes ‖q − qT ‖22 such that

∫
Ω
qdΩ =

∫
Ω
qndΩ

Since the GLL nodes are an accurate quadrature rule for polynomials up to order
2n−1 the L2 minimization and conservation constraint can be discretized and enforced
very efficiently using only function values at the GLL nodes and their corresponding
quadrature weights.∫

Ω

(q(x)− qT (x))2dΩ =

|τ |∑
k=0

∫
τk

(

n∑
i=0

n∑
j=0

qkijφij(ξ)−
n∑
i=0

n∑
j=0

qTkij φij(ξ))
2dτk

This integral can be approximated using the GLL quadrature rule.

≈
|τ |∑
k=0

n∑
i=0

n∑
j=0

Jkijwiwi
(
(qkij)

2 − 2(qkij)(q
Tk
ij ) + (qTkij )2

)
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Where Jkij is the Jacobian of the transformation Nk at the (i, j) node of the k cell.
This can be written as∫

Ω

(q(x)− qT (x))2dΩ ≈ q∗Dq− 2c∗q + qT∗DqT (3.2)

where D is a diagonal matrix containing Jkijwiwj and q∗ is corresponds to the trans-

pose of a vector (used to avoid confusion with qT the target). So minimizing
∫

Ω
(q(x)−

qT (x))2dΩ is approximately equivalent to minimizing

q∗Dq− 2c∗q = 2(
1

2
q∗Dq + (−c)∗q) (3.3)

This is a standard quadratic programming problem with a diagonal matrix. The
conservation constraint can also be similarly discretized, although in this case for non
curvilinear cells the discretized constraint will be exactly equivalent to the continuous
constraint.

4. Optimization Based Limiters for Passive Tracers. When advecting dis-
continuous profiles it is important to prevent the appearance of nonphysical oscilla-
tions. In Eulerian Finite Volume Methods this is accomplished with a class of methods
that preserve the “monotonicity” properties of a solution. This boils down to pre-
venting the solution from developing new minima and maxima. The theory of these
monotonicity preserving limiters is very well understood and developed for low or-
der Finite Volume methods. However, for higher order methods it is unclear how to
preserve monotonicity without harming accuracy in smooth regions, or even if that
is possible. An idea would be to present the limiter as a constrained optimization
problem trying to find the closest function, in some norm, to the output of a given
numerical method while enforcing that there are no new maxima or minima created
in any given region. This method of finding the “closest” solution to the output of a
numerical method is a key part of the optimization-based-remap framework [3].

For this Semi-Lagrangian type method there are two ways one could think of
imposing monotonicity. First of all the high-order interpolation used is not monotonic,
so one can enforce monotonicity on this interpolation method. This is a very low
computational cost way of enforcing monotonicity as all bounds are available locally.
However, this does not necessarily guarantee that the “reconstruction” on the new cell
is monotonic. A way of achieving that will be discussed below. The type of maximum
and minimum bounds introduced are not guaranteed to enforce exact monotonicity
and so we will call this family of methods Quasi-Monotone Limiters [10]. Formulated
as a constrained QP these limiters will look like:

4.0.0.3. Quasi-Monotone Limiter.
1. For each x ∈ χ solve for x̃(tn) subject to ˙̃x = ν with x̃(tn+1) = x
2. qT (x, tn+1) = q(x̃, tn)
3. Somehow determine upper and lower bounds for q q

¯
and q̄

4. Find q that minimizes ‖q − qT ‖22 such that
∫

Ω
qdΩ =

∫
Ω
qndΩ and q

¯
≤ q ≤ q̄

4.1. Quasi-Monotone Interpolation Limiter. Enforcing constraints on the
interpolation operator itself is simple. It requires knowing what values would consti-
tute a new maxima or minima on a given cell of the Lagrangian grid. For the back
tracing SL method this can be done just by looking at the max and min values on
the GLL nodes in that cell. This type of limiting will filter out the Runge phenomena
inherent to attempting to interpolate a function of limited continuity.
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4.1.0.4. Quasi-Monotone Interpolation.
1. For each x ∈ χ solve for x̃(tn) subject to ˙̃x = ν with x̃(tn+1) = x
2. find k such that x̃(tn) ∈ τk
3. define χk = x|x ∈ χ and x ∈ τk.
4. q

¯
(x) = minx∈χk q(x, t

n) and q̄(x) = maxx∈χk q(x, t
n)

4.2. Quasi-Monotone Reconstruction. In the Quasi-Monotone Interpolation
limiter each point on the Eulerian grid gets its own individual bounds that may
differ within a cell. To introduce something that looks closer at limiting the overall
reconstruction on the Eulerian cell would require thinking about moving cells forward
in time to keep track of which cells of the Lagrangian mesh intersect each cell the
Eulerian mesh at a future time-step. In fact for this to really work well the Lagrangian
cells would have to be split up into constant value subcells centered around the various
GLL nodes. This would be too expensive to do accurately and so an alternative
method that will approximate this is proposed. The key idea of this method is to
track GLL nodes forward in time only keeping track of the cells they land in. For
each cell define (q̄)k and (q

¯
)k by maximizing and minimizing over all of the nodes that

land in the τk or its direct neighbors (to account for nodes whose containing “subcells”
actually intersect the (k) cell without the node actually landing in that cell itself).
Note that as the CFL number increases a larger Halo may be needed to be included
around each cell to account for the more highly distorted Lagrangian subcells.

4.2.0.5. Quasi-Monotone Reconstruction.
1. For each x ∈ χ solve for x̃(tn+1) subject to ˙̃x = ν with x̃(tn) = x
2. find k such that x̃(tn+1) ∈ τk
3. define, for each τk, χk = x|x ∈ χ and x̃(tn+1) ∈ τk
4. find k1 such that x ∈ τk1
5. q

¯
(x) = minx∈χk1 q(x, t

n) and q̄(x) = maxx∈χk1 q(x, t
n)

4.3. Numerical Results. Figures (4.1(a)) and (4.1(b)) illustrate convergence
rates for two gaussian hills advected by a deformational but non-divergent flow field.
Shown in each figure are convergence rates for the basic Semi-Lagrangian scheme, and
schemes modified to enforce conservation and quasi-monotonicity. The conservation
enforcement alone does not affect the convergence rate in the infinite or L1 norms.
However the Quasi-Monotonicity limiters both affect the infinite norm convergence
quite a bit. The optimization based strategy, however, seems to still allow high-order
convergence in the L1 norm indicating that large adjustments need to be made by
the optimization scheme at only very few nodes. Both limiting schemes perform well,
and the difference between them is not very great. This holds true when advecting
discontinuous examples and so I recommend using the Quasi-Monotone Interpolation
scheme as it is cheaper computationally.
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(a) The L1 norm convergence rate (b) The L∞ norm convergence rate

Fig. 4.1: The effect of Quasi-Monotone limiters on Convergence Rate

5. Divergent Flows. Up until now the focus has been on tracer quantities
and how to deal with them. However everything said transfers directly to conserved
quantities if the velocity field is non-divergent. Conserved quantities in divergent
flows, however, must be treated somewhat differently. In this section the fluid density
in a divergent flow field will be considered. The density satisfies the following equation

∂ρ

∂t
+∇ · (νρ) = 0 (5.1)

Now in the divergent flow case ∇ · ν = 0 and this can be rewritten as the tracer
advection equation. However in the non-divergent flow case this equation is not as
trivially handled by the Method of Characteristics. Isolating the material derivative
on the left hand side gives

∂ρ

∂t
+ ν · ∇(ρ) = −ρ∇ · ν (5.2)

Thus along characteristics the density is governed by the ode

dρ

dt
= −ρ∇ · ν (5.3)

This means that the base numerical scheme must be amended
5.0.0.6. SLSEM for a Conserved Quantity in a Divergent Flow.
1. ∀x ∈ χ solve for x̃(tn) subject to ˙̃x = ν with x̃(tn+1) = x

2. Then set ρ(x, tn+1) = ρ(x̃, tn) exp(−
∫ tn+1

tn
∇ · νdt)

This method can be performed arbitrarily accurately by using high-order time step-
ping methods to perform the integral in the exponential factor.

5.1. Limiting Density In the Divergent Case. Limiting is not as straight-
forward in the Divergent flow case. Since the density is not constant along tracers
it is difficult to say precisely what bounds should be enforced in order to achieve
monotonicity. This is not much of a problem in the smooth density case, but it is
possible for conserved quantities to have non-smooth profiles and more generally from
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a mathematical viewpoint it is good to be able to handle equations in nonconservative
or conservative form. It would also be nice to be able to solve equations with simple
source terms of any kind (even if not due to a divergent flow field) while preventing
the development of non-physical oscillations. One way to enforce monotonicity on
densities is to look at evolving the mesh forward. Then, using the Reynolds transport
theorem

d

dt

∫
Ω(t)

ρdΩ(t) = 0 (5.4)

it is possible to bound physically possible values of the density based on computing
the change in cell volumes. In the high order case tracking cells forward is difficult
and expensive. However notice that if one assumes that the sources are finite (i.e.
in the divergent flow case that the velocity is differentiable) then it can be expected
that any q such that L(q) = 0 and q(x, 0) = 1.0 will remain smooth as this is a linear
problem. Also, if

∂q

∂t
+ ν · ∇(q) = q∇ · ν (5.5)

∂(ρq)

∂t
+ ν · ∇(ρq) = 0 (5.6)

and this quantity ρq is constant along tracers. So if a very accurate solution of equation
(5.5) can be obtained then that solution, coupled with the solution to equation (5.6),
can be used to obtain ρ. This also gives a quantity (ρq) for which bounds can be
defined as it will be constant along characteristics.

There is a great deal of freedom in choosing q, but there are two straightforward
methods. Either define q to initially be a constant function and then evolve it in time
with ρ or define a new q at each timestep. The former method will be referred to
as Evolving a Fictitious Density and the latter method will be referred to Evolving
a Fictitious Density with Restarting. The latter method ends up being equivalent to
just getting bounds from ρ at a previous timestep and evolving those bounds along
the characteristic as if they were subject to the same ODE as the density itself. This
is a very efficient method. However, the former method gives better results in general
for the linear problems considered with weakly divergent fields.

5.1.1. Limiting with A Fictitious Density With Restarting. This method
of limiting requires solving, at each time-step

∂ρq

∂t
+ ν · ∇(ρq) = 0 such that ρ(tn)q(tn) = ρ(tn)

As Q = ρq is a tracer it is easy to obtain its bounds Q̄n and Q
¯

n. Also since q(tn) = 1,
q can be evolved analytically (although integrals along characteristics will still be
approximated).

q(x, tn+1) = exp(

∫ tn+1

tn
∇ · νdt)
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5.1.1.1. Fictitious Density With Restarting.
1. For each x ∈ χ solve for x̃(tn) subject to ˙̃x = ν with x̃(tn+1) = x
2. (Q)T (x, tn+1) = Q(x̃, tn)

3. q(x, tn+1) = exp(
∫ tn+1

tn
∇ · νdt)

4. Then find ρ that minimizes ‖ρ − Q
q

T ‖22 such that
∫

Ω
ρdΩ =

∫
Ω
ρndΩ and

Q
¯
≤ ρq ≤ Q̄

5.1.2. Limiting with an Evolving Fictitious Density. Instead of restarting
every
timestep a simple idea is just to evolve q as a separate quantity. As long as the velocity
field is smooth and not too strongly divergent there should be very few problems with
spurious oscillations in evolving q as there is freedom to pick its initial condition. For
example this should be fine for atmospheric flows where usually the divergence is not
very strong. If there is ever a situation where q becomes under-resolved or seems to
be experiencing oscillations itself then it is possible just to restart q. The advantage
of not restarting q, though, is that ρq, which is a tracer , will be the stored quantity.
Storing the tracer avoids any sort of buildup of oscillations that could come from
introducing maxima or minima at intermediate steps. It will be shown that this does
give better results for weakly divergent flow fields.

Assuming there is no need to restart the method is:

∂ρq

∂t
+ ν · ∇(ρq) = 0 such that ρ(t0)q(t0) = ρ(t0)

As Q = ρq is a tracer we know how to obtain bounds Q̄n and Q
¯

n.
5.1.2.1. Evolving A Fictitious Density.
1. For each x ∈ χ solve for x̃(tn) subject to ˙̃x = ν with x̃(tn+1) = x
2. (Q)T (x, tn+1) = Q(x̃, tn)

3. q(x, tn+1) = q(x̃, tn) exp(
∫ tn+1

tn
∇ · νdt)

4. Then find ρ that minimizes ‖ρ − (Q)
q

T ‖22 such that
∫

Ω
ρdΩ =

∫
Ω
ρndΩ and

Q
¯
≤ ρq ≤ Q̄

5.2. Numerical Results.

5.2.1. A Divergent Flow Example. The numerical example explored in this
section has the following velocity field (u is the x velocity and v is the y velocity).

v =
1

2
sin(2πx) cos(π(y − 0.5))

3
cos(

tπ

T
) and u = − sin(πx)

2
sin(2π(y − 0.5)) cos(π(y − 0.5))

2
cos(

tπ

T
)

This flow field is divergent,and is designed to take densities to some intermediate
state and then return to the initial state when t = T . Figure 5.1(c) shows the
intermediate state. Figure 5.1(a) shows the final state with limiting done using the
Fictitious Density with Restarting. Figure 5.1(b) shows the final state with limiting
done using a Fictitious Density Without Restarting. Restarting the fictitious density
requires the storing of intermediate states where new maxima and minima have been
introduced, and this allows the formation of artificial oscillations. This is because
in some cells there will be new extrema values and if those cells also have artificial
oscillations, the oscillations may not be flagged as outside the range of physical values.
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(a) The density at the final time using a
fictitious density that is restarted at each
timestep

(b) The density at the final time using a
fictitious density that is not restarted

(c) The density in its intermediate state
created by a divergent flow.

Fig. 5.1: Fictitious Density Methods to Limit a Divergent Flow with a Discontinuous
Density

(a) The L1 norm convergence rate (b) The L∞ norm convergence rate

Fig. 5.2: The effect of Quasi-Monotone limiters on Convergence Rate for divergent
flows

5.2.2. Limiters effect on convergence. Figures 5.2(a) and 5.2(b) show that
the quasi-monotone limiters have the same pattern of effects on smooth density profiles
for divergent flow field as they do for non-divergent flow fields (not surprising since
the only thing that changes is that the density is no-longer constant).

6. Conclusions. A Spectral Element Method with Semi-Lagrangian time step-
ping has been introduced for the scalar advection equation. It was shown, computa-
tionally, that often higher accuracy and greater stability can be achieved by modifying
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the SL method to more accurately compute the integrals in a Characteristic Galerkin
variational form. The SLSEM was coupled to an Optimization Based Remap frame-
work that allowed the development of very efficient Optimization Based Limiters as
well as optimization techniques to enforce conservation. Work was done to extend
this scheme and the optimization based limiters to handle all possible flow fields that
would be encountered in atmospheric simulation. In particular the scheme and its
limiters were developed for the tracers under the effect of a zeroth order source term.
This is motivated by the fact that the fluid density in a divergent flow is a special case
of this. The density, in this situation, does not display monotonicity but a “fictitious
density” was introduced that allowed the definition of a quantity that does. The op-
timization based limiters were shown to generally not affect the L1 norm convergence
rate, even though they slow the L∞ convergence rate quite a bit.
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MULTILEVEL METHODS FOR THE STOCHATIC GALERKIN
METHOD FOR PDES WITH RANDOM INPUT DATA

SARAH V. OSBORN∗ AND ERIC T. PHIPPS†

Abstract. In this paper, we discuss solving partial differential equations (PDEs) with random
input data using the stochastic Galerkin method. This method can often be computationally very de-
manding. We consider a multilevel solution strategy for the stochastic Galerkin method that employs
hierarchies of spatial and stochastic approximations in hopes to diminish some of the computational
burden. Numerical results are presented that compare this method to the traditional, single level
method.

1. Introduction. In many applications, the values of parameters are often not
known exactly and an important task is propagating this uncertainty in the inputs
through a simulation. In particular, we are interested in finding the solution to partial
differential equations (PDEs) with random coefficients. Several methods are used to
solve these types of problems including sampling methods like Monte Carlo [12, 6].
While these types of methods are effective for many contexts, if higher accuracy is
necessary the large number of samples necessary makes some computations infeasi-
ble. Other methods like stochastic collocation [17, 1, 13, 14] and stochastic Galerkin
[8, 9, 18] have been explored that achieve faster convergence rates, but as the dimen-
sion of the stochastic space increases the computational cost increases greatly. We are
interested in exploring a multilevel based solution strategy to alleviate some of this
computational effort in the stochastic Galerkin method. This type of multilevel ap-
proach has been applied successfully for Monte Carlo methods, for instance in [3, 5], as
well as for the stochastic collocation method in [10]. The idea is to use a hierarchical
sequence of spatial approximations to the PDE as well as different stochastic approx-
imations. We seek to maintain the overall accuracy of the solution while decreasing
the computational cost of the calculation.

We start by describing the mathematical model and stochastic Galerkin formula-
tion for the model problem in Section 2. In Section 3, the formulation of the multilevel
method is given. The solution strategy and relevant linear algebra is discussed in Sec-
tion 4. In Section 5, numerical results are provided that illustrate the performance of
the proposed multilevel method compared against the standard, single-level stochastic
Galerkin method.

2. Problem Formulation.

2.1. Model Problem. Let D be an open subset of Rn and let (Ω,Σ, P ) be a
complete probability space, where Ω is the sample space, Σ is the σ-algebra generated
by Ω and P : Σ → [0, 1] is the probability measure. Given the random field a(x, ω) :
Σ × D → R and function f(x) ∈ L2(D), stochastic steady-state diffusion equation
with homogeneous Dirichlet boundary conditions is given by

−∇ · (a(x, ω)∇u(x, ω)) = f(x) in D × Ω (2.1)

u(x, ω) = 0 on ∂D × Ω. (2.2)

We are interested in finding a random function u(x, ω) : D×Ω→ R which satisfies
(2.1). Note that the divergence and gradient operators are considered to act on the
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†Sandia National Laboratories, etphipp@sandia.gov
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spatial variables x ∈ D only. It is assumed that the random field a can be expressed
in terms of a finite number M of random variables, denoted ξi(ω).

2.2. Weak Formulation. Let H2
0 (D) be the subspace of the Sobolev space

H1(D) that vanishes on the boundary ∂D with norm ‖u‖H1
0 (D) = [

∫
D
|∇u|2dx]

1
2 .

The equivalent variational formulation of (2.1) is given by the following: find
u ∈ H1

0 (D)⊗ L2(Ω) = V such that

b(u, v) = l(v), ∀v ∈ H1
0 (D)⊗ L2(Ω), (2.3)

where

b(u, v) =

∫
Ω

∫
D

a(x, ω)∇u · ∇v dx dP (2.4)

l(v) =

∫
Ω

∫
D

fv dx dP. (2.5)

2.3. Discretization. Following the stochastic Galerkin method [8, 9, 18], the
solution to (2.3) is sought discretizing both the spatial and stochastic parts of the
problem. Then the solution is sought in the finite-dimensional subspace defined as
the tensor product of a spatial finite element basis and a generalized polynomial chaos
expansion of a specified order denoted V nN ⊂ V where N and n are discretization
parameters for the stochastic and spatial dimension, respectively.

First, the PDE coefficients and the stochastic solution are discretized. This will
be accomplished here by using a truncated series expansion which will separate the
spatial variable x from the stochastic variable ω. It is assumed here that the random
field is uniformly distributed and a truncated Karhunen-Loéve (KL) expansion is used
to approximate a(x, ω). Assuming its covariance function C(x1, x2) is known, then a
has the truncated KL expansion

a(x, ω) ≈
M∑
i=0

ai(x)ξi(ω), (2.6)

where ξi(ω), i > 0 are identically distributed, uncorrelated random variables with
ξ0 = 1. The mean of the random field is a0 and ai(x) =

√
λivi(x) where (λi, vi(x))i≥1

are the solutions of the integral equation∫
D

C(x1, x2)vi(x2)dx2 = λivi(x1). (2.7)

Using a generalized polynomial chaos (gPC) approximation, the solution u can
be written as

u(x, ξ) ≈
P∑
i=0

ui(x)ψi(ξ)

where the basis functions {ψi(ξ)}Pi=0 form an orthogonal basis of multidimensional
polynomials of maximum total order N in random variables ξi. The total dimension
of the space spanned by {ψi} is given by

P + 1 ≡ (M +N)!

M !N !
.
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As we assume a uniform probability distribution for the random variables, the Leg-
endre polynomial basis is used.

For the spatial discretization, the finite element method is used where {φj(x)}Ndofj=1

are suitable finite element basis functions of H1
0 (D).

Then the discrete solution unN where n is the number of nodes in one spatial
dimension can be written as

unN =

P∑
i=0

Ndof∑
j=1

uijφj(x)ψi(ξ). (2.8)

Then, the Galerkin projection is applied in the tensor product space V nN which
yields a linear system of the form

Au = f

where A ∈ R(P+1)Ndof×(P+1)Ndof , u ∈ R(P+1)Ndof , and f ∈ R(P+1)Ndof .

3. Multilevel Formulation. The challenge at hand is now solving the linear
system of equations with (P + 1)Ndof degrees of freedom. In general, a fine mesh
is used to obtain good spatial accuracy and a high order stochastic approximation is
used to achieve good stochastic accuracy which overall leads to good overall accuracy.
For a fixed number of random variables, if the order of the polynomial chaos expansion
is increased then the computational cost dramatically increases. In order to alleviate
some of this computationally demanding work, a multilevel solution strategy is now
proposed. Let {unk}k∈N denote sequences of spatial approximations to the solution
u. Then, for any K ∈ N, we have the identity

unk =

K∑
k=0

(unk − unk−1),

where we let un−1 = 0.
Based on bounds on the stochastic approximation, it can be shown that as k →∞

less accurate stochastic approximations are necessary in order to estimate the quantity
(unk − unk−1) to a given accuracy. This means that for finer spatial discretizations
lower order polynomial chaos expansions can be used to approximate the solution.
Thus, our multilevel solution strategy can be written as

ûnKN ≈
K∑
k=0

(unkpk − unk−1
pk

),

where pk are the polynomial orders used in the polynomial chaos expansion where
0 < pK ≤ pK−1 ≤ · · · ≤ p0 ≤ N .

4. Solution Strategy. Using the multilevel solution strategy, a hierarchy of
linear systems with different spatial and stochastic discretizations now must be solved.
Some consideration should be given to the structure of the matrices that arise from
the stochastic Galerkin discretization.

4.1. Matrix Structure. After the stochastic Galerkin discretization, the re-
sulting block linear system consists of (P + 1)× (P + 1) coupled blocks where the size
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of each block is determined by the spatial discretization. The system can be written
using Kronecker-product structure as

A =

P∑
i=0

Gi ⊗Ki,

where the matrices Gi correspond to the stochastic discretization and each matrix Ki

is a deterministic finite element stiffness matrix. This choice of layout is made out
of convenience to allow the reuse of deterministic solver data structures as well as
preconditioners.

For certain problems because of some computational considerations, inverting the
layout of the system is effective where the stochastic degrees of freedom corresponding
to a given spatial node are grouped together. Using the Kronecker-product notation,
this equivalent system can be written as

A =

P∑
i=0

Ki ⊗Gi.

This is the form of the linear system that will used in our linear solver.

4.2. Linear Solver. Many approaches to solving such systems have been pro-
posed in the literature. A preconditioned iterative method is considered here, in
particular, the preconditioned conjugate gradient (CG) method as the system is sym-
metric, positive-definite. The preconditioner used here is the mean-based precondi-
tioner which approximates the random diffusion coefficient by its mean values[16]. It
is inexpensive to apply and has been shown to perform very well under the assump-
tion that the variance of the input data is small and a low-order polynomial chaos
expansion is used.

5. Numerical Experiments. In this section, numerical experiments are re-
ported comparing the multilevel approach with the standard, single-level approach.
Consider the model problem (2.1) with D = [0, 1]3 and source term f(x) ≡ 1. The
diffusion coefficient a(x, ξ) is modeled with a Karhunen-Loéve-like random field model
with mean µ = 1 and standard deviation σ = 0.25. We assume the variables in the
expansion are uniform over [−1, 1].

The equations are discretized in space using tri-linear finite element basis func-
tions on a hexahedral mesh. The Trilinos Project [11] is used for the multilevel solution
strategy. The Stokhos package offers tools for Embedded UQ methods and is used
for the stochastic Galerkin discretization of the equations[15]. After discretization,
the linear equations are solved using CG with a relative tolerance of 10−7 with mean-
based preconditioning which is applied with a single V-cycle of algebraic multigrid.
Tpetra is used for the linear algebra objects[2], Belos’ CG is used as the iterative
solver method[4] and the MueLu package provided the algebraic multigrid which is
used to apply the mean-based preconditioner[7].

For the numerical experiments, we consider M = 1 random variables and N = 5
total order degree of the polynomial chaos expansion so P + 1 = 6. In the multilevel
scheme, we use K = 3 and are interested in calculating the solution on a 32× 32× 32
mesh where our spatial hierarchy is to coarsen the number of nodes in each spatial
direction by a factor of 2. Then the multilevel formula for our solution is

û32
5 = (u32

p3 − u16
p3) + (u16

p2 − u8
p2) + (u8

p1 − u4
p1) + u4

p0 .
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We compute a reference solution, uref = u64
5 , using a 64× 64× 64 mesh with N = 5

in order to compute the error of our calculated results against. Then, we vary the
polynomial orders, pk, in the multilevel formula to compute the multilevel approxima-
tion û32

5 . The calculated solution is interpolated spatially to the reference mesh and
the spatial L2-norm of each polynomial chaos coefficient of the quantity uref − û64

5 is
calculated. For the calculations, we chose a tolerance of 10−7 for the desired accuracy
for each polynomial chaos coefficient in the computed solution. Then, we experimen-
tally found the polynomial orders necessary to achieve the particular tolerance. The
polynomial orders necessary were found to be p3 = 1, p2 = 1, p1 = 2, and p0 = 4 for
a tolerance of 10−7 when compared to the reference soltion. In Figure 5.1, the spatial
L2-errors for each polynomial chaos coefficient are shown for the solution computed
directly and the solution computed with the multilevel formula with the previously
specified polynomial orders. It should be noted that we only expect the multilevel
solution error to be at most 10−7 as that is our chosen accuracy.

Fig. 5.1: Error in each coefficient of the solution computed directly and the solution
compute with the multilevel method

The computational benefit in the multilevel method is the fact that on the fine
grid the desired accuracy is achieved with N = 1, in our experimental example.
In our example, only M = 1 random variable is considered, but in more realistic
computations more random variables are considered. For example, consider M = 10
random variables then P + 1 = 3, 003. Table 5.1 shows the degrees of freedom in
the linear system for solving the PDE with different number of spatial nodes and
polynomial orders for M = 10 random variables. If the solution u32

5 were computed
directly, a linear system with 107,918,811 degrees of freedom must be solved. Using
the multilevel formula to compute û32

5 , only 692,901 degrees of freedom must be found
which offers considerable savings in computational cost.
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Degrees of freedom
Order Nx = 32 Nx = 16 Nx = 8 Nx = 4
1 395,307 54,043 8,019 1,375
2 2,371,842 324,258 48,114 8,250
3 10,277,982 1,405,118 208,494 35,750
4 35,972,937 4,917,913 729,729 125,125
5 107,918,811 14,753,739 2,189,187 375,375

Table 5.1: Total degrees of freedom for varying mesh sizes where Nx is the number
nodes in one-dimension and polynomial order for N = 10 random variables.

6. Conclusions. Using the stochastic Galerkin to solve PDEs with random co-
efficients is an effective yet expensive task especially as the stochastic dimension in-
creases. A multilevel solution strategy was proposed based on the fact that the so-
lution can be written as a telescoping sum of a hierarchy of spatial approximations.
The ability to use lower-order stochastic approximations within the sum allows for
computational savings. Numerical results were provided that show this method can
achieve considerable computational savings while maintaining overall accuracy in the
solution. In the future, we hope to extend this idea to a multigrid preconditioner for
the stochastic Galerkin system where by using a spatially coarse-grid representation
of the problem with different stochastic approximations in a multigrid hierarchy.
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LAMMPS KOKKOS PACKAGE

SIKANDAR Y. MASHAYAK∗, CHRISTIAN R. TROTT† , AND STEVEN J. PLIMPTON‡

Abstract. In this work, we developed performance enhancements of the LAMMPS[4] molecular
dynamics package for hybrid HPC platforms that use accelerators, such as GPUs and Intel Xeon
Phi co-processors, in addition to multi-core CPUs. Specifically, we used the Kokkos [3] C++ library
to port portions of LAMMPS to multiple accelerator devices. The following LAMMPS components
were accelerated using Kokkos: atoms styles charge, bond, angle, molecular, and full; pair styles
coul/cut and lj/cut/coul/cut; and fix style langevin. Benchmark tests using GPUs and Intel Xeon
Phi accelerators were performed to analyze the peformance gain due to the Kokkos-enhanced styles.

1. Introduction. LAMMPS is a molecular dynamics (MD) code used to simu-
late the properties of fluids, solids, and molecules. MD simulations of systems such
as biomolecules, polymers, materials, and mesoscale models are computationally in-
tensive. MD calculations, however, are inherently parallel, and simulations can be
performed faster by distributing the parallel calculations across multiple processes.
LAMMPS uses spatial-decomposition techniques that partition a simulation domain
into smaller subdomains and performs the subdomain computations in parallel via
MPI on multiple CPUs. With the advent of hybrid HPC platforms, further speed-
up can be achieved by utilizing the diverse and evolving accelerator hardware. In
addition to parallel domain decomposition, an accelerator allows for exploitation of
finer-grain parallelism by spreading the computations assigned to a single MPI task
across the dozens or many hundreds of cores available on the accelerator.

To run LAMMPS on an accelerator, portions of LAMMPS code typically need
to be re-written or ported to the specific accelerator. A major challenge in this
effort is that the instruction sets, programming model, compilers, and memory ac-
cess patterns for different accelerator hardware are very different. Various LAMMPS
packages that port LAMMPS code to a specific accelerator have been developed. For
example, the GPU[2, 1] and USER-CUDA packages implement a subset of LAMMPS
styles for GPUs. The USER-OMP package does the same for multi-core CPUs using
OpenMP threads. Because accelerator hardware and programming models are con-
tinually evolving and becoming more diverse, it is increasingly complicated to adapt
LAMMPS code for multiple accelerator targets. This is a problem Kokkos attempts
to solve, by providing a unifying abstraction that allows one version of ported code
to be run on a variety of accelerator hardware. Other programming models, such as
OpenCL, C++ AMP, and Thrust have a similar goal.

In this work, we used the Kokkos C++ library to port key LAMMPS kernels
to various accelerators. Kokkos provides a unifying abstraction for both the data
parallelism and memory access patterns across various architectures. This abstraction
allows Kokkos to maximize the portions of a legacy code that can be compiled for
various devices and still achieve nearly the same performance as if the code kernels
were specifically written for a specific device. Kokkos currently supports CUDA for
NVIDIA GPUs, and pthreads or OpenMP threads for CPUs and Intel Xeon Phi
co-processors.

2. Methods.

∗University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering,
mashaya1@illinois.edu,
†Sandia National Laboratories, crtrott@sandia.gov,
‡Sandia National Laboratories, sjplimp@sandia.gov
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2.1. LAMMPS. LAMMPS is a modular object-oriented C++ code. It uses
virtual base classes to define core components of an MD simulation, such as the ge-
ometric domain, lists of atoms and their properties, molecular topology, and interac-
tion potentials between atoms. Likewise it defines integrators and computations that
take place during a timestep, such as constraint forces, thermostats and barostats,
as well as analaysis calculations such as thermodynamic and dynamic properties of
the system. These base classes can be used to implement new styles for computing
interactions, per-timestep computations, and analysis calculations. For example, the
Lennard-Jones pairwise interaction is implemented as a derived class of the pair style
base class. We leveraged this modular design to make new styles that use Kokkos
functionality to perform their computation on Kokkos-supported hardware. To make
a specific style work with Kokkos, we define a new class, which can be derived from
the CPU version of the style, or from the base style class, and implement only the
subset of methods defined by the base class that will run on the device via Kokkos.

2.2. Kokkos. As mentioned in the Introduction, the unifying abstractions within
Kokkos enable performance portability across several flavors of manycore architec-
tures. An MPI process, running on compute node acts as a single master thread and
dispatches computational kernels for worker threads running on the manycore devices
connected to the node. Kokkos executes the data parallel computational kernels in
an execution space and the kernels operate on data laid out as multi-dimensional
arrays located in the memory space accessible from the execution space. To make
the multidimensional arrays portable across different hardware, Kokkos provides a
polymorphic data layout via a templated class called View, such that the optimal
layout of the array can be tuned to specific hardware. Typically, on a single node of
a hybrid HPC platform, Kokkos divides the execution and memory spaces into two
categories: the host space and device space. For example, for a node connected to a
GPU, the host space is on the CPU and the device space is on the GPU. For an Intel
Xeon Phi co-processor running in native mode, both the host and device spaces are
on the Phi. Further details about Kokkos abstractions, multidimensional arrays, and
parallel execution are given in [3].

2.3. LAMMPS-Kokkos. To port individual LAMMPS styles to various ac-
celerators using the Kokkos, we followed the migration strategy given in [3]. This
strategy has five steps: (1) change data structures, (2) develop functors, (3) enable
dispatch for device execution, (4) optimize algorithms for threading, and (5) specialize
kernels for specific architectures. The details of these steps for LAMMPS styles are
similar to the steps used for the Mantevo miniMD application, as explained in [3].

Specifically, we created Kokkos versions of a small subset of the LAMMPS atom,
pair, and fix styles. These were added to the Kokkos package in LAMMPS which
also contains various core classes which are added to or replace core LAMMPS classes
when building with Kokkos support. Before this work, the Kokkos package had a few
styles (atom style atomic, pair style lj/cut, and fix style nve) which were previously
implemented by Christian Trott and released in the 29May2014 version of LAMMPS.

In this work, we added several new styles to the Kokkos package:
1. Atom styles:

(a) charge
(b) bond
(c) angle
(d) molecular
(e) full
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2. Pair styles:
(a) coul/cut
(b) lj/cut/coul/cut

3. Fix style:
(a) langevin

We also made modifications to a few of the core classes of the Kokkos package.
Specifically, PairKokkos was extended to include Coulomb components of force and
energy, and NeighborKokkos was extended to allow exclusion or inclusion of bonded
atoms when a neighbor list is built.

3. Results and Discussion. We performed tests to validate the accuracy of the
newly implemented Kokkos styles by comparing simulation results with the original
CPU-based styles. We then performed benchmarks to evaluate the performance gain
due to the Kokkos package, and compared to the performance of other packages
available in LAMMPS. Specifically, we compared the Kokkos performance to the
CPU package, which is the standard LAMMPS MPI-only source code, to the GPU and
USER-CUDA packages which implement various LAMMPS styles for NVIDIA GPUs,
and to the USER-OMP package which implements styles with OpenMP threading for
multi-core CPUs. Results of the tests are presented in the next two sub-sections.

3.1. Validation. In this section, we check the accuracy of the fix langevin style
as implemented in Kokkos. For fix langevin, the routines that loop over owned atoms,
such as the post force, compute scalar, and end of step were parallelized using Kokkos.
Also, the random force component of fix langevin was altered, to enable thread-
safe parallel generation of random numbers. This was done using built-in Kokkos
random number generator. One limitation of the Kokkos-based fix langevin is that
the packing of data exchanged between processors must be performed on the host,
which can impact performance. To test the new implememtation, an atomic fluid
system with the Lennard-Jones potential was simulated using fix nve and fix langevin
for thermostatting. The time evolution of the system temperature, potential energy,
and pressure were compared with the CPU-based LAMMPS results. Fig. 3.1 shows
that the results from the two implementations match each other.

3.2. Benchmarks. For performance benchmarking, we also used an atomic fluid
system with the Lennard-Jones potential. The force cut-off was 2.5σ, the neighbor skin
was 0.3σ, and time integration was done in the constant NVE ensemble. Benchmark
runs were performed on the Shannon and Compton testbeds at Sandia. Kokkos per-
formance was compared to both CPU performance and to other packages in LAMMPS
that provide accelerator support, namely the GPU, USER-CUDA, and USER-OMP
packages. In addition, we also compared LAMMPS performance on this benchmark
problem with the popular GROMACS[5] MD program, which is known to provide
very high performance.

3.2.1. NVIDIA GPU accelerator on Shannon machine. Each node of the
Shannon machine, used in this section, has two 8-core Sandy Bridge Xeon E5-2670
2.6GHz HT-deactivated CPUs as well as 2 NVIDIA K20x GPUs.

The first set of benchmark results are for simulations using various LAMMPS
packages running on a single node of Shannon. Problem sizes from 2K to 8M atoms
were used. For each problem size and package, the run times for different combinations
of the number of MPI tasks, number of OpenMP threads per task, and number
of GPUs were obtained. From this data, for each problem size and package, the
combination that produced the fastest run time was determined. For example, in
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Fig. 3.2(a), for the Kokkos package compiled with OpenMP support (CPU-only, no
use of the GPUs), the optimal performance is achieved with 16 MPI ranks and 1 thread
per MPI rank for all problem sizes. In Fig. 3.2(b), for the Kokkos package compiled
with both OpenMP support (on the CPU) and GPU support, for problem sizes ≤ 16K
optimal performance was achieved with only one GPU. For larger problem sizes two
GPUs were optimal. In both cases, the number of OpenMP threads per MPI tasks
did not significantly affect the performance, because nearly all computations were
performed on the GPUs.

Fig. 3.3 shows results for all the CPU and GPU accelerator packages tested,
running on a single node of Shannon. Each data point is the performance using the
optimal combination of the MPI tasks, OpenMP threads/task, and number of GPUs
for that package and problem size. The Y-axis performance metric is millions of
atom-timesteps per second, i.e. a value of 10 for the 256,000 atom system means
the simulation runs at the rate of roughly 40 timesteps/second. The data shows that
for problem sizes smaller than 16K atoms the USER-OMP package is the fastest; for
larger problem sizes the Kokkos package compiled with GPU support is the fastest. Of
particular interest is that for large problems the Kokkos package with GPU support
outperforms both the GPU and USER-CUDA packages previously implemented in
LAMMPS. Both those packages were tested in double-precision mode which is the only
GPU mode currently available in Kokkos. For mixed- and single-precision mode, the
GPU and USER-CUDA package performance is closer to the Kokkos double-precision
performance, offering the hope that Kokkos performance might also increase if other
precision options are implemented in the future.

We note that the performance of the packages that use the GPUs (Kokkos, GPU,
and USER-CUDA packages) improves signficantly as the problem size increases from
2K to 2M atoms. For the Kokkos-GPU package the improvement is 26x, for the GPU
package it is 6x, and for the USER-CUDA package it is 29x.

The CPU-only simulations, with Kokkos compiled with OpenMP support and
the USER-OMP package, performed best when all using 16 MPI tasks (on 16 cores).
There is little increase in performance with problem size for the CPU runs, reflecting
the O(N) linear scaling of short-range MD models. It is worth noting that the perfor-
mance of the Kokkos with OpenMP is similar to the CPU Lennard-Jones (LJ) style
in LAMMPS. The USER-OMP package is about 20% faster, because it implements
an optimized version of the LJ pairwise force kernel.

One of the main conceptual differences between the Kokkos (with GPU support)
and GPU packages is that the GPU package transfers data between the GPU and
host CPU at every time-step. By contast, in the Kokkos package, data stays on a
GPU until a non-Kokkos operation (pair, fix, compute, or communication style) is
invoked. For the simple LJ benchmark, both the pair style lj/cut and fix nve styles
were implemented in the Kokkos package. This means data can stay on the GPU
for many timesteps, resulting in less communication. More realistic (non-benchmark)
input scripts might not allow for this reduced communication, due to invocation of
commands that use pair, fix, or compute styles not (yet) supported by Kokkos. To
evaluate the effect of CPU/GPU communication on performance, we ran the Kokkos
simulations using the CPU-based fix nve style, which force data communication be-
tween the GPU and CPU at every time step. Fig. 3.4 shows the the results. The
Kokkos simulations are now slower than the GPU package, using either 1 or 2 GPUs.
This indicates that there may be communication performance improvements that can
be made in the Kokkos package, to take advantage of similar optimizations imple-
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mented by the GPU package.

To test strong-scaling for the various CPU- and GPU-based packages in LAMMPS
on Shannon, a fixed problem size of 2M (2097152) atoms was run on different number
of nodes. To test weak-scaling a scaled problem with of 512K (524288) atoms per
node was run on different number of nodes. In both cases the node count varied from
1 to 24 nodes. The results are shown in Fig. 3.5(a) and 3.5(b). In both cases the
Y-axis is now plotted as millions of atom-timesteps per second per node. This means
that ideal scaling in both plots would be a horizontal line.

For the strong-scaling test with the GPU-based packages, performance falls off
as node count increases. This is because the problem size per node is decreasing and
the performance is essentially back-tracking to the left on the corresponding data
curves in Fig. 3.4. The CPU-based packages do not show the same effect, since their
performance in Fig. 3.4 is largely independent of problem size. The weak-scaling test
shows as less-dramatic fall-off with increasing node count, since the problem size per
node remains constant. There is still some decrease in performance for the Kokkos
with GPU-support results, which is likely due to the cost of MPI-based inter-node
communication which reaches a constant cost at 8 nodes for the style of spatial-
decomposition LAMMPS uses for a periodic 3d problem.

We also compared LAMMPS performance to GROMACS on Shannon. For the
GROMACS simulations (current version 5.0), to make a fair comparison, we tried to
select parameters and algorithms in GROMACS that were as similar to the LAMMPS
simulations as possible. Specifically, the GROMACS runs were performed using LJ
units, a LJ pair potential with a cutoff of 2.5σ, grid-based neighbor list formation with
an update frequency of 20 timesteps, and time integration using the NVE ensemble.
We note that the GPU-based version of GROMACS performs its calculations on the
GPU in single precision, whereas Kokkos (with GPU support) is double-precision. To
obtain reliable estimates of the GROMACS timings, we ran the GROMACS simula-
tions for 1000 timesteps and timed the last 500 steps for only the loop timing (exclud-
ing setup costs). Fig. 3.6 shows the comparison of the two codes on this benchmark
problem, where “gmx” stands for GROMACS, for the same strong- and weak-scaling
tests described for the previous plots. The CPU performance of GROMACS is nearly
2x faster than LAMMPS, though the difference would be less if the USER-OMP (or
new USER-INTEL) package were used for this problem. For GPUs, the Kokkos (with
GPU support) package is slightly faster than GROMACS for small node counts and
essentially the same for larger node counts, even with the single- vs double-precision
trade-off. We note that this is a simple LJ atomic fluid. Further benchmarking for
more complex systems (water, solvated proteins, etc) need to be performed, especially
since these are the kinds of systems GROMACS is specifically optimized for.

3.2.2. Intel Xeon Phi accelerator on Compton machine. Each node of the
Compton machine, used in this section, has two 8-core 2.60 GHz Intel Xeon E5-2670
CPUs as well as two 57-core, 228 threads, 1.10 GHz pre-production Intel Xeon Phi
co-processors.

The next set of benchmark results compare the performance of the LAMMPS
USER-OMP and CPU packages, with Kokkos compiled with Xeon Phi support. This
is for runs on a single Intel Xeon Phi co-processor. Using the Kokkos package in this
mode, Kokkos allocates both the host and device spaces on the co-processor, and it
can use mulitple physical cores on the co-processor via MPI and/or OpenMP threads.
Therefore, to benchmark Kokkos we ran each problem size on various combinations
of the number of MPI tasks and the number of OpenMP threads per task. The
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LAMMPS CPU and USER-OMP packages were also run in similar manner. Note
that these runs were also on the Xeon Phi co-processor, not on the Compton CPUs.
The Compton CPUs are very similar to the Shannon CPUs, and so we expect that
running the Kokkos, CPU, and USER-OMP packages entirely on the Compton CPUs,
without using the Phi co-processor, would give performance identical to that indicated
by the graphs in Fig. 3.3 labelled Kokkos-OMP, CPU, and USER-OMP, respectively.

The performance results for the 3 packages running on a single Intel Xeon Phi
accelerator are shown in Figures 3.7(a), 3.7(b), and 3.8. For all the problem sizes, the
CPU package performance was best for 128 MPI tasks (not the maximum available
224). For the USER-OMP package, performance was best for 64 MPI tasks and 3
OpenMP threads per task (using 192 = 64*3 physical cores). For the Kokkos package,
performance was best for 32 MPI tasks and 7 OpenMP threads per MPI task (all
224 cores). However the overall performance of Kokkos with Xeon Phi support was
only slightly better than the CPU package performance and slightly worse than the
USER-OMP package. More importantly, the performance is about 2x slower (at the
largest problem sizes) than the Shannon CPU results shown in Fig. 3.3 for the same
benchmark test, and dramatically slower than the GPU results in the same plot.

Our current thinking is that the relatively poor performance of LAMMPS on the
Xeon Phi co-processor is due to limiations in the current Phi hardware and not the
Kokkos package itself. For example, on the current generation Phi, gather operations
from cache are slower compared to on a GPU, and in the LJ pairwise force kernel used
in this benchmark, there are 7 gather operations per 24 math operations. Specifically
the cutoff distance, x, y, z, type, epsilon, and sigma parameters must be gathered for
each atom’s neighbors.

We also note that Kokkos uses the Xeon Phi co-processors in “native” mode.
There is an independent effort by Intel to develop a USER-INTEL package for LAMMPS
with Xeon Phi support for various pair styles which uses the Phi in “offload” mode.
We plan to make a performance comparison of the two modes in the future.
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(a) Temperature.

(b) Total potential energy.

(c) Pressure.

Fig. 3.1: Comparison of thermodynamic properties from simulations using the Kokkos
and CPU-based fix langevin thermostat.
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(a) With OpenMP threads.

(b) With GPU and OpenMP threads.

Fig. 3.2: Kokkos performance on a single node of Shannon.
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Fig. 3.3: Performance of various CPU- and GPU-based packages in LAMMPS on a
single node of Shannon.
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Fig. 3.4: Comparsion of the GPU and Kokkos packages on a single node of Shannon,
as communication costs were varied.
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(a) Strong-scaling.

(b) Weak-scaling.

Fig. 3.5: Strong-scaling and weak-scaling performances on Shannon.
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(a) Strong-scaling.

(b) Weak-scaling.

Fig. 3.6: Comparison of LAMMPS and GROMACS performances on Shannon.
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(a) CPU.

(b) USER-OMP.

Fig. 3.7: Performance of the CPU and USER-OMP package on a single Intel Xeon
Phi accelerator of a Compton node.
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Fig. 3.8: Performance of the Kokkos package on a single Intel Xeon Phi accelerator
of a Compton node.
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4. Conclusions. In this work, we implemented various “styles” available in the
LAMMPS molecular dynamics simulator to enable Kokkos support. These include
atom styles charge, bond, angle, molecular, and full; pair styles coul/cut and lj/cut/-
coul/cut; and fix style langevin. The accuracy of the newly implemented styles were
validated against the original CPU versions. To assess the performance benefits of-
fered by Kokkos for multi-cores, GPUs and Intel Xeon Phis, we ran benchmark tests
of a simple Lennard-Jones atomic fluid model on the Shannon and Compton testbeds
at Sandia. For large problem sizes we found the peformance of Kokkos on GPUs to
be faster than any of the other accelerator packages currently available in LAMMPS.
Due to hardware limitations of the current-generation Intel Xeon Phi co-processors,
the Kokkos package performed relatively poorly on Intel Xeon Phi co-processors. We
are hopeful that the next-generation Xeon Phi will show improved performance for
LAMMPS. The various Kokkos-enabled styles discussed in this report were released
in LAMMPS in the 29Aug2014 version, as part of its Kokkos package.
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FORCE CONVERGENCE IN STOPPING POWER FROM
MOLECULAR DYNAMICS

PHILIP M. VAN EVERY∗, ANDREW D. BACZEWSKI† , AND RUDOLPH J. MAGYAR‡

Abstract. Using Ehrenfest time-dependent density functional theory (TDDFT), we simulate
a proton passing through several elemental metals under ambient conditions. Convergence in the
force acting on the proton with varying k-point grids is analyzed. We also investigate the inclusion
of a gauge correction that remedies issues with charge non-conservation in the projector augmented
wave (PAW) formalism. The computational speed of varying band parallelization parameters in
different system sizes is also explored. We simulate stopping power curves in Lithium, Beryillium,
and Aluminum. All simulations are performed with a modified version of VASP and post-processed
with local scripts.

1. Introduction. The energy loss by an ionized particle travelling through a
crystal lattice, called stopping power, is a characteristic of interest in many fields. It
has been studied in the context of nuclear applications, including radiation damage,
and its implications in space and medical applications have been duly noted [3]. The
ability to simulate and calculate stopping power has important implications in mag-
netic liner intertial fusion and other applications studied with the Z-machine here at
Sandia National Laboratories.

Classical molecular dynamics [4] simulations, as well as density functional theory
(DFT) molecular dyanmics [3] simulations have been used to compute stopping power
and related characteristics. The method explored herein employs an implemented
Ehrenfest time-dependent density functional theory (TDDFT) capability in a modified
version of the Vienna Ab-Inito Simulation Package (VASP) [7, 8, 5, 6] in the Projector
Augmented Wave (PAW) [9, 2, 11] formalism.

K-point grids play a fundamental role in periodic electronic structure simulations.
They have not been extensively studied in the context of Ehrenfest-TDDFT. In Sec-
tion 2 we assess the convergence of force curves in Γ-Centered, Monkhorst Pack [10]
schemes. High symmetry and mean value k-point schemes are also explored.

To conserve electron number, a gauge correction has been implemented. The
effects of this gauge correction on the force curve and stopping power calculation for
a system are explored in Section 3. We also address its computational cost.

In high-performance computing environments, computational speed is a ubiq-
uitous constraint. Distribution of work over electronic bands can have a dramatic
effect. In Section 4, we spend some time exploring the effect on computational speed
of varying band parallelization parameters and levels of computational resource usage.

With some insight into the roles of the above variables, we compute stopping
power curves in Lithium, Beryllium, and Aluminum.

2. Force Convergence in Varying K-Point Grid Schemes. To explore
the effects of varying k-point grids, we used a 32 atom, body-centered cubic (BCC)
Lithium supercell at 300K, with a 3.49Å lattice constant, tiled from a 2 atom unit
cell in an aspect ratio of 4× 2× 2. A proton traverses the cell in a channeled path at
a velocity of 1.25 au or 27.346 Å/fs as in Figure 2.1.
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Fig. 2.1: rear (000) and side (101) views of the proton in the 32 atom Li supercell

The following types of k-point grids were tested for force convergence:

Γ-Centered: A symmetric k-point mesh is automatically generated with its origin
at the Γ-point [7]. Γ-Centered k-point grids were tested in aspect ratios of
1 × 2 × 2, 2 × 3 × 3, 3 × 6 × 6, and 4 × 8 × 8. As seen in Figure 2.2, the
2×3×3, 3×6×6, and 4×8×8 configurations yielded stable curves, and the
1× 2× 2 configuration did not, suggesting that it did not adequately sample
the system.
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Fig. 2.2: Γ-Centered and Monkhorst Pack k-point mesh yield almost identical force
curves. In both k-point schemes, the 1x2x2 force curve shows unstable oscillation
starting at around 7 Å.
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Monkhorst Pack: K-point grids with even subdivisions are shifted off Γ [7] by an
algorithm developed by Hendrik Monkhorst and James Pack [10]. Monkhorst
Pack k-point grids were tested in the same aspect ratios listed above. Again,
the 2×3×3, 3×6×6, and 4×8×8 configurations yielded visually stabilizing
force curves, while the 1× 2× 2 configuration did not, as seen in Figure 2.2.

High symmetry and mean-value points K-Point: The Baldereschi mean-value
point [1] for a BCC cell, the Γ-point, and several other mean-value k-point
variations were explored. None of the mean-value k-point calculations yielded
a stabilizing force curve, as seen in Figure 2.3.
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Fig. 2.3: Single k-point force curves in the 32 atom Li system fail to stabilize. Each
force curve shows unstable oscillation beginning at around 6 Å.

The 4×8×8 Γ-Centered and Monkhorst Pack grids contained the greatest number
of k-points. The 4 × 8 × 8 Γ-Centered grid is arbitrarily used here as a basis for
comparison to determine the accuracy of other k-point grids. An average relative
error was calculated in all of the above force curves to show their deviation from the
Γ-Centered 4× 8× 8 curve.

As seen in Table 2.1 and Figure 2.2, the Monhorst Pack and Γ-Centered k-point
grids yielded force curves that are nearly identical in behavior and relative error. A
convergent force curve was created with either mesh generation technique, provided
a sufficient number of k-points were used.

Although they make for a much quicker calculation, the high symmetry and mean-
value k-point configurations, including the Γ-point and the Baldereschi mean value
point, did not produce convergent force curves.
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Table 2.1: 32 atom Lithium system (4× 2× 2)

K-Point Grid Stopping Power (eV/Å) % Error Stopping Power % Error Force
Γ-Centered

1× 2× 2 5.349 2.94 10.9
2× 4× 4 5.185 0.206 0.855
3× 6× 6 5.207 0.207 0.734
4× 8× 8 5.196 0.0 0.0

Monkhorst Pack
1× 2× 2 5.207 0.215 11.4
2× 4× 4 5.195 0.0205 1.06
3× 6× 6 5.187 0.179 2.19
4× 8× 8 5.197 0.0294 0.373

Single K-Point
Γ:(0,0,0) 5.107 1.72 17.5

(0.5, 0.25, 0.25) 5.126 1.34 11.2
(0.0, 0.25, 0.25) 5.202 0.126 11.3

BMV:(0.25, 0.25, 0.25) 5.15 0.883 13.1

3. Gauge Correction. In initial simulations, the total charge decreased at a
constant rate, and the system would lose .07 to .09 electrons. A gauge correction was
implemented in the VASP source code to correct this, holding the number of electrons
in the system constant throughout the simulation. In a modified version of VASP, it
is actived with a ‘LIONGAUGE’ flag in the the INCAR file. Figure 3.1 shows typical
behavior in this regard with and without the gauge correction for comparison.
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Fig. 3.1: number of electrons in a supercell with and without the gauge correction

Simulations were run with the same parameters as in Section 2 using Monkhorst
Pack and single k-point configurations, this time with the gauge correction turned
off. The contrast in force curves with and without the gauge correction enabled
is quantified in Tables 3.1 and 3.2. Table 3.2 shows the error for each force curve
without an enabled gauge correction relative to the analogous force curve with the
gauge correction. In every case, the gauge correction affects the force curve by less
than 4%. Table 3.1 shows error in force relative to the same Γ-Centered 4 × 8 × 8
force curve used as a basis for comparison in Section 2. The errors do not differ very
much from those depicted in Table 2.1 for corresponding k-point grids.
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Table 3.1: 32 atom Lithium values without gauge correction, relative to 4 × 8 × 8
Γ-Centered grid with gauge correction enabled

K-Point Grid Stopping Power (eV/Å) % Error Stopping Power % Error Force
(0.25,0.25,0.25) 5.02 3.4 14.1

(0,0,0) 4.98 4.1 19.0
1× 2× 2 5.07 2.3 12.8
2× 4× 4 5.39 3.8 3.6
3× 6× 6 5.16 0.6 4.5
4× 8× 8 5.16 0.6 3.7

Table 3.2: 32 atom Lithium values without gauge correction, relative to values with
gauge correction enabled

K-Point Grid % Error Stopping Power % Error Force
(0.25,0.25,0.25) 0.9 3.6

(0,0,0) 1.7 3.8
1× 2× 2 0.2 3.8
2× 4× 4 0.02 3.6
3× 6× 6 0.2 3.6
4× 8× 8 0.03 3.6

4. Computational Speed. In this Section we explore the effects on computa-
tional speed of varying band parallelization. Band parallelization dictates the distri-
bution of bands across the compute nodes used to run the simulation. The computer
cluster Redsky at Sandia National Laboraties was used to obtain the following data.
It contains eight 2.93 GHz Intel Nehalem cores per compute node. Communication
amongst nodes during a simulation, and thus its parallelization scheme play a pivotal
role in its completion time. In VASP, the parameter that determines the number of
bands treated in parallel is called NPAR.

Varying values of NPAR were used with 32 atom, 90 atom, and 192 atom Lithium
systems with aspect ratios of 4× 2× 2, 3× 5× 5, and 6× 4× 4 respectively. In each
case, short simulations were run in order to gather time data for 5 - 20 force calculaton
steps in varying numbers of cores and values of NPAR. Results can be seen in Table
4.1 and Figure 4.1.

The data in Table 4.1 on the 32 atom system shows a typical curve that is rep-
resentative of the general behavior of all of the tested systems in varying values of
NPAR. A minimum time value exists at NPAR = 32, in between the extreme values
of NPAR = 4 and NPAR = 256. The NPAR curves in the other systems follow a
similar behavior, with the exception of the 400 core set up in Figure 4.1.

It clear that computational time grows with system size. Comparison of the 192
and 384 core simulations in Figure 4.1, and of the 400 and 800 core simulations in
Figure 4.1 illustrates that increasing the number of cores decreases the computational
time for a given system. Comparison of the 800 and 1600 core simulations in Figure
4.1 demonstrates, however, that in number of cores vs. computational time there is a
point of diminishing returns, in this case occuring around 800 cores.

Comparison of the LIONGAUGE = TRUE and LIONGAUGE = FALSE values
in Figure 4.1 suggests that employing the gauge correction increases computational
time by a factor of 2 - 4.
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Table 4.1: 32 atom Lithium,2× 4× 4 Monkhorst Pack k-point grid, LIONGAUGE =
TRUE

NPAR 128 Core Time(s) 256 Core Time(s)
2 76.2 188.9
4 22.2 35.4
8 13.0 12.7

16 12.0 8.5
32 12.3 8.5
64 15.0 9.7

128 20.6 18.7
256 - 35.4
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Fig. 4.1: average loop times in the 90 and 192 atom Lithium systems

5. Stopping Power.
As mentioned in Section 1, stopping power is a measure of the energy loss by an

ion travelling through a system, given by:

S =
−dE
ds

(5.1)

To obtain stopping power, a work curve is generated by numerically integrating the
dot product of the forces on the proton and an incremental distance it travels during
each time step in the simulation:

W (s) =

s∑
n=0

~Fn · 4 ~sn (5.2)

The resulting ascending work curve is then linearly fit, as in Figure 5.1. The slope
of the linear fit is taken as the approximate stopping power (dE/ds) for the system.

5.1. Effects of Varying K-Point Grids on Stopping Power Calculation.
Using the method described above, stopping power values were calculated for all of
the k-point configurations described in Section 2. The results are shown in Tables
5.1, 5.2, and 2.1.

Although some of the k-point grids yielded stabilizing force curves and some did
not, all of them yield an almost identical stopping power. In each system size, average
relative stopping power error is less than 2% for all k-point meshes compared to their
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respective comparison values. This can probably be attributed to error cancellation
in the somewhat equally increasing peak and valley amplitudes in the unstable force
curves.

5.2. Effects of System Size on Stopping Power Calculation. The effect of
system size on stopping power calculations is analyzed here in two ways: with respect
to different k-point meshes at a set proton velocity and with respect to a range of
proton velocities in all three Lithium systems.

For the former, stopping powers for each k-point mesh in each system size are
listed in Tables 2.1, 5.1, and 5.2. It is clear from this data that our calculated stopping
power tends to decrease as our system size grows, averaging at 5.19eV/Å for the 32
atom system, 4.94eV/Å for the 90 atom system, and 4.77eV/Å for the 192 atom
system. Relative the to 32 atom cell, the average stopping power for the 90 atom and
192 atom cells drops by about 5% and 8% respectively. It can be speculated that this
behavior is due to finite size effects of small systems, and that the larger systems are
more representative of a single proton traversing the solid.

In the latter method of stopping power analysis described above, calculations are
done at proton velocities ranging from 0.5 to 6.5 a.u. in 0.5 a.u. increments and
compared for 32, 90, 192, and 350 atom Lithium systems. Stopping power curves
produced in each case can be seen in Figure 5.2. The Stopping and Range of Ions
in Matter(SRIM) is a software package used to calculate stopping power and related
characteristics [12]. The developers of SRIM share calculated stopping power results
as well as a best fit to a data base of experimental results. With errors relative to the
SRIM best fit reaching a max of about 5%, all of the systems produce stopping power
curves that agree well with SRIM. However, a trend to converge to a set value is seen
as the system size increases. The difference between the 32 atom system curve and
the 90 atom system curve is visibly greater than the difference between the 90 atom
curve and the 192 atom curve. The stopping power curve for the 32 atom system
differs from that of the 90 atom system by about 14%. Subsequent changes in curves
moving from the 90 atom system to the 192 atom system and from the 192 atom
system to the 350 atom system yield 4.4% and 6.4% respectively, suggesting that a
90 atom system is large enough for reasonably accurate results. Difference between
SRIM experimental values and calulated stopping power values seen in Figure 5.2
may be related to our particular choice of trajectory for the proton.
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Table 5.1: 90 atom Lithium

K-Point Grid Stopping Power (eV/Å) % Error Stopping Power % Error Force
(0.25,0.25,0.25) 4.899 1.14 6.95

(0,0,0) 4.947 0.182 8.68
1x3x3 4.974 0.376 6.39

1× 4× 4 4.97 0.295 6.44
2× 3× 3 4.956 0.0 0.0

Table 5.2: 192 atom Lithium

K-Point Grid Stopping Power (eV/Å) % Error Stopping Power % Error Force
(0,0,0) 4.763 0.34 3.38

(0.25,0.25,0.25) 4.766 0.29 6.75
1× 2× 2 4.777 0.049 0.779

1x3x3 4.780 0.0 0.0

5.3. Effects of gauge correction on Stopping Power Calculation. As de-
scribed in the beginning of this Section, a stopping power was calculated for the
systems in Sections 2 and 3. Comparison of Tables 3.1 (no gauge correction) and 2.1
(gauge correction enabled) reveals similar deviations from the Γ-Centered 4 × 8 × 8
k-point mesh used as a basis for comparison in Section 2. Table 3.2 shows the per-
cent change in the stopping power calculation observed when switching off the gauge
correction. Errors of less than 2% in every case and less than a tenth of a percent in
some cases suggest that the gauge correction has very little effect on the calculated
stopping power of a system.

5.4. Beryllium. 96 and 64 atom hexagonal close-packed (HCP) Beryllium sys-
tems with a lattice constant of 2.29Å and a c/a ratio of 3.58 at a temperature of 300K
were simulated to calculate stopping power.

Due to Beryllium’s HCP structure, it produces an anisotropic supercell. The
proton traversing such a cell does not see the same symmetry that it would in a FCC
or BCC cell. To probe the affects on the stopping curve of different trajectories in
this system, a proton was set to channel both through the hexagonal layers of the
Beryllium system and in between them in two orthogonal paths shown in Figures 6.1,
6.2, and 6.3.

As seen in Figure 5.3, calculated stopping power lies in a range that agrees rea-
sonably well with experimental data provided by SRIM [12]. At higher velotices there
is a visible difference between the curves produced by different trajectories, starting
at about 1.5 a.u.

5.5. Aluminum. A 96 atom face centered cubic (FCC) Aluminum system with a
lattice constant of 4.05Å at a temperature of 300K was simulated to calculate stopping
power. A proton traversed the cell in both channeled and offchanneled paths, shown
in Figure 6.4. Both 3 electron and 11 electron PAWs were used for the Aluminum in
these systems. Results can be seen in Figure 5.4.

In the 3 electron PAW, core electrons in the Aluminum ions are not able to be
perturbed by a passing proton. In the 11 electron PAW, core electrons are moved to
the valence of the Aluminum ions and are able to interact with the system.

Because the forces on the proton due to the ions in the lattice are inversely
proportional to the distance between the two, it is expected that forces in the off-
channeled path, and thus the stopping power in this path, would be higher than
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those in the channeled path. This is not reflected with the 3 electron PAW, where
no siginificant difference in stopping power is seen in the different trajectories. A
deficiency of this nature has already been seen in off-channeling in Aluminum at high
velocities [3], which prompted us to try a similar experiment with an 11 electron PAW.

A difference in stopping power is clearly seen between the channeled and off-
channeled trajectories using the 11 electron PAW at higher velocities, with an increase
of around 15% when moving from the channeled to the off-channeled trajectory.

Calculated stopping power for Aluminum did not agree as well with SRIM data
is as it did for Lithium and Beryllium. As noted before, it is possible that this
disagreement comes from our particular choice of trajectory, which completely avoids
ion collisions.
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6. Conclusions. With regard to force convergence, no siginificant difference
is seen between Γ-Centered and Monkhorst Pack k-point meshes. The Baldereschi
mean-value point and other singularity points tend to be inaccurate.

K-point sampling has very little effect on the stopping power calculations. This
can probably be attributed to error cancellation in cases where a particular k-point
mesh does not produce a convergent force curve.

As system size increases, stopping power tends to converge. In our case, 90 atom
Lithium was large enough to produce results very similar to any larger size.

In Beryllium, it was seen that different trajectories, even in the case where they are
all channeling trajectories, can produce different stopping powers. This is particularly
apparent in velocities at or above 1.5 a.u.

Sometimes core electrons must be considered in a system to get more accurate
results. This was seen to be the case with the off-channeling trajectory at velocities
at or above 1.5 a.u. in the Aluminum supercell.

Although charge non-conservation in these simulations is unsettling, it has little
to no effect on the data they produce. The implemented gauge correction, while
negligably altering force curves and stopping power, increases computational time by
a factor of two to four.

With regard to scaling, there exists a cut off point in computational resources
above which calculations will not run any faster. The most efficient band paralleliza-
tion for a particular number of cores tends to lie somewhere below the midway point
between the minimum and maximum number of bands that can be treated in parallel.

With an adequate system size, k-point sampling, and PAW, the implemented
Ehrenfest-TDDFT capability used herein produces stopping power data that agrees
reasonably well with experiment for Beryllium and Lithium. This is not the case
for Aluminum, but it is again worth noting that disagreement with experiment could
arise from our particular choice of channeled trajectory for the proton.
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Supplemental Figures and Tables.

Fig. 6.1: Rear (000) and side (101) views of the proton’s path through hexagonal
layers in the Be supercell

Fig. 6.2: Rear (000) and side (001) views of the proton path 1 between hexagonal
layers in the Be supercell
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Fig. 6.3: Rear (000) and side (100) views of the proton path 2 between hexagonal
layers in the Be supercell

Fig. 6.4: Different trajectories in the Al supercell: the proton’s velocity is in the
⊗

direction



102 Force Convergence in Stopping Power from Molecular Dynamics

−15

−10

−5

 0

 0  5  10  15  20  25

F
or

ce
 (

eV
/Å

)

Distance Travelled(Å)

Varying K−Point Grids in the 90 atom Lithium System

1x3x3
1x4x4
2x3x3

Γ: (0,0,0)
Baldereschi: (0.25, 0.25, 0.25)

−18

−16

−14

−12

−10

−8

−6

−4

−2

 0

 2

 0  5  10  15  20  25

F
or

ce
 (

eV
/Å

)

Distance Travelled(Å)

Varying K−Point Grids in the 192 atom Lithium System

1x3x3
1x2x2

Γ: (0,0,0)
Baldereschi: (0.25, 0.25, 0.25)
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Table 6.1: 90 atom Lithium, 2x3x3 Monkhorst Pack k-point grid

NPAR LIONGAUGE = FALSE LIONGAUGE = TRUE
192 Cores Average Loop Time (s) Average Loop Time (s)

4 66.7 144.95
8 45.8 126.46

16 45.6 125.47
24 45.4 124.78
32 46.9 172.4
48 49.1 127.05
64 54.9 131.48
96 83.6 154.33

192 129.4 226.24
384 Cores Average Loop Time (s) Average Loop Time (s)

4 92.8 125.6
12 25.7 63.5
16 22.0 60.6
24 21.9 60.3
32 22.0 60.1
48 22.2 58.8
64 22.9 85.6
96 26.6 62.4

128 36.4 92.1
192 39.9 80.4
384 126.5 241.6

Table 6.2: 192 atom Lithium, 1x2x2 Monkhorst Pack k-point grid, LIONGAUGE =
TRUE

NPAR 400 Core Time(s) 800 Cores Time(s) 1600 Core Time(s)
4 165.8 - -
8 141.7 87.5 208.8

16 137.6 69.9 52.7
20 131.0 53.4 58.9
32 - 73.9 47.0
40 143.7 64.6 50.1
64 - - 46.9
80 170.7 71.2 41.4

160 - 106.2 51.9
320 - - 85.2
400 68.86 149.9 67.3
800 - 396.2 185.7
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Applications

Articles in this section discuss the use of computational techniques such as those
discussed in the previous section to simulate physical systems. The applications pre-
sented here include nuclear reactor simulation, the impact of elastic bodies, and at-
mospheric computation.

Dances and Mousseau discuss the simulation of thermal hydraulics of a light wa-
ter reactor using the COBRA-TF code. The authors discuss updating COBRA-TF
to handle the residual form of the physical conservation equations. The residual form
permits greater flexibility in using numerous modern nonlinear solution algorithms.
Kelly et al. discuss the use of ALEGRA to simulate low density shock physics and
multiphysics. Moreover, the authors provide documentation for the RMIN feature in
ALEGRA. This feature computes the smallest density in which extreme or unphysi-
cal behavior is observed. Li et al. introduce an inverse problem for trace-gases using
convection-diffusion-reaction physics. They consider both inverting for material coef-
ficients and source terms. Moreover, consider problems with parametric uncertainties
in the PDE coefficients. Staten and Robinson describe an angle-dependence issue
found in ALEGRA. The authors perform extensive testing and have pinpointed the
error to the Johnson-Cook fracture model, demonstrating that this fracture model is
grid-dependent. Sullivan and Taylor employ SQuadGen to generate spherical quadri-
lateral meshes for athmospheric application. SQuadGen generates meshes to be used
by the Community Atmosphere Model. Sullivan and Taylor document a procedure
to rotate grids generated by SQuadGen. Takhtaganov, Keiter, Kouri, and Ridzal dis-
cuss inverse and optimal control problems for electrical circuit models. The authors
provide ensight into the computational challenges that arise in solving these systems
and demonstrate the performance of the Rapid Optimization Library (ROL) for the
numerical solution of such problems.

D.P. Kouri
M.L. Parks

December 18, 2014
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PRELIMINARY RESIDUAL FORMULATION OF COBRA-TF

CHRISTOPHER A. DANCES ∗ AND VINCENT A. MOUSSEAU †

Abstract. The thermal hydraulics of a LWR core is an important part of nuclear reactor desigin.
COBRA-TF solves 8 conservation equations for liquid, entrained droplet, and vapor phases of water
boiling within the rod structure of a LWR reactor core [2]. Currently, the conservation equations
analytically reduce into a pressure matrix in a semi-implicit method with rod temperatures solved
for explicitly. This work involves representing the 1-D single phase liquid conservation equations and
calculated variables in a residual formulation. The full jacobian matrix can then be built numerically,
and can then either be reduced to a pressure matrix or solved directly. Verification of the residuals
was done by comparing calculated results to analytical solutions for isokinetic advection and shock
tube problems. For each verification problem, a scaling study of the truncation error was compared
to the predicted behaviour derived from modified equation analysis. Further work was then applied
to represent 1-D heat conduction within the heater rods. Some initial work was done to allow the
code to solve either semi-implicitly, or fully impicitly.

Nomenclature.

COBRA-TF Coolant-Boiling in Rod Arrays - Three Fluids
LWR Light Water Reactor
PWR Pressurized Water Reactor
BWR Boiling Water Reactor
PDE Partial Differential Equation
CFL Courant - Friedrichs - Lewy number
PETSc Portable, Extensible Toolkit for Scientific Computation
P Pressure
h Enthalpy
u Velocity
ρ Density
x Spatial variable
t Temporal variable
i Spatial index
n Temporal index
k Iteration index

1. Introduction. For the past several decades, the primary focus in nuclear en-
gineering within the United States has been focused on light water reactors (LWR).
Commercially, all nuclear reactors are either boiling water reactors (BWR) or pres-
surized water reactors (PWR). Correct computation of the thermal hydraulics within
the reactor core leads to efficient design and accuracy in the safety analysis. A pop-
ular subchannel code for modelling the hydrodynamics with in the reactor core is
COBRA-TF. This FORTRAN based code solves 8 conservation equations for liquid,
entrained droplet, and vapor phases in 3-D dimmensions [2]. The conservation equa-
tions analytically reduce into a pressure matrix in a semi-implicit method with rod
temperatures solved for explicitly. Because the physics are integrated into the nu-
merical solution, the equations must be linear and the solution method semi-implicit.
With a residual formulation, greater flexibility and control over the numerical solution
is possible. COBRA-TF was originally written in FORTRAN 77, but over the years
has been partially updated to newer versions of Fortran.

∗The Pennsylvania State University, cad39@psu.edu
†Sandia National Laboratories, vamouss@sandia.gov
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Fig. 1.1: The finite volume structure for COBRA-TF

The finite volume structure in COBRA-TF in figure 1.1 is for a one-dimmensional
channel in the axial direction with n number of cells. The first and last cells at 0 and
n + 1 are ghost cells and act as the boundary conditions for the problem. Pressure,
enthalpy, and density are averaged over the cell volume and are located at the center
of the cell. Mass flow rate and velocity are located at the faces in between cells. The
cells are represented with an index i, and the faces with indexes of i + 1

2 or i − 1
2 .

This project will initially focus on this 1-D configuration. Usually the code is three
dimensional, with channels connecting to each other in two more dimmensions. Fully
3-D equations will be considered in future work.

2. The Euler Equations. The single phase Euler partial differential equations
for mass (2.1), momentum (2.2), and energy (2.3) corresond to the unknown variables
density ρ, velocity u, pressure P , and enthalpy h. The first terms in each of the
equations are temporal terms. The rest of the terms are steady state spatial terms.

∂ρ

∂t
+5ρu = 0 (2.1)

∂ρu

∂t
+5ρu2 +5P − ρg = 0 (2.2)

∂ρh

∂t
− ∂P

∂t
+5(ρuh) = 0 (2.3)

The 1-D formulation of the Euler Equations will assume a direction x as shown in
the 1-D mass equation (2.4). The momentum and energy equations are represented
in a non-conservative form as shown in equations (2.5) and (2.7). The momentum



C.A. Dances and V.A. Mousseau 107

equation contains a term that has a product of the left hand side of the 1-D mass
equation. This terms can therefore be dropped since it is equivalent to zero, and the
entire equation can be divided by density to give a simpler form of the momentum
equation (2.6).

∂ρ

∂t
+
∂ρu

∂x
= 0 (2.4)

ρ
∂u

∂t
+ u

(
∂ρ

∂t
+
∂ρu

∂x

)
+ ρu

∂u

∂x
+
∂P

∂x
− ρg = 0 (2.5)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
− g = 0 (2.6)

ρ
∂h

∂t
− ∂P

∂t
+ h

∂ρ

∂t
+ ρu

∂h

∂x
+ h

∂ρu

∂x
= 0 (2.7)

The 1-D equations are then evaluated at a position index i and a certian time n
in order to solve for the next time value of n + 1. In the mass equation (2.8), the
velocities are located at the cell faces i+ 1

2 and i− 1
2 . The density at a corresponding

face is either upwinded ρ̇n
i+ 1

2

, or averaged ρ̄n
i+ 1

2

. In equation (2.9), the derivative ∂u
∂x

is upwinded assuming that the flow is positive. In the energy equation, (2.10) the
enthalpy values in the first spatial term are upwinded and shown here assuming a
positive velocity. The equation of state (2.11) solves for density assuming that it is a
linear combination of changes due to pressure and enthalpy. The partial derivatives
in the equation are calculated from steam tables as functions of old time pressure and
enthalpy.

ρn+1
i − ρni

∆t
+
ρ̇n
i+ 1

2

un+1
i+ 1

2

− ρ̇n
i− 1

2

un+1
i− 1

2

∆x
= 0 (2.8)

un+1
i+ 1

2

− un
i+ 1

2

∆t
+ uni+ 1

2

(
un
i+ 1

2

− un
i− 1

2

∆x

)
+

1

ρ̄n
i+ 1

2

Pn+1
i+1 − Pn+1

i

∆x
− g = 0 (2.9)

ρni
hn+1
i − hni

∆t
+hni

ρn+1
i − ρni

∆t
−P

n+1
i − Pni

∆t
+(ρu)

n
i

hni − hni−1

∆x
+hni

ρ̇n
i+ 1

2

un+1
i+ 1

2

− ρ̇n
i− 1

2

un+1
i− 1

2

∆x
= 0

(2.10)

ρn+1
i − ρni =

(
∂ρ

∂P

)(
Pn+1
i − Pni

)
+

(
∂ρ

∂h

)(
hn+1
i − hni

)
(2.11)
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3. Residuals and Jacobian Construction. A residual is simply the difference
between the value at some future time n+ 1 and the value at the current iteration k.
This can be applied to desired variables as shown in equations (3.1), (3.2), (3.3), and
(3.4). Residuals can also be applied to the conservation equations by substituting
the definition of the residual variables into the conservation equations. This will
effectively change any variables evaluated at n + 1 to k. Each cell will have three
residual variables and three residual equations. For the entire solution, we will then
have a residual variable array δX, and a residual function array F (X) which defines
a linear system as seen in equation (3.5).

δPi = Pn+1
i − P ki (3.1)

δhi = hn+1
i − hki (3.2)

δui+ 1
2

= un+1
i+ 1

2

− uki+ 1
2

(3.3)

δρi = ρn+1
i − ρki (3.4)

JδX = −F (X) (3.5)

The Jacobian matrix is defined in equation (3.6) as the derivative of each response
of the function Fj with respect to each variable Xi. The derivative can be calculated
numerically as shown by equation (3.7) where ε is a small numerical value. For
COBRA-TF the equations are linear, and this numerical approximation of the Jaco-
bian matrix is exact. This should produce the same jacobian matrix that COBRA-TF
currently generates analytically.

Ji,j =
∂Fj(X)

∂Xi
(3.6)

Ji,j ≈
Fj(Xi + ε)− Fj(X)

ε
(3.7)

To build the jacobian matrix, an object oriented class was created that contains
three arrays. An array that points to the residual functions, an array that points to
the position within a target variable arrray, and an array that has the index that the
function is to be evaluated at. These lists can be appended to in any order, but have
to be appended all at the same time so that variables and functions must correspond
with each other. Then to construct the jacobian matrix, the residual function and
residual variable arrays can each be looped over to numerically build the jacobian
matrix as seen in figure 3.1.
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Fig. 3.1: Strucutre of the jacobian matrix for single phase liquid

4. Single Phase Liquid Verification Problems.

4.1. Isokinetic Advection. A tube with no gravity acting in the direction
of fluid flow has an initial condition of U1, ρ1, h1, P1, ṁ1 everywhere except at the
starting position that has an intitial conditions of h2, ρ2, ṁ2. When the time step
for the calcuation is taken be exactly equal to the CFL number as seen in equation
4.1, the inlet conditions should advect through the rest of the system in the form
of a square wave. This is a unique situation where the CFL can be held constant
throughout the simulation, and where the spatial and temporal trucation error can
cancel each other out at CFL = 1. When the CFL is less than 1, numerical diffusion
occurs based on the truncation terms produced by the modified equation analysis.

CFL =
∆tU0

∆x
(4.1)

Fig. 4.1: Setup for the isokinetic advection problem

4.1.1. Density Advection and Error. Figure 4.2 compares the analytical and
numerical advection of density through the domain for a CFL number of 0.500. The
higher density in the colder region is on the left, and the lower density of the warmer
region is on the right. The red line on the right of the figure depicts the truncation
error at the current time step. The truncation error occurs around the original dicon-
tinuity as it advects through the solution. As the discontinuity propogates it becomes
more diffuse spatially. Once it reaches the outlet the discontiuty leaves the domain
and the overall error drops to nearly zero. For this problem, the truncation error can
be shown to be a direct function of the CFL number and can be reduced to nearly
zero throughout the simulation. This simplified problem with an exact solution is
used for code verification.
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Fig. 4.2: Comparison of density advection to analytical solution

4.1.2. Modified Equation Analysis. For this isokinetic problem, the original
mass balance equation can be re-written to look like equation 4.2. Using upwinding,
the finite difference can be written to look like equation 4.3. A second order Taylor
series approximation can be used for ρn+1

i and ρni−1 as shown in equations 4.4 and 4.5
respectively. The higher order terms (O(∆x2,∆t2)) are not taken into account for
this approximation. The Taylor series approximations can then be substituted into
4.3 to yield 4.6. This is the beginning of the modified equation analysis. The goal
will be to isolate the original PDE and define the truncation error.

∂ρ

∂t
+ U0

∂ρ

∂x
= 0 (4.2)

ρn+1
i − ρni

∆t
+ U0

ρni − ρni−1

∆x
= 0 (4.3)

ρn+1
i = ρni +

∂ρ

∂t
∆t+

1

2

∂2ρ

∂t2
∆t2 +O(∆t3) (4.4)

ρni−1 = ρni −
∂ρ

∂x
∆x+

1

2

∂2ρ

∂x2
∆x2 +O(∆x3) (4.5)

The lengthy equation 4.6 can be reduced to equation 4.7 since the ρni terms
subtract out and the ∆t and ∆x terms in the denominator cancel out. This reduced
equation can the be re-written into equation 4.8, with the original PDE followed by
the truncation terms. Notice how the terms on the right are dependent on both the
numerical spacing ∆t and ∆x, but also on the second derivatives of density with
respect to space and time.

(
ρni + ∂ρ

∂t∆t+ 1
2
∂2ρ
∂t2 ∆t2

)
− ρni

∆t
+U0

ρni −
(
ρni − ∂ρ

∂x∆x+ 1
2
∂2ρ
∂x2 ∆x2

)
∆x

+O(∆x2,∆t2) = 0

(4.6)
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∂ρ

∂t
+

1

2

∂2ρ

∂t2
∆t+ U0

(
∂ρ

∂x
− 1

2

∂2ρ

∂x2
∆x

)
+O(∆x2,∆t2) = 0 (4.7)

∂ρ

∂t
+ U0

∂ρ

∂x
+

1

2

∂2ρ

∂t2
∆t− U0

1

2

∂2ρ

∂x2
∆x+O(∆x2,∆t2) = 0 (4.8)

Before we can procede, we need to take the derivative of the original PDE with
respect to space and time as shown in equations 4.9 and 4.10 respectively. These two

derivatives can substitute into each other using the common term ∂2ρ
∂x∂t . The second

derivatives of density with respect to space and time are therefore related by the
velocity squared as shown by equation 4.11.

∂2ρ

∂t2
+ U0

∂2ρ

∂x∂t
= 0 (4.9)

∂2ρ

∂t∂x
+ U0

∂2ρ

∂x2
= 0 (4.10)

∂2ρ

∂t2
= U2

0

∂2ρ

∂x2
(4.11)

This relationship can then be substituted back into equation 4.8, which can be
reduced to equation 4.13 after igonoring the higher order terms. The error depends
on the CFL number, the axial spacing, and the second order derivative of density
with respect to space. This derivative is what gives the error the characterisitcs of
diffusion. When the CFL number is less than one, the error term is negative and the
diffusion is dampening. When the CFL number is greater than one, the error term
becomes positive, and the accumulation of the error destabilizes the solution.

∂ρ

∂t
+ U0

∂ρ

∂x
− 1

2

(
∆xU0

∂2ρ

∂x2
− U2

0

∂2ρ

∂x2
∆t

)
+O(∆x2,∆t2) = 0 (4.12)

∂ρ

∂t
+ U0

∂ρ

∂x
− ∆xU0

2

∂2ρ

∂x2
(1− CFL) +O(∆x2,∆t2) = 0 (4.13)

Modified eqauation analysis can be applied to the energy balance equation pre-
sented in equation 4.14. The energy equation is presented in a form where the mo-
mentum equation was substituted in as zero and then divided through by density.
The result presented in equation 4.15 is similar in form to the result for the mass
balance equation 4.13.
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∂h

∂t
− 1

ρ

∂P

∂t
+ U0

∂h

∂x
= 0 (4.14)

∂h

∂t
− 1

ρ

∂P

∂t
+ U0

∂h

∂x
− ∆xU0

2

∂2h

∂x2
(1− CFL) = 0 (4.15)

4.1.3. Scaling of Error. From the modifed equation analysis, the advection
problem should prove to be first order accurate in time and space. While holding
the CFL number constant, the `1-normalize error should scale linearly as a function
of axial mesh size and with the second derivative of density with respect to space.
However, when performing the scaling study, we find that the error scales to the 1

2
power instead as shown in figure 4.3.

Fig. 4.3: Scaling of numerical error with constant CFL number

Holding the mesh size constant, the time step size can be varied in order to
determine the order of accuracy with respect to time as shown in figure 4.4. As
time step size approaches zero, the error linearly approaches a constant value that
represents the constant spatial error. This first order accurate behaviour in time
matches the modified equation analysis for the isokinetic advection.

Holding the time step size constant, the axial mesh size can be varied in order to
determine the order of accuracy with respect to space as shown in figure 4.5. As the
axial mesh size decreases, the the error approaches zero with an order of accuracy of
1
2 . This nonlinear behaviour is due to the advection of the square wave, which is a
spatial discontinuity. As the mesh size decreases, the second derivative of density with
respect to position begetting the nonlinear error distribution. An order of accuracy
of 1

2 in space is expected with discountinuous shocks.

4.2. Shock Tube. A shock tube is a very common and standard method of
verification for momentum and pressure. However, an exact analytical solution is more
readily obtained for an ideal gas such as air. A shock tube is created by setting the
initial mass flow rate and velocity to zero with no gravity. The boundary conditions
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Fig. 4.4: Scaling of numerical error with constant mesh size

Fig. 4.5: Scaling of numerical error with constant time step size

at the inlet and outlet are also set to zero, simulating a closed system. A region of
high pressure is defined for one half of the domain, and a region of low pressure for the
second half. An imaginary diaphragm divides the two regions before the simulation,
and at t = 0 disappears.

Each region has a unique density corresponding to the different pressures using the
equation of state for air given in equation 4.16 where γ = 1.4 is the ratio of specific
heats for air. Additionally, the specific heat Cp = 1.005 kJ

kg−K to convert between
enthalpy and temperature. The initial enthalpy of the system is constant, but will
change non-uniformly as a function of time. The velocity is initially set to zero, but
will change as the compression and rarefaction waves move. Since the velocity is set
to zero initially, it can’t be used to evaluate the time step size. Instead the speed of
sound can be evaluated using equation 4.17, and this velocity can be used to calculate
the time step. While there might be some slight change in the speed of sound due to
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enthalpy changes, it should remain effectively constant.

Fig. 4.6: Setup for the shock tube problem

ρ =

(
γ

γ − 1

)
Pabs
h

(4.16)

a =
√

(γ − 1)h (4.17)

γ =
Cp
Cv

(4.18)

4.2.1. Analytical Solution. When the diaphragm disappears, a compression
wave will move to the right and a rarefaction wave to the left. These two waves split
the domain into four distinct regions. There is a region to the left of the rarefaction
wave that has the same properties as the initial left region. There is a region between
the rarefaction wave and the initial location of the diaphragm. There is a region
between the initial location of the diaphragm and the compression wave. There is a
region to the right of the compression wave, that has the same properties as the initial
right region. The analytical solution does not take into account reflection off of the
walls, however the numerical solution can due to the applied boundary conditions for
mass flow rate.

For a perfectly caloric gas, the following equations are provided [1, p. 238] given
the initial conditions for state 1 and 4 in conjuction with equation 4.17. An iterative
method is required to solve 4.19 for P2

P1
. Once the region properties are obtained, the

regions themselves are mapped by comparing the current position and time to the
velocity of the rarefaction and compression wave.

P4

P1
=
P2

P1

(
1− (γ − 1)(a1a4 )(P2

P1
− 1)

)
√

2γ
[
2γ + (γ + 1)(P2

P1
− 1)

]
− 2γ
γ−1

(4.19)

T2

T1
=
P2

P1

(
γ+1
γ−1 + P2

P1

1 + (γ+1
γ−1 )P2

P1

)
(4.20)
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Fig. 4.7: Regions within the shock tube based on rarefaction and compression

ρ2

ρ1
=

1 + (γ+1
γ−1 )P2

P1

γ+1
γ−1 + P2

P1

(4.21)

W = a1

√
γ + 1

2γ

(
P2

P1
− 1

)
+ 1 (4.22)

P2 = P3 (4.23)

P3

P4
=

(
ρ3

ρ4

)γ
=

(
T3

T4

) γ
γ−1

(4.24)

4.2.2. Results and error. Enthlapy and density have a discontinuity as seen in
figure 4.8 where the diaphragm was initially placed . Similarly there are discontinuities
that move with the rarefacation and compression waves for pressure, density, and
velocity. The largest error occurs around these discontinuities are difficult to measure
spatially as seen in figure 4.9, and require a fine mesh to approach the exact solution.

4.2.3. Modified Equation Analysis. The primary equation for this problem
is the momentum equation (2.9) and the target variable velocity u as shown in (4.25).
The taylor series expansions for velocity with respect to space (4.27), velocity with
respect to time (4.28) (4.29), and pressure with respect to space pressure (4.26) are
needed for this analysis. Subsituting these approximations back into the momentum
equation produces eqution (4.29) that contains the original PDE on the left and the
truncation error terms on the right.

un+1
i+ 1

2

− un
i+ 1

2

∆t
+ uni+ 1

2

(
un
i+ 1

2

− un
i− 1

2

∆x

)
+

1

ρ̄n
i+ 1

2

Pn+1
i+1 − Pn+1

i

∆x
= 0 (4.25)
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Fig. 4.8: Comparison of analytical and numerical results for shock tube

Pn+1
i = Pn+1

i+1 −∆x
∂P

∂x
+

∆x2

2

∂2P

∂x2
+ o(∆x3) (4.26)

uni− 1
2

= uni+ 1
2
−∆x

∂u

∂x
+

∆x2

2

∂2u

∂x2
+ o(∆x3) (4.27)
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Fig. 4.9: Truncation error for shock tube

uni+ 1
2

= un+1
i+ 1
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−∆t
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∂2u
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+ o(∆t3) (4.28)
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∂x2

]
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(4.29)
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4.2.4. Scaling of Error. For the first scaling study, the mesh spacing was held
constant and the time step size was varied. The scale of the `1-normalize error in
figure 4.10 shows the problem to be first order accurate in time. Due to the spatial
discontinuities, the problem is 1

2 order in space as shown in figure 4.11.

Fig. 4.10: Temporal scaling of the truncation error for the shock tube problem

Fig. 4.11: Mesh scaling of the truncation error for the shock tube problem

5. Coupling to solid equations. COBRA-TF also explicitly solves for the
temperatures within the rods. Empirical correlations determine the heat transfer
coefficient between the solid and the fluid. The heat conduction in the rods would
normally be dependent on the axial, radial, and azimuthal position of the rod. The
scope of this project focuses just on the radial conduction at each axial level. There
will be no azimuthal conduction since the fluid flow in this scope is 1-D. The tem-
perature gradients in the axial direction will be heavily dependent on the axial fluid
flow. The specific heat capacity and thermal conductivity property tables in the input
were held constant as a function of temperature for the following problems. The solid
nodes are modelled as uniform heater rods with no cladding and gap.
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5.1. Conduction Equations. For this project, the equation for a 1-D slab (5.1)
was used instead of using cylindrical coordinates.

Mcp

(
∂Ti,solid
∂t

)
−A

(
∂ksolidTi,solid

∂x

)
−Q+Asurfhht (Tw,solid − Tliq) = 0 (5.1)

The first term is the thermal mass of the control volume multiplied by the rate of
change of the temperature.The next term describes the conduction to adjacent control
volumes. If the cell face is at the center, then the gradient through the face is zero
to account for symmetry within the control volume. The area is taken as the cross
sectional area at the middle of the cell. The next term is the heat generated within
the region. The last term is the heat transfer out of the region due to convection. If
the cell is not adjacent to the fluid, then this term gets dropped by setting the heat
transfer coefficient to zero. This same term must be added to the single phase liquid
energy residual to conserve energy.

Micpi (Tni )

(
∂Ti,solid
∂t

)
−A

(
∂ksolidTi,solid

∂x

)
−Q+Asurfhht (Tw,solid − Tliq) = 0

(5.2)

Fig. 5.1: Jacobian matrix for fluid and solid residuals

When the conduction equation (5.1) is written as residual function, it can be ap-
pended to the Jacobian structure as shown in figure 5.1. The original fluid jacobian
matrix is in the top left and has a block entry for each fluid cell. The solid jacobian
matrix is in the bottom right, where each row corresponds to a single solid energy
balance. Each block in the diagram represents an axial level with 4 radial positions.
The first entry only has two temperatures due to symmetry about the center. The
last entry only has two entries since it is interacting with the fluid and the surface
temperature is lagging. While this represents the full jacobian matrix, the heat con-
duction solution is not fully coupled with the single phase liquid solution. This can
be seen by the lack of terms in the upper right and lower left quadrants.
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5.2. Initial cooling problem. An initial test was devised to cool down a rod
that had no heat generation but was at a higher initial temperature than the sur-
rounding fluid. The fluid has a constant mass flow rate through the domain and a
constant inlet temperature. The rod takes roughly 250 seconds to come to thermal
equilibrium as shown in figure 5.2. The rate of cooling is dependent on the radial
position as also shown by figure 5.3, where the green values are the starting points
and the red values are the end points. Each black line in between represents the
raidal profiel at that axial level at an intermediate time step. As the rod cools, the
temperature distribution in the radial direction is non-linear. As the rod approaches
the inlet temprature, the profile becomes flat.

The initial temperature distribution is not strongly axially dependent as seen by
figure 5.4. Near the end of the solution, the rod temperatures demonstrate some
small changes in axial direction as shown in figure 5.5. This change is due to the axial
temperature gradient experience in the fluid from the inlet to the outlet as it cools
down the rod. This trend is not strong from this problem since all of the temperatures
are converging to the inlet temperature due to the lack of heat generation in the heater
element.

Fig. 5.2: Plot of the temperatures for different positions as functions of time

5.3. Heat generation problem. For this test, the rod has a uniform and con-
stant heat generation rate. The initial temperature of the rod matches the initial
temperature of the fluid. The temperature of the rod increases to a steady state value
as shown by figure 5.6. The radial profile at steady state is non-linear due to the
volumetric heat generation within the spacer rod as shown by figure 5.7. The axial
temperature profile has a gradient that reflects the temperature change in the fluid
from the inlet to the outlet.
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Fig. 5.3: Plot of the temperatures for different times as functions of position

Fig. 5.4: Plot of the temperatures for different times as functions of position
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Fig. 5.5: Plot of the temperatures for different times as functions of position

Fig. 5.6: Plot of the temperatures for different positions as functions of time
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Fig. 5.7: Plot of the temperatures for different times as functions of position

Fig. 5.8: Plot of the temperatures for different times as functions of position
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6. Conclusions. The project succesfully contructed a method within COBRA-
TF to numerically build a jacobian matrix given residual functions and variables.
Single phase 1-D residuals were written into COBRA-TF and verified using two dif-
ferent verification problems. Both showed that the problem was first order accurate in
time and 1

2 order accurate in space due to the shocks being modeled. An initial frame
work for modeling the solid conduction in the rods was developed and quantitatively
shown to model correctly with and without heat generation.

Further work for the verification of the code will be the advection of a smooth
function, such as a sine wave. This should allow for a more reliable determination
for the order of accuracy of the probelm spatially. Future work with the fluid resid-
uals will entail adding form losses such as fiction and area changes into the residual
equations. The residual formulation could also be written so as to include vapor and
entrained liquid phases with multiple dimensions. Future work with the conduction
equations will be applying cylindrical coordinates for all of the rod geometry types.
Currently the code can tentatively solve the 1-D single phase fluid equations and the
1-D conduction equations implicitly. However, the heat transfer coefficeint was still
being lagged and was not implicitly solved for. Future work will involve calculating
the heat transfer coefficient implicitly. This will add significantly more cross terms
to the coupled fluid-solid jacobian matrix. Future work might also involve having the
option the add the fluid and solid equations together so as to build a homogenous
fluid-solid equilibrium model.
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ALEGRA AND EQUATION OF STATE TABLES
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Abstract. ALEGRA [2] is a family of shock and multiphysics simulation codes. ALEGRA can
simulate a large variety of materials and scenarios, in a wide range of densities, temperatures and
pressures. At very low densities and pressures, the materials’ state variables can exhibit physically
impossible relationships, such as a negative change in pressure over a positive change in density. In
order to remove the unphysical data from the data set, one must first determine the least extreme
value (i.e. the greatest density) where the extreme behavior is observed. This point is called RMIN;
it is the minimum valid density (ρ) in the data set.

1. Introduction. ALEGRA is a family of physics simulation software that is
developed, maintained and distributed by Sandia National Laboratories. Some ex-
amples of what ALEGRA codes are capable of simulating are high-speed collisions,
hydrodynamic scenarios, and magnetic field interactions. To achieve accurate results
with a finite amount of computing power, ALEGRA creates an abstract spatial mesh,
which contains many small elements. The elements can be thought of as sample
points whose characteristics reasonably represent some amount of the surrounding
area. This technique is called the Finite Element Method (FEM). The simulation
is performed by determining the interactions between sets of neighboring elements,
treating each as an indivisible unit. The user can select from a wide variety of materi-
als, and initialize them with the desired phase (solid, fluid, vapor) and state variables
(temperature, pressure, etc.) These state variables are the primary way of quantify-
ing the interactions between mesh elements. As the simulation progresses, ALEGRA
solves differential equations (equations of state, abbreviated EOS) that govern the
relationships between these state variables.

Most of the time, ALEGRA executables produce accurate, realistic data that
could be verified with a real-world experiment. However, certain unusual circum-
stances, such as very low densities and pressures, can cause ALEGRA to produce
unphysical (physically impossible) relationships between state variables. For exam-
ple, it may produce an EOS output table that suggests that

dP/dρ < 0 (1.1)

where P is pressure and ρ is density. In other words, the data in the equation of state
table says that the derivative of pressure with respect to density is negative. RMIN
(ρmin) is the largest density quantity for which Equation 1.1 is true. When observing
isotherms in pressure vs. density space, all data points with densities less than RMIN
should be discarded, to ensure that the data set does not contain any unphysical
state variable relationships. The primary tool for viewing ALEGRA output data sets
is SHIV (Specialized HIstory Viewer), which can color segments of isotherms based
on the sign of their slopes (facilitating the manual determination of RMIN). However,
SHIV is unable to distinguish between negative slopes of sufficient magnitudes to be of
interest, and those with very small magnitudes caused solely by floating point round-
off error. If one of these slightly downsloping isotherm segments occurs at a greater
density then the desired RMIN, SHIV will report that as RMIN. If such an RMIN
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value is used to determine what portion of the table is valid (i.e. not unphysical), an
unnecessarily large portion of the table will be discarded.

2. Projects and Tasks.

2.1. RMIN Documentation.

The RMIN documentation was a task that supported the ALEGRA documen-
tation. A large set of Sesame [1] EOS tables existed in the Lambda repository, and
many contained unphysical regions (i.e., nonzero RMIN values). However, neither
these tables nor their RMIN values were listed in any single document. The purpose
of this task was to create such a document, along with various supporting files, in a
format that was compact yet readable.

The Sesame tables that needed processing were distributed throughout several
different subdirectories. The tables were named after their numerical material ID.
One factor that complicated the task of iterating through these files was that multiple
folders contained EOS tables with the same file name. Despite referring to the same
material (or family of materials), the tables with repeated names contained completely
different data, had their own RMIN value, and required their own entries in each list
that would be created.

To determine the RMIN values, each table was opened in SHIV and displayed as
isotherms on a pressure vs. density plot. In this mode, SHIV also shades each segment
of the isotherms based on their slope: red means upsloping, blue means zero slope,
and green means downsloping. As viewed in SHIV, RMIN is effectively the rightmost
green segment (with a significant downward slope). The “import” command was used
to create a snapshot of the isotherm plot in the SHIV window. These images were
captured while SHIV was zoomed in to the area where RMIN was located. The SHIV
window is also shown displaying the coordinates of the segment endpoint serving as
the definition of RMIN. Figure 2.1 shows one of these images; all captured images
were saved for inclusion in the final report.

After obtaining this image, the view was further zoomed in. The endpoint pro-
vided a higher-precision approximation of RMIN. Once at least three significant fig-
ures of the value had been determined, the actual value was located in the Sesame
table with a text editor (e.g., vi). After performing the conversion from SI units to
CGS (conversion factor of 10−3), it was possible to find the single, exact RMIN value.
With the value in the table highlighted, another window snapshot was taken with the
“import” utility.

Finally, this value was copied to a text file called “rmin.txt,” along with the table’s
material ID number and directory name. These two pieces of information eliminated
any ambiguity about different tables with the same name in different directories. In
this file, RMIN is included twice. The value preceded by ‘c’ is the “candidate” value
presented by SHIV (in SI units) and the value after ‘t’ is the value directly from the
table (in CGS units). Both were included in order to handle cases where the correct
RMIN value is different from the SHIV candidate.

Here is a sample line from rmin.txt:

3331 aneos: c 8107.65553 t 8.10765553E+00

After populating rmin.txt with data about each EOS file, another plain text list was
created. This file was named “Rmin Values.txt.” It was designed to include all the
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Fig. 2.1: Example view of SHIV displaying RMIN region.

important data fields in a relatively compact manner, and to be a useful supplement
to the main PDF in the ALEGRA documentation.

This is the heading for “Rmin Values.txt”:

#DIRECTORY MATID RMIN(CGS) RMIN(SI) CGS-RND EOS_Data MATERIALNAME SR

#--------------------------------------------------------------------------

CGS-RND is the value of RMIN (in CGS units), with four significant figures. The
last digit is always rounded up. Rounding up ensures that no densities greater than
RMIN exhibit the unphysical negative dP/dρ. The SR column contains the scaling
ratio for all density values in the table. The RMIN values were multiplied by their
corresponding scaling ratios when Rmin Values.txt was generated. The EOS Data
column either contains a “Y” or an “N,” depending on which list the material’s name
was found: either “SES EOS data” or “EOS”. If it came from the file SES EOS data,
this column will contain “Y”; if it was only listed in EOS, this column contains “N.”
This is useful for the end user to know because if the name is from SES EOS data,
it can be used verbatim as a material identifier in ALEGRA input decks. The names
from EOS lack this property. Also, the names from SES EOS data are written in all
capital letters, while the names from EOS are not.

Here is an example line from “SES EOS data”:
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‘AL2024’ 3700 0.96923 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2.0 0 0 1 !

‘sesame’ 1 !

and an example from “EOS”:

Number= 3331

Material = Copper (Z=29.0, A=63.546)

File= ./aneos/3331

Tables==> 201 301

Because of the large number of EOS tables, it was more efficient to automate the
process of creating the necessary text documents and tables. A Python script was
created to parse the list SES EOS data and extract material names. The Lambda
project already contained a script to iterate through every EOS table and extract
information about it. It saves its output to a file called “EOS.” Because the material
names in the list SES EOS data can be used verbatim in ALEGRA input decks, they
take priority over those only listed in “ EOS.” The script worked by iterating over
every line in rmin.txt, and searching for the material’s name in the file SES EOS data.
If that search came up empty, it then looked in “ EOS”, which is guaranteed to have
an entry for every equation of state table that was processed.

After finding the material’s name, the main script had several tasks to perform
for each equation of state table. If a table was listed in SES EOS data, it checked the
scaling ratio (in the above example, the SR is 0.96923). The scaling ratio was then
multiplied by the RMIN values read from rmin.txt. After this step, the script calcu-
lated the “recommended” RMIN with four significant figures. All of this information
was saved to Rmin Values.txt.

The document that ALEGRA end users are most likely to find useful is a SAND
Report PDF file (the SAND Report format can include Offical Use Only markings,
which were necessary in this case). The PDF was generated by pdflatex, and included
a “quick reference” table immediately after the Table of Contents. The LaTeX code
for the table is contained in its own .tex file, which is generated automatically by the
Python script. This was the heading for the PDF table:

Material Name * Directory MatID Sr RMIN (g/cm3)

This table is designed to contain only the amount of information the user will
need to see at a quick glance. More in-depth information would be available in
Rmin Values.txt if it were needed. It was not feasible to fit every column from
Rmin Values.txt into a table the width of a page and still use a readable font size,
etc. The asterisk after “Material Name” is explained in the footer, which says that
material names that appear in all capital letters are present in SES EOS data. The
other names are all lowercase, which makes the capitalization a reliable way of distin-
guishing between the two types of names.

After the quick reference table, the SAND report contains some textual informa-
tion and two images for each EOS table. The material’s name and all three formats of
RMIN (CGS, SI, CGS rounded) are all included and labeled. Below the text are two
images: the SHIV zoomed view and the EOS table values with RMIN highlighted.
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The text and two images all fit onto one page. Because there are over 400 documented
EOS tables, and twice as many PNG images, minimizing the document’s length and
file size was a major concern. The Python script automated this part of the document
as well. The documentation for each EOS table is contained in its own .tex file, all of
which are the same except for textual information and image filenames.

In addition to producing Rmin Values.txt and the necessary LaTeX code for the
PDF, the script needed to produce a C header file called Rmin Values.h. The header’s
purpose is to create a large array of structs. Each struct contains data about an EOS
table: the directory name, material ID, RMIN, name, and hash code of the EOS file.
This header will be used to look up information about EOS tables in ALEGRA’s
input materials. The hash code can be used to detect whether any EOS tables have
been modified.

2.2. SHIV User Interface Improvements.

Before the RMIN documentation was complete, a few ideas for improving the
SHIV user interface were considered:

• Drawing line segments that only partially fit inside the current view clip.
Before, only line segments with both endpoints inside the clip were drawn.

• Adding a “Previous Zoom” button that allowed the user to navigate through
a history of zoom states.

• Using the right mouse button to pan.
• Using the mouse scroll wheel to zoom in and out.

The graphical user interface of SHIV is managed by Tkinter, the Python version
of Tk. Tkinter makes it very simple to build interfaces with a standardized look-and-
feel. The way the interface interacts with program logic is event-based; interactive
components like buttons and menus simply call a function specified in their construc-
tors when they are clicked. Thanks to this simplicity, it was easy to understand the
flow of program logic, and add clean modifications to existing code.

To approach the line segment problem, SHIV’s procedure for culling line segments
outside the canvas was examined. It loops through a list of all segments available from
the data, and tests whether both points (x1, y1) and (x2, y2) were within the left,
right, bottom and top limits of the clip. If this check passed, the segment was added
to a second list, “clipped.” This check and result can be seen in the code below. Two
other conditions were inserted after that to catch situations where exactly one of the
two endpoints is inside the clip. Inside of the elif block, a third point was calculated
where the line segment intersects the boundary of the clip. The intersect() method
returns this third point in a tuple (x, y), and works regardless of which edge (left,
right, bottom or top) the line intersects. The method had already been written be-
cause it was needed elsewhere in the LineSet class. Because of the two separate elif
blocks, it is known which point (1 or 2) is inside the clip, and which is outside. With
this information, all that needs to be done is append a new tuple to the “clipped”
list, containing a line running from the inside point to (x3, y3). It was necessary to
calculate the intersection in the first place because the clip defines the area within
the axes on the canvas, rather than the entire Tk canvas. There is a small margin
between the axes and the edge of the canvas used for drawing axis labels, and it was
important that no line segments be drawn in this margin. Finding the third point
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prevents this side effect.

self.clipped = []

for tup in self.segments:

x1,y1,x2,y2 = tup

if L <= x1 <= R and B <= y1 <= T and \

L <= x2 <= R and B <= y2 <= T:

# both points are inside the clip box

self.clipped.append(tup)

elif L <= x1 <= R and B <= y1 <= T:

# point 1 is in the clip box but point 2 is not

x3,y3 = intersect(x1, y1, x2, y2, L, R, B, T, x1, y1)

self.clipped.append((x1, y1, x3, y3))

elif L <= x2 <= R and B <= y2 <= T:

# point 2 is in the clip box but point 1 is not

x3,y3 = intersect(x2, y2, x1, y1, L, R, B, T, x2, y2)

self.clipped.append((x3, y3, x2, y2))

The previous zoom feature was needed in SHIV because it was impossible for the
user to undo zoom actions. Zooming in was easy, but there was no way to zoom
out except to reset the clip to the default, which is sized so that all data points are
simultaneously visible. A stack was the right type of container to build up a “history”
of clip sizes. If the user wants to zoom in, the zoom state is pushed onto this stack
before completing the request. If the user wants to return to a previous zoom, clicking
the “Previous Zoom” button will cause the most recent zoom state to be popped off
the stack and applied to the view.

Panning the view was another useful feature that SHIV initially lacked. The right
mouse button was not used in the context of the SHIV canvas, so the right-click and
right-release events were bound to appropriately named functions. When a right-click
is detected, the canvas instance stores the (x, y) coordinates of the mouse location.
Then, each time the mouse is moved, the displacement between the mouse’s new and
old locations is calculated and the clip is shifted by an equivalent amount. When
the right button is released, the canvas stops maintaining a variable for the mouse’s
location and no longer shifts the clip when the mouse is moved. The ShivCanvas
class already owned a reference to a Transformer object, which can translate between
canvas coordinates (screen pixels) and plot coordinates (the locations of data points).
This translation function was called on the mouse’s ∆x and ∆y to find the distance
the plot space needed to be shifted, and this information was used to call the LineSet
method for setting the clip. Finally, the axes were refreshed and the canvas was
redrawn.

Since redrawing thousands of line segments can be very slow, a way to improve
the panning feature would be to draw an arrow that indicates the direction and
magnitude of the panning motion. Assuming the entire canvas contents (or faster
still, a dirty rectangle containing only the region that needs refreshing) could be
saved to an bitmapped image object in memory, the arrow could be drawn on top of
the image rather than the entire dataset each frame. Blitting one image would be far
faster than processing the many line segment objects, so this would be a worthwhile
modification to consider for future improvements.

The last improvement to be added was the zooming with the scroll wheel. Many
other pieces of graphical software, like Google Maps, use scrolling to zoom. Similarly
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to Google Maps, the zoom transformation “centers” the frame around the location of
the mouse. In other words, zooming in moves “towards” the location of the mouse, and
zooming out moves “away.” Below is the code that calculates the new clip boundaries.
“clip” is the new clip, while “temp” is the old clip from before the zoom event was
triggered. Both clips are tuples with 6 elements; the first four are (left, right, top,
bottom). “ex” and “ey” are the x and y coordinates of the location of the mouse
cursor at the time of the event. “xform” is the Transformer object attached to the
ShivCanvas, which calls inv x() and inv y() to convert from pixel space to plot space.
“scl” is either 0.8 or 1.25 (note that these are reciprocals).

clip[0] = self.xform.inv_x(ex - scl * (ex - temp[0]))

clip[1] = self.xform.inv_x(ex + scl * (temp[1] - ex))

clip[2] = self.xform.inv_y(ey - scl * (ey - temp[2]))

clip[3] = self.xform.inv_y(ey + scl * (temp[3] - ey))

The code works by finding the distance from the mouse event to each of the four
clip boundaries, and multiplying that difference by scl. The result is added to or
subtracted from ex and ey, and then translated to plot coordinates. This means that
in the new clip, the point (ex, ey) is in exactly the same place both in plot and pixel
space. The scaling factor is a constant proportion, so the left, right, top and bottom
were all adjusted equally. The result of this process looks good; it is symmetrical and
intuitive.

3. Conclusions.

ALEGRA is a very powerful tool for modeling physical interactions. To take
full advantage of the software, both developers and end users must pay attention
to the way output files are created and used. The RMIN problem is an example
of a situation where the entire data set must be examined carefully for validity. At
first glance, everything may look correct, but there may still be issues with the data
on a small scale. It is impossible for ALEGRA to handle every abnormal situation
perfectly, so projects like the RMIN documentation are important for ensuring that
the user is aware of pitfalls like the negative dP/dρ.

A long-term plan for ALEGRA is to add automatic fetching of RMIN data for
each EOS. The tables produced by the RMIN documentation project provide the basis
for implementing this feature. Until then, the tables will serve as a readily available
source of information for users’ simulations.

Another way in which ALEGRA’s supporting material was made more useful
was by some interface tweaks to the Specialized HIstory Viewer (SHIV), the Python
program used to visualize Equation of State tables. Using SHIV during the RMIN
documentation provided the perspective of an end user, prompting the consideration
of what changes other users would find helpful. The goal was to add features that
didn’t crowd the interace or make things more confusing. All SHIV needed was a few
minor additions that made navigating large EOS tables easier.
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INVERSION UNDER UNCERTAINTY FOR TRACE GASES USING
CONVECTION-DIFFUSION-REACTION

HARRIET LI ∗, BART G. VAN BLOEMEN WAANDERS † , AND TIM M. WILDEY ‡

Abstract.

1. Introduction. The characterization of trace-gas sources is important to help
control pollutants in the atmosphere. Carbon-dioxide is one of several species that
has been linked to the increase of average global temperatures and understanding the
overall dynamics of these trace-gases depends on knowing the spatial distribution and
magnitudes of carbon-dioxide fluxes. Exact characterizations could for instance sup-
port a Green House Gas Information System (GHGIS), which would be responsible
for monitoring and managing the overall production of greenhouse gases. The de-
termination of locations and characters of sources is complicated by multiple factors:
the multiple spatial distributions, extreme sparsity of the measurements, temporal
variations, uncertainty of natural CO2 source and sinks, and the many uncertainties
associated with data and model parameters (in particular the velocity field that needs
to be calculated from atmospheric/weather models). In this work, we investigate two
critical aspects of this inversion. First we explore an efficient inversion under uncer-
tainty scheme that leverages concepts from stochastic optimization. We account for
uncertainties assosicated with the velocity fields. Second, we investigate the inversion
of trace gas source terms by considering multiple trace gase measurements.

The inversion of source terms motivates a large optimization problem in which
the goal is to reconcile the differences between sparse observations and numerical
predictions of convection-diffusion-reaction dynamics by manipulating magnitudes of
source terms as target inversion parameters. To eventually develop methodolgies that
can reconstruct source terms in sufficient detail, many inversion variables need to be
considered, potentially at every computational discretization point. Black box ap-
proaches in which gradients of the objective function are determined through finite
difference methods or local interrogation (non-gradient based) methods quickly be-
come computationally intractable in addition to suffereing from quality issues as a
result of for instance selecting an appropriate finite difference step. To address both
the computational expense and the accuracy of the gradient, adjoint-based sensitivi-
ties need to be implemented. This however poses several implementation challenges
associated with parallelism and stabilized finite element discretization. Furthermore,
first order optimization methods, such as steepest descent and non-linear conjugate
gradient (CG), are not efficient and potentially not sufficently accurate. Second order
approaches, such as Newton and Quasi-Newton methods, may be required which may
introduce additional implementation challenges.

The determination of accurate trace-gas dynamics in atmospheric flows intro-
duces uncertainties ranging from inaccurate velocity fields at fine spatial scales to the
variability of the temporal signals for both anthropogenic and biological source terms.
Efficient methods must be considered to manage uncertainties without compromising
our ability to invert for large number of source terms while managing stochastic model
parameters.
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In this work, we first present a large scale optimization approach that leverages
adjoint-based sensitivities. Our optimization methods are implemented in a separate
package, called Rapid Optimization Library (ROL) within the Trilinos framework,
which features a range of algorithms including first and second order methods, line
search and trust region globalization, and the ability to accomodate inexact gradient
and objective function evaluations. The finite element approach is used to discretize
convection-diffusion-reaction physics. For high Peclet numbers, a Stabilized Upwind
Petrov Galerkin (SUPG) stabilization method is implemented in both the forward and
adjoint operators. The Jacobians in the forward simulator are calculated with auto-
matic differentiation through C++ template overloading. Parallelization is achieved
through the Epetra package in Trilinos. We leverage concepts from stochastic opti-
mization to manage model uncertainties and strive to derive robust solutions. A “risk
measure” is introduced in the objective function and then discretized with collocation
methods. Although a range of risk measures can be considered, we limit our approach
to several popular ones and to risk measures that can be easily mapped from the fi-
nancial to the engineering world. In particular we consider an expected value and
a coherent value at risk, which are related to risk-neutral and probabilty-of-failure
measures, respectively. This approach was first developed in an optimal control prob-
lem, and although one might prefer a stochastic inverse solution, the formulation is
identical and extends to inverse solution with the computational advantages of the
large scale deterministic methods.

2. Mathematical Formulation. This section describes the optimization prob-
lem that we solve in inferring for model parameters from data, and derives the formula
by which the gradient of the objective function is calculated. Several types of risk
measures are described, and the reasoning for choosing one is explained.

2.1. Optimization problem formulation. The physics of the test cases are
described by the convection-diffusion-reaction equations for two species with concen-
tration states φ1 and φ2, denoted together by φ̄. Although our target is to invert for
source terms f , we also consider inversion of the diffusion coefficients µ. Among other
unknowns in the model, the velocity field ~v(ζ) is one of the more important sources
of uncertainty. We do not try to infer it but instead assume a stochastic description
is available where the velocity term is a function of a random variables ζ with an
appropriate distribution. Our mathematical formulation for the inverse problem is
given as follows:

min
d
J (φ, d) = σ

[
1

2

∫
T

∫
Ω

(
φ̄− φ?

)2
δ(x− x∗, t− t∗)dΩdt− β

2

∫
Ω

‖d‖2
]

where φ solves F (φ, d) =
∂φ

∂t
−∇ · (µ(x)∇φ) + ~v(ζ) · ∇φ− r(φ)− f(x) = 0,

σ is the risk measure, β is the Tikhonov regularization parameter, which controls
the magnitude of the penalty term and depends on the quantity and quality of data.
σ is the risk measure, and in the case of a risk-neutral measure, it can be replaced
with an expected value. The optimization parameter vector d can be either µ or
f . To solve this optimization problem, a trust-region method is used, with the use
of a truncated conjugate-gradient method to solve the trust-region subproblem; the
gradient required by this method is calculated using an adjoint approach, described
in [1].
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The gradient can be calculated by differentiating the objective function and mak-
ing use of the chain rule:

DJ
Dd

=
∂J
∂φ

∂φ

∂d
+
∂J
∂d

.

Since φ and d are constrained by F (φ, d) = 0, the direct sensitivity matrix can
be expressed as

∂φ

∂d
= −∂F

∂φ

−1 ∂F

∂d
,

which when placed in the gradient equation gives

DJ
Dd

= −∂J
∂φ

∂F

∂φ

−1 ∂F

∂d
+
∂J
∂d

.

To avoid solving for the direct sensitivity matrix, which for nφ states requires solving
a linear system with Jacobian ∂F

∂φ for each of the nφ columns of ∂F
∂d , we reorder the

calculation:

DJ
Dd

= −∂F
∂φ

−T ∂J
∂φ

∂F

∂d
+
∂J
∂d

.

where an adjoint solution arises:

∂F

∂φ

T

λ =
∂J
∂φ

T

.

The gradient can then be calculated:

DJ
Dd

= −λ∂F
∂d

+
∂J
∂d

.

2.2. Risk Measures. The motivation for augmenting the objective function
with a risk measure is to account for some model based uncertainty in an attempt to
provide a robust solution. The risk measure is a concept from stochastic optimization
and often applied to the management of financial portfolios. The risk measure allows
for a mechanism to achieve a range of objectives given the unknown future of the
economy. For uncertain market conditions a bank may use risk measures to decide
how much currency to keep in reserve, or a business may use them to decide how
much to produce.

Generally, a risk measure is a mapping from a set of random variables to the
real numbers. In actual applications the risk measure is applied to a probability
distribution of losses. Given a loss distribution, the measure should encapsulate the
risk associated with it. The choice of risk measures depends on what is considered
risky; perhaps a risky investment is one with great variation in its possible returns, or
perhaps it is one with very great loss expected in the worst case scenarios. In the case
of inverse problems we consider, the “loss” as the observational mismatch combined
with the regularization terms.
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Risk measures from the financial world are not all easily mapped to engineering
applications but there are a few common ones that can be described in the context
of engineering targets, including expected value, standard deviation or variance, and
Conditional Value-at-Risk (CVaR), The expected value risk measure for function of
a random variable f(X), where X has probability distribution ρ(X), is

σEV (f(X)) = E[f(X)] =

∫ ∞
−∞

f(X)ρ(X)dX.

In finance, the expected value is considered “risk-neutral”; a decision maker who is
risk neutral cares only about the expected returns or losses. In engineering, the ex-
pected value is used when creating a design that is robust to uncertainties[3] and has
a favorable mean response. In our context, the loss distribution would correspond to
a distribution of penalized errors, composed from observation mismatch and regular-
ization penalties; to minimize the expected loss would be to find a parameter estimate
that is robust to uncertainties in the model form.

If neutral to risk is not desired, one might use the standard deviation and variance
risk measures, which are defined

σSD(f(X)) = E[f(X)] + w p

√∫ ∞
−∞
|f(X)− E[f(X)]|p ρ(X)dX,

σV (f(X)) = E[f(X)] + w

∫ ∞
−∞
|f(X)− E[f(X)]|p ρ(X)dX,

where usually p = 2. These risk measures are used with the assumption that the
higher the variance of a variable, such as a portfolio, the more risky. Semideviation
and semivariance risk measures, defined by

σSemiD(f(X)) = E[f(X)] + w p

√∫ ∞
−∞

(max{0, f(X)− E[f(X)]})p ρ(X)dX,

σSemiV (f(X)) = E[f(X)] + w

∫ ∞
−∞

(max{0, f(X)− E[f(X)]})p ρ(X)dX,

can be used if only deviation towards the worse side (in the definition above, the
more positive side) of the mean is considered risky. For a portfolio, these risk mea-
sures might represent a tradeoff between expected returns and the risk one associates
with the uncertainty in these returns; in engineering, they might represent a tradeoff
between expected performance and uncertainty in the performance that can actually
be achieved. The choice of weighting, however, reflects one’s own personal aversion
to variability.

If one is instead concerned about worst-case scenarios, then one might use the
CVaR risk meansure. For a chosen confidence level 0 ≤ α ≤ 1 and continuous
distribution ρ(X), the CVaR risk measure is defined by

σCV aR(f(X), α) =
1

1− α

∫ ∞
Qα

f(X)ρ(X)dX,
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where Qα = sup{x ∈ R|P (X ≤ x) ≤ α} is the α-quantile. The CVaR risk measure
represents the expected loss in the worst 100(1−α)% of the distribution, and as a mean
is less sensitive to sampling error than the quantile risk measure Qα by itself.[4] The
CVaR risk measure is related to that used in reliability-based design formulations, in
which one wishes to minimize the probability of exceeding a certain threshold. When
there is less of a clear line between an acceptable outcome and catastrophic failure,
the CVaR risk measure can be used instead to minimize the expected outcome of
the worst-case scenarios. What value of α is chosen to represent the most extreme
outcomes is again a matter of one’s personal degree of aversion to this risk.

In this study, the expected value risk measure is chosen to obtain a parameter
estimate that is robust to uncertainties in the model form and least dependent on any
personal preference for or against risk.

3. Implementation. To solve the optimization problem, we use a trust-region
method; the trust-region subproblem is solved using the truncated conjugate-gradient
method. Each of the source coefficient parameters is bounded above and below to
prevent the sources from becoming sinks and to keep the concentration states from
becoming so large that the forward solve does not converge. The risk measure is
evaluated by sampling the three-dimensional stochastic space using a seven-point
sparse grid generated from the Gauss-Hermite quadrature rule.

The forward model PDE is solved using a Galerkin finite element method, with
backwards Euler for timestepping and a Newton method to solve the nonlinear system
at each timestep. Since a convection-dominated problem solved by the standard
Galerkin finite element method can produce eroneous oscillatory solutions if the Peclet
number is too high, the streamline upwind Petrov Galerkin (SUPG) method is used
to stabilize the solution. For weight function w, the local residual for the weak form
of the convection-diffusion-reaction problem is

R =
∂φ

∂t
+ µ∇φ · ∇w + (~v · ∇φ)w − r(φ)w − fw.

With SUPG stabilization, the local residual becomes

R =
∂φ

∂t
+ µ∇φ · ∇w + (~v · ∇φ)w − r(φ)w − fw + τ(~v · ∇φ− f)(~v · ∇w),

where

τ =

(
C1k

h2
+
C2‖~v‖
h

)−1

and h is the size of the element with C1 = 4.0 and C2 = 2.0. The stabilized problem
is no longer adjoint consistent, so taking the adjoint (transpose) of the discretized
forward system (discretize-then-optimize) is no longer equivalent to discretizing the
continuous adjoint system (optimize-then-discretize)[2]. The discretize-then-optimize
approach was selected for ease of implementation and ultimately the optimization
requires the discrete form of the adjoint.

4. Numerical Results. This section presents numerical experimentation re-
sults to demonstrate our algorithmic approach. We first consider the deterministic
inverse problem when data are available from many sensors, for progressively more
complex inferences, then add uncertainty to the model and reduce the number of
sensors.
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We start by presenting estimation results for diffusivity and source parameters,
individually and simultaneously, for a linear convection-diffusion model with data
from numerous sensors are given. In these cases, the data is sufficiently informative
to accurately recover the true parameter values. The simultaneous estimation of
diffusivity and source parameters is repeated for a nonlinear two-species convection-
diffusion-reaction model, with data about either one or both species available. For
this more complex physics, having a large amoung of data about just one species is
not quite enough to recover all the source terms; this can be remedied by adding data
about the second species.

We then consider the case where there is uncertainty in the model, and a simul-
taneous estimation of diffusivity and source parameters for a nonlinear two-species
convection-diffusion-reaction model is again performed, for different levels of uncer-
tainty; more uncertainty in the model resulted in parameter estimates that deviated
further from the truth values. Lastly, source parameters are estimated given data
from sparse sensors; it is shown that adding data about one species can help estimate
the source terms of the other.

In all these cases, the computational domain is Ω = [0, 1]× [0, 1] with zero intial
conditions, discretized by 40 × 40 elements with linear nodal bases. To avoid an
inversion crime, data is generated from a finer mesh 80 × 80 and then contaminated
with Gaussian white noise.

4.1. Deterministic Convection-Diffusion. In this section, results are given
for the estimation of various parameters given numerous sensors and a convection-
diffusion model

∂φ

∂t
−∇ · (µ∇φ) + ~v · ∇φ = f

for a single species φ. The species is allowed to evolve over 32 timesteps from t0 =
0.0 to tf = 1.0 with homogeneous Dirichlet boundary conditions imposed along the
top and bottom of the domain. Data is obtained from 64 sensors and placed in a
square grid throughout the domain, taking measurements every ∆t = 0.1875. Since
data were available from a large number of sensors at frequent measurements, it
was qualitatively decided that regularization was unecessary for the estimation of a
handful of parameters in this case with linear physics.

4.1.1. Diffusivity Coefficient Inversion. As an initial phase, data from 64
sensors is used to estimate just a single parameter: a constant diffusivity coefficient
µ. The known source f is described by

f = 10 exp(−10((x− 0.25)2 + (y − 0.25)2)).

The known velocity ~v = (u, v) is an irrotational vortex described by

u = −1000(y − 0.5), v = 1000(x− 0.5).

For the given velocity field and element size, and the range of diffusivity coefficients
considered, the Peclet number is high enough to warrent the use of a stabilization
method to avoid oscillations in the simulated concentration field, as shown in Figure
4.1.

To avoid an inversion crime, Gaussian white noise with standard deviation σ =
10−3 is added to the data. Although there is a large amount of data available for the
estimation of a single parameter, the standard deviation of the noise is only an order
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(a) with stabilization (b) without stabilization

Fig. 4.1: Final state, with and without SUPG

of magnitude smaller than the pure measurements, and it would be expected that
this relatively high noise level would interfere with what should otherwise be a very
accurate estimate of the parameter. This expectation is borne out in the resulting
parameter estimate which, as shown in Table 4.1, is much closer to the truth than the
initial guess but not as close as might be expected from such a large amount of data.

Initial guess Estimated Truth
2.0 0.9826992 1.0

Table 4.1: Estimated diffusivity coefficient - convection-diffusion, no model uncer-
tainty

4.1.2. Source Inversion. Next we consider a case where more parameters need
to be estimated from the same number of data points; although the resulting opti-
mization problem is simpler than the previous in that it is convex quadratic it is more
complex because it is more inversion parameters.

In this case, the diffusivity k = 1 is known and the parameters ~C are to be
estimated from an algebraic parameterization of the source terms:

f = C1 exp(−20((x− 0.15)2 + (y − 0.85)2)) + C2 exp(−20((x− 0.5)2 + (y − 0.85)2))

+C3 exp(−20((x− 0.85)2 + (y − 0.85)2)) + C4 exp(−20((x− 0.15)2 + (y − 0.5)2))

+C5 exp(−20((x− 0.5)2 + (y − 0.5)2)) + C6 exp(−20((x− 0.85)2 + (y − 0.5)2))

+C7 exp(−20((x− 0.15)2 + (y − 0.15)2)) + C8 exp(−20((x− 0.5)2 + (y − 0.15)2))

+C9 exp(−20((x− 0.85)2 + (y − 0.15)2)).

The known velocity ~v = (u, v) is an irrotational vortex described by

u = −42(y − 0.5), v = 42(x− 0.5).

Again, Gaussian white noise with standard deviation σ = 10−3 is added to the data,
and the estimated source terms are shown in Table 4.2 and Figure 4.2. As in the
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Fig. 4.2: True and inferred sources - convection-diffusion, no model uncertainty

previous case, the estimated parameters are much closer to the truth than the initial
guesses were, but the noise level in the data limited the accuracy of the parameter
inversion.

Parameter Initial guess Estimated Truth
C1 2.0 0.9164218 1.0
C2 2.0 0.9727920 1.0
C3 2.0 0.9596691 1.0
C4 2.0 1.037823 1.0
C5 2.0 1.014904 1.0
C6 2.0 1.037821 1.0
C7 2.0 0.9596682 1.0
C8 2.0 0.9727950 1.0
C9 2.0 0.9164226 1.0

Table 4.2: Estimated source coefficients - convection-diffusion, no model uncertainty

4.1.3. Simultaneous Source and Diffusivity Inversion. Here we consider
an inference problem that combines the difficulties of the nonlinear optimality con-
ditions of the first case with the larger parameter space of the second. Neither the
diffusivity nor the source strengths are known. The diffusivity field is modeled as
piecewise constant, with the first four parameters representing the diffusivty in four
quadrants of the domain. The remaining five parameters describe the source term

f = C5 exp(−20((x− 0.5)2 + (y − 0.75)2)) + C6 exp(−20((x− 0.75)2 + (y − 0.75)2))

+C7 exp(−20((x− 0.5)2 + (y − 0.5)2)) + C8 exp(−20((x− 0.75)2 + (y − 0.5)2))

+C9 exp(−20((x− 0.25)2 + (y − 0.25)2)).

The velocity field is the same as in the previous case. The standard deviation of the
Gaussian white noise added to the data is reduced to σ = 10−4, and the estimated
parameters are shown in Table 4.3. Compared to the previous case, the accuracy of
the inferred parameters is improved, reflecting the reduced noise level in the data.
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Parameter Initial guess Estimated Truth
C1 2.0 1.000415 1.0
C2 2.0 0.9965526 1.0
C3 2.0 1.002004 1.0
C4 2.0 0.9990992 1.0
C5 2.0 0.9859356 1.0
C6 2.0 1.008036 1.0
C7 2.0 1.007769 1.0
C8 2.0 0.9917184 1.0
C9 2.0 0.9968621 1.0

Table 4.3: Estimated parameters - convection-diffusion, no model uncertainty

4.2. Deterministic Convection-Diffusion-Reaction. In this case, diffusivity
and source coefficients are again simultaneously estimated, but with a nonlinear two-
species convection-diffusion-reaction model. The state equations are

∂φ1

∂t
−∇ · (µ∇φ1) + ~v · ∇φ1 = αφ2 + f1

∂φ2

∂t
−∇ · (µ∇φ2) + ~v · ∇φ2 = αφ1 + f2

where φ1 and φ2 are the concentration states of the two species and α = 1.0 is the
reaction coefficient. The model is run from t0 = 0.0 to tf = 1.0 in 32 timesteps, and
homogeneous Dirichlet boundary conditions are imposed along the top and bottom
of the domain. There are nine parameters to estimate, the first being the constant
diffusivity and the rest describing the source terms

f1 = C2 exp(−20((x− 0.2)2 + (y − 0.8)2)) + C3 exp(−20((x− 0.4)2 + (y − 0.8)2))

+C4 exp(−20((x− 0.6)2 + (y − 0.8)2)) + C5 exp(−20((x− 0.8)2 + (y − 0.8)2))

f2 = +C6 exp(−20((x− 0.2)2 + (y − 0.2)2)) + C7 exp(−20((x− 0.4)2 + (y − 0.2)2))

+C8 exp(−20((x− 0.6)2 + (y − 0.2)2)) + C9 exp(−20((x− 0.8)2 + (y − 0.2)2)).

The known velocity ~v = (u, v) is an irrotational vortex described by

u = −42(y − 0.5), v = 42(x− 0.5),

and since the diffusivity varies as the parameters space is explored, SUPG stabilization
is used to avoid possible oscillations. Data contaminated with Gaussian white noise
with standard deviation σ = 10−3 is taken from 64 sensors every ∆t = 0.1875. The
estimated parameters are shown in Table 4.4 and the estimated source terms are
shown in Figure 4.3.

The data is sufficient to obtain close estimates of the diffusivity and source pa-
rameters for the first species, and although data of only the first species is available,
the interaction of the two species through the reaction term, along with the large
number of sensors, allows for a close estimate of two of the four source parameters
for the second species as well. Of course, if each sensor could provide data for both
species, the parameter estimate is much improved.
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Parameter
Initial Data from Data from

Truth
guess φ1 only φ1 and φ2

C1 2.0 1.001678 0.9952705 1.0
C2 2.0 1.014302 1.035935 1.0
C3 2.0 1.002739 0.9887638 1.0
C4 2.0 0.9935702 0.9863631 1.0
C5 2.0 1.014242 1.038581 1.0
C6 2.0 1.359563 1.038581 1.0
C7 2.0 1.022204 0.9863532 1.0
C8 2.0 0.8746213 0.9887834 1.0
C9 2.0 1.097095 1.035925 1.0

Table 4.4: Estimated parameters - convection-diffusion-reaction, no model uncertainty
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(e) inferred f2 with only φ1 data
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Fig. 4.3: True and inferred sources - convection-diffusion-reaction, no model uncer-
tainty

4.3. Convection-Diffusion-Reaction with model uncertainty. In this sec-
tion, uncertainty is added to the convection-diffusion-reaction model and the tradi-
tional deterministic objective function augmented with the expected value risk mea-
sure. First, a simultaneous estimation of diffusivity and source paramaters is per-
formed with data from numerous sensors available and in the presence of different
degrees of uncertainty. Then a case is examined in which source parameters are
estimated given sparse sensors.

4.3.1. Numerous Sensors. The optimization problem can be formulated by:
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min
d
J (φ, d) = E

[
1

2

∫
T

∫
Ω

(
φ̄− φ?

)2
δ(x− x∗, t− t∗)dΩdt− β

2

∫
Ω

‖d‖2
]

where φ solves:

∂φ1

∂t
−∇ · (µ∇φ1) + ~v · ∇φ1 = αφ2

1 + f1

∂φ2

∂t
−∇ · (µ∇φ2) + ~v · ∇φ2 = αφ2

1 + f2

with α = 1.0; the reaction term is based on the reaction rate r = k[NO2]2 of the
reaction

CO(g) +NO2(g) → CO2(g) +NO(g),

with φ1 = [NO2] and φ2 = [CO]. The same timesteps and boundary conditions are
used as in the previous case. There are three parameters to estimate, the first being
the constant diffusivity and the other two describing the source terms for the first and
second species, respectively:

f1 = C2 exp(−20((x− 0.3)2 + (y − 0.5)2))

f2 = C3 exp(−20((x− 0.7)2 + (y − 0.5)2)).

The velocity field ~v = (u, v) is again an irrotational vortex, but there is uncertainty
in its magnitude described by

u = −20ζ(y − 0.5), v = 20ζ(x− 0.5),

where ζ ∼ N (1, σ2
ζ ) and the mean was used to generate the data. Data with Gaussian

white noise with standard deviation σ = 10−4 is available from 36 sensors taking
measurements of both species every ∆t = 0.1875, so no regularization is used. As
in the previous case, since the diffusivity varies as the parameters space is explored,
stabilization is used to avoid possible oscillations. The stochastic space was sampled
using a sparse grid built form the Gauss-Hermite quadrature rules.

The parameter estimates obtained in the presence of an uncertain velocity field
are shown in Table 4.5, for σζ = 0.005 and σζ = 0.5. The data is sufficient to obtain
a good estimate the parameter values when the velocity field is known, but as the
uncertainty in the velocity field increases, the estimates increasingly deviate from the
truth, as would be expected.

4.3.2. Sparse Sensors. The physics of interest are described by the convection-
diffusion-reaction equations for two species since the diffusivity varies as the param-
eters space is explored.

∂φ1

∂t
−∇ · (k∇φ1) + ~v · ∇φ1 =

α

2
φ2

1φ2 + f1

∂φ2

∂t
−∇ · (k∇φ2) + ~v · ∇φ2 = αφ2

1φ2 + f2
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Parameter Initial guess σζ = 0.5 σζ = 0.005 Truth
C1 2.0 1.1582 1.02741 1.0
C2 2.0 1.4644 1.33455 1.3
C3 2.0 1.8022 1.63228 1.6

Table 4.5: Estimated parameters - convection-diffusion-reaction with model uncer-
tainty

where φ1 and φ2 are the concentration states of the two species, k = 0.01 is the
diffusivity coefficient, and α = 2.0 is the reaction coefficient. The reaction term is
based on the reaction rate r = α[NO]2[Cl2] of the reaction

Cl2(g) + 2NO(g) → 2NOCl(g),

with φ1 = [NO] and φ2 = [Cl2]. Nitric oxide is a byproduct of combustion in
the presence of nitrogen, which is the main component of air, and chlorine gas has
commercial and industrial applications as a disinfectant and for water treatment.

The species concentrations are allowed to evolve over 32 timesteps from t0 = 0.0
to tf = 1.0 with natural boundary conditions. In this simple test case, we assume
that we know the locations of the sources producing species 1, but wish to invert for
their magnitudes; the source f1 is described by

f1 = C1 exp(−20((x− 0.1)2 + (y − 0.6)2))

+C2 exp(−20((x− 0.25)2 + (y − 0.7)2))

+C3 exp(−20((x− 0.5)2 + (y − 0.8)2))

+C4 exp(−20((x− 0.7)2 + (y − 0.85)2))

+C5 exp(−20((x− 0.8)2 + (y − 0.9)2)),

where ~C = (C1, C2, C3, C4, C5) are the parameters we try to estimate from the data.
The source f2 also has a known location, but its magnitude is treated as an uncertainty
in the model form rather than a parameter:

f2 = ζ3 exp(−10((x− 0.6)2 + (y − 0.4)2)),

where ζ3 ∼ N (1, (0.01)2) is a random variable. The velocity field ~v = (u, v),

u = 1.0 + ζ1
y2 − (x+ 0.5)2

y2 + (x+ 0.5)2
− ζ2

y2 − (x− 1.5)2

y2 + (x− 1.5)2

v = −ζ1
y2 − (x+ 0.5)2

y2 + (x+ 0.5)2
+ ζ2

y2 − (x− 1.5)2

y2 + (x− 1.5)2
,

is also a source of uncertainty in the model form, with ζ1, ζ2 ∼ N (1, (0.1)2). The
“true” values of these random variables that are used to produce synthetic data are
ζ? = (1.05, 1.05, 1.05); the true source coefficients are C? = (1.0, 1.2, 1.4, 1.2, 1.0).
The data is perturbed by normally distributed white noise with standard deviation
σ = 10−4. The true sources and velocity field are shown in Figure 4.4.

The data comes from two sensors placed at (0.3, 0.2) and (0.3, 0.7), one near the
sources and one at a location that the first species was expected to be convected
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Fig. 4.4: True sources and velocity field

Parameter
Initial 2 φ1 sensors 2 φ1 sensors 2 φ1 sensors

Truth
guess 0 φ2 sensors 1 φ2 sensor 3 φ2 sensors

C1 3.0 0.966013 0.990649 0.992926 1.0
C2 3.0 1.31042 1.22505 1.22334 1.2
C3 3.0 1.01494 1.27215 1.23333 1.4
C4 3.0 0.065891 0.276508 0.93828 1.2
C5 3.0 0.00815815 0.111768 0.700139 1.0

Table 4.6: Estimated source coefficients

through, based on the mean velocity field; each sensor took measurements of φ1 every
∆t = 0.1875. Given the sparse sensors, Tikhonov regularization with β = 10−4 is
used. The resulting estimated source coefficients are compared with that obtained if
additional data is available from a sensor at (0.75, 0.25), taking measurements of φ2

at the same timesteps; this additional sensor is located near the center of f2 and thus
where φ2 was expected to be high.

The estimated source coefficient parameters are summarized in Table 4.6. Using
only the measurements of φ1 from two sensors gives an estimate of f1 shown in
Figure 4.5(a). The two sensors are only able to provide enough information for a
fair estimate of the source components they are closest to; the ones further away
are mostly informed by the regularization term. Using measurements of φ2 from an
additional sensor provides information on the state and thus source of the first species,
improving the estimates of the source coefficients. The improved source estimate is
shown in Figure 4.5(b). Including data from two more sensors of φ2 at (0.65, 0.3)
and (0.85, 0.2), also located near the center of f2 and thus where φ2 is expected to be
higher and the reaction term larger, further improves the source estimate, shown in
Figure 4.5(c).
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Fig. 4.5: Inferred source - convection-diffusion-reaction, with model uncertainty

5. Conclusions. We present the efficient solution of a parameter estimation
problem that is robust to model uncertainties, taking advantage of stochastic op-
timization algorithms. Both the inversion of diffusivity and source coefficients are
investigated for numerous and sparse sensors, utilizing Thikonov regularization for
the latter. Convection-diffusion-reaction physics with SUPG stabilization is used to
evaluate the use of two reacting species in the presence of uncertainty in the velocity
field. It is shown that additional information from another trace-gas species improves
the reconstruction of the other trace-gas source term coefficient. Furthermore, robust
inversion solutions are obtained in the face of incertainty, expoiting an expected value
in the objective function to reflect a risk neutral measure.
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ANGLE DEPENDENCE OF OBLIQUE IMPACT PROBLEMS IN
ALEGRA

JARED M. STATEN ∗ AND ALLEN C. ROBINSON †

Abstract. Alegra is a powerful multiphysics Arbitrary Langrangian Eulerian simulation code.
To ensure its reliability, inconsistencies and errors must continually be investigated and solved.
Evidence has been found of potential angle dependence in oblique impact problems run with Alegra.
Extensive testing and obeservation was done in this project to identify the cause of the problem.
The project results indicate that the remap method is directionally independent (as designed), but
the Johnson Cook fracture model is a significant source of grid-related error. Using the information
gathered by this project, the next step is to determine why the Johnson Cook fracture model has a
grid-dependence issue and fix the issue altogether.

1. Introduction. High velocity impact problems are difficult to test with phys-
ical experiments. They can also be very expensive, especially for large scale problems.
For this reason, a simulation tool such as Alegra is invaluable for studying the mechan-
ics of high velocity impact. Unfortunately, due to the nature of computer simulations,
what is gained in efficiency is compromised in the accuracy of the testing. Some prob-
lems, when changed slightly, result in catastrophic errors when the problem should
run smoothly. The more common case, though, is variation in the material ejected
from the impact point.

Due to the complexity of Alegra, the inconsistency could be caused by a number of
different factors. Suspected to be an error in either remap or the material model, the
issue required extensive testing before any conclusions could be made. The purpose
of this project was to collect data concerning the inconsistencies of oblique impact
problems to support future investigations of the problem.

Section 2 describes the problem setup and naming system used for all problems
in this project. Section 3 details the first set of tests, used to investigate whether
remap was the source of the issue. Section 4 investigates the possibility that the
inconsistency was due to the material model in use.

2. Computational Setup. The problems were run in a two-dimensional do-
main nine inches in the Y direction by ten inches in the X direction. The steel target
was seven inches long by two inches thick, and was rotated about the center of the
domain by angle φ. The copper projectile was four inches long by ten millimeters
thick, meaning it had a length-to-thickness ratio of about 10. It was rotated, also
about the center of the domain, by angle α. The projectile was given a velocity of
1200 m/s.

All problems were named using the same system: ufem φ α for problems run with
regular Alegra, and xfem φ α for problems run using Alegra-XFEM. φ represents the
angle of offset of the target from vertical and α represents the angle of offset of
the projectile from horizontal. Problems used to experiment with refinement were
named according to the level of refinement used. For example, ufem φ α hi is a high-
resolution problem, and ufem φ α lo is a low-resolution problem. High-resolution
problems had cell size 0.5 mm, mid-resolution problems had cell size 1 mm, and
low-resolution problems had cell size 2 mm.

Each problem was run to a termination time of 10.0e-5 seconds, taking roughly
1200 timesteps for a mid-resolution simulation.

∗La Cueva High School, jmstate@sandia.gov
†Sandia National Laboratories, acrobin@sandia.gov



148 Angle Dependence in Alegra

Fig. 2.1: Example problem setup

As indicated, a positive φ represents a counterclockwise rotation of the steel tar-
get, and a negative φ represents a clockwise rotation. Similarly, a positive α indicates
a counterclockwise rotation of the copper projectile and a negative α indicates a clock-
wise rotation. No signs are used in the names of the problems, however. In every
test, the target was rotated clockwise and the projectile was oriented 0, 15, 30, or 45
degrees from it. For example, the angles in the example problem above are negative,
(φ=-30,α=-30) but the name of the problem would be ufem 30 30 (or xfem 30 30,
depending on how the problem is run), not ufem -30 -30.

2.1. Methods of Execution. The majority of problems in this project were
run with regular Alegra, which uses a two-step swept-face remap to process and move
material. The two-step algorithm alternately sweeps material through X and Y faces
of the grid elements, so it had to be eliminated first as a source of angular dependence.

A handful of problems were run with XFEM. XFEM, unlike regular Alegra, uses
a single-step intersection remap algorithm, which should be unaffected by the orien-
tation of the problem relative to the grid.

3. Advection Tests. Seven different angle sets were used for advection testing,
and four of them (0 0, 30 30, 0 30, and 30 0) were used to experiment with mesh
refinement. In addition to including a mesh refinement factor, another set of vari-
ables was added to track total normal momentum (MOMNORM) and total tangential
momentum (MOMTAN), using the frame of the projectile. This addition was neces-
sary because momentum is a vector quantity, and comparison must be made using a



J.M. Staten and A.C. Robinson 149

consistent frame of reference.
The normal impact problems were run and observed first. No difference was

seen from visualization of the solution, even when the high-resolution results were
compared, but small variations were observed in the global history variables. At all
three resolutions, problems with higher offset angles lost total energy fastest, as shown
in Figure 3.1. The difference is negligible, though, roughly 0.12 percent of the initial
total energy of the system (ETOT).

Fig. 3.1: As displayed by the Energy-Time graph, normal impact problems with more
offset from the normal orientation lost more total energy.

The 30 degree impact problems proved to be the interesting cases of the advection
testing and the rest of the project. 30 degree impact problems at each of the three res-
olutions are shown in Figure 3.2. The low and medium resolution simulations showed
the same types of variations (between 0 30 and 30 0) in ParaView, with the ejected
material in the 0 30 problem tending to curve toward the target and the material
in the 30 0 problem pointing further from the target. As resolution increased, the
two problems resembled one another more closely, indicating that convergence solved
the issue. Similarly, for the low and medium resolution simulations, as observed in
shivr, 0 30 lost ETOT faster than 30 0. (Figure 3.3) The high resulution simulation
however, indicated that the two problems had much closer values for ETOT. Differ-
ences between 0 30 and 30 0 reduced significantly in the high resolution simulations,
indicating that the problem is converging to a grid-independent solution.

The high-resolution ETOT plot for the 30 degree problem, however, showed inter-
esting results when material ejected by the impact left the domain. This is represented
by sudden drops in ETOT. (Figure 3.4) Because ETOT is calculated based on the
amount of material in the problem, lost material means lost energy. Thus, drops in
ETOT line up with increases in MATLOSS. (Figure 3.4)

The 45 degree oblique impact problems showed the same differences in Alegra as
the 30 degree oblique impact problems. (Figure 3.5) The ejected material in the 45 0
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Fig. 3.2: Low resolution testing showed great differences between the 0 30 and 30 0
problems. As resolution increased, (moving right) the difference between the problems
was fixed.

Fig. 3.3: (left) The 0 30 simulation loses ETOT faster than the 30 0 in the mid-
resolution simulation. (right) Both 0 30 and 30 0 lose ETOT at the same rate when
the problem is refined.

Fig. 3.4: Drops in ETOT are associated with jumps in MATLOSS. Differences between
0 30 and 30 0 are due to differences in boundary placement relative to the problem.

problem curved toward the target and the same material in the 0 45 problem tended
away from the target.
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Fig. 3.5: 0 45 and 45 0 simulations are overlaid to show the difference observed in the
ejection region. Solid colors represent area filled by both simulations, while translucent
areas are only filled by one simulation.

Interestingly, energy and momentum values (ETOT and MOMNORMAL) for the
45 degree oblique impact problems were very similar. (Figure 3.6) ETOT values were
visually identical and MOMNORMAL values were numerically identical.

Fig. 3.6: ETOT and MOMNORM values for the 0 45 and 45 0 simulations are prac-
tically identical

The advection tests served as a baseline in this project. They were used to inves-
tigate whether remap was the source of the problem. As was expected, convergence
solved the error, indicating that something else was the source of the issue.

4. Material Model Tests. Because the advection tests of the previous study
showed that the issues were solved with refinement, it was evident that advection
was not affected by obliquity with simple material models. The next step was to add
an algorithm suspected to have mesh dependence: the Johnson-Cook fracture model.
Two new variables were used to track the behavior of the fracture model: Damage and
Failure Fraction. The results of the initial testing prompted a number of additional
tests to clarify where and under what conditions the problem was occurring.
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4.1. Regular Alegra tests. First, a set of seven problems was run using regular
Alegra. This set included three normal impact problems, two 30 degree oblique impact
problems, and two 45 degree oblique impact problems.

All three normal impact problems ran as expected and were observed to be virtu-
ally identical. Notably, the 45 degree oblique impact problems were nearly identical
as well.

The two 30 degree oblique impact problems shown in Figure 4.1, however, (0 30,
30 0) differed much more then the others. The problems were run at higher and lower
resolutions to see if mesh refinement had any effect. The emitted-particle problem
persisted, indicating an issue with the model; refinement did not solve the issue as it
had before.

Fig. 4.1: The 0 30 and 30 0 simulations are quite different, even at high resolution.
These simulations use the Johnson-Cook fracture model.

While the ejected material of the 30 0 problem shows the expected results, the
0 30 exhibits very peculiar behavior. (Figure 4.1) The ejected material originating
from the target stops at a seemingly arbitrary point, and only a small portion of the
material continues to move. Meanwhile, the ejected material originating from the
projectile behaves as expected.

Figure 4.2 shows the set of new tests that was introduced to investigate the 30
degree angle of impact at varying angles of obliquity: 0 30, 15 15, 20 10, 30 0, 40 10,
60 30, 90 60, 120 90

After running the problems and viewing the results of the new tests, most of the
new tests were identical to the 0 30 problem, except for te 120 90 case, which was
almost identical to the 30 0 case. The two problems shared a 30 degree displacement
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Fig. 4.2: Full set of 30 degree impact problems

from the grid. The addition of 30 degree impact test problems demonstrated X/Y
invariance in that each of the test problems was identical to the problem oriented 90
degrees from it. (0 30 was identical to 90 60, 30 0 was identical to 120 90, etc.)

4.1.1. Damage and Failure Fraction. To conduct further comparison on the
0 30 and 30 0 problems, the damage and Failure Fraction variables were viewed in
ParaView. Based on the results, the 30 0 problem seemed to have taken slightly more
damage around the edge of the block. More of the damage in the 0 30 problem was
concentrated on the material ejected from the impact point. (Figure 4.3)

Fig. 4.3: Damage of 30 0 simulation (left) and 0 30 simulation (right)

Failure Fraction was found more consistently in the ejected material of the 0 30
problem and was less present in the 30 0 problem. (Figure 4.4)

The Damage and Failure Fraction visualizations show the same peculiar behavior
as the earlier problem. (Figure 4.5) At the same seemingly-arbitrary point where the
material stopped in the initial visualization, both Damage and Failure Fraction are
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Fig. 4.4: Failure Fraction of 0 30 simulation (left) and 30 0 simulation (right)

suddenly equal to one. In addition, the behavior only occurs in the 0 30 simulation;
values for Damage and Failure Fraction are normal in the 30 0 visualizations.

Fig. 4.5: Both visualizations show unusual behavior at the same arbitrary point.

Note: Damage and Failure Fraction variables represent damage sustained by the
material and whether or not the material has failed at a given point, respectively. At
points where Damage reaches its maximum, the material is damaged to a point that
it fails, and Failure Fraction is present there.

4.2. Alegra-XFEM Tests. The Alegra-XFEM simulations provided new means
to obtain useful information for comparison with the regular Alegra tests. Alegra-
XFEM simulations capture exactly where each material lies, rather than an average
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of the material present in each element. (Figure 4.6) Use of the VTK visualization
with the Alegra-XFEM simulation provided a sharper image of the problem that will
be useful in future examination.

Fig. 4.6: VTK visualization output from an Alegra-XFEM simulation. Notice the
critical differences in the circled areas.

Note that in the 0 30 simulation (left) the tail of the projectile has been rounded
out. (Figure 4.6) This is because it does not line up with the grid and has been
increasingly distorted with each step. The 30 0 simulation, however, shows that the
tail of the projectile has remained square. (Figure 4.6) This is because it is in line
with the mesh. This shows grid dependence, but it is an expected inaccuracy and is
not the focus of this project.

4.2.1. Damage and Failure Fraction. The results of the Alegra-XFEM prob-
lems were displayed with a different scale than those of the earlier tests, ranging only
from 0 to 0.879 for Damage and from 0 to 0.0312 for Failure Fraction. This is be-
cause 0.879 and 0.0312 are the highest values for Damage and Failure Fraction in the
problem, respectively. The fact that both problems have the same scale means that
they both have the same maximum values for Damage and Failure Fraction, which is
a good sign.

In both output files, the damage variable showed that the 0 30 simulation sus-
tained more damage at the impact point while the 30 0 sustained more in the ejected
material. (Figure 4.7) This is somewhat in agreement with the damage variable results
of the normal-Alegra testing, shown in figure 4.3
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Fig. 4.7: Damage of 0 30 simulation (left) and 30 0 simulation (right)

The Failure Fraction variable more failure in the ejected particles for the 0 30
problem, and very little Failure Fraction presence in the 30 0 problem. (Figure 4.8)
This is curious because, though the regular-Alegra simulations showed higher Failure
Fraction in the ejected material also, the Failure Fraction in the 0 30 simulations are
in entirely different places. Because both the Exodus and VTK visualization from the
Alegra-XFEM simulation showed Failure Fraction in the same place, this was clearly
a difference between regular-Alegra simulations and Alegra-XFEM simulations.

Fig. 4.8: Failure Fraction of 0 30 simulation (left) and 30 0 simulation (right)

The aforementioned unusual behavior seen in all of the regular-Alegra tests that
used the Johnson Cook fracture model did not appear in any of the Alegra-XFEM
simulations.

5. Conclusion. Due to the nature of computer simulations, small bugs and in-
consistencies can cause significant problems when the program is used. This project
worked to identify the source of an error in Alegra oblique impact problems. It in-
cluded extensive testing of an extensive set of problems and analyzation of the results
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of each. Based on the initial results, Alegra simulations’ reliance on grid alignment is
lessened with mesh refinement. When a new model (Johnson-Cook Fracture Model)
was used, refinement did not fix the issue. This indicates that the inconsistency is
caused by the material model. Overall, this project has provided preliminary investi-
gation concerining an inconsistency in Alegra, in addition to creating a bank of data
to be used in later investigations of the same issue.
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SQUADGEN GRID GENERATION: A TOOL TO FURTHER
IMPROVE THE ATMOSPHERIC GENERAL CIRCULATION

MODELS

SHARON M. SULLIVAN∗ AND MARK A. TAYLOR†

Abstract. SQuadGen (Spherical Quadrilateral Grid Generator) is an open source code that
makes grids to be used by the Community Atmosphere Model (CAM) to create high-resolution grids
to mathematically represent the complex nonlinear interactions within the climate system to change
aspects of the interactions. Emphasis is made on tropical cyclones, Arctic storms, and high-intensity
orographic precipitation events.

1. SQuadGen. The climate system is characterized by complex nonlinear in-
teractions on different temporal and spatial scales [1]. Global atmosphere models use
numerical methods to solve the coupled set of partial differential equations describing
fluid motion to resolve large-scale (dynamical) atmospheric flow with coupled, ocean,
land, and sea ice components [4]. There is emphasis in developing high-order numer-
ical methods for climate modeling, such as the spectral element dynamical core and
uncertainty quantification to improve the simulation of extreme events and productiv-
ity of global climate models. A variable cubed-sphere grid (shown in Figure 1.1)can
be used by the Community Earth System Model (CESM) to focus on conforming
quadrilateral meshes to areas of in variable resolutions [2]. Grid construction utilized
the open source code, SQuadGen, which generates meshes that can be used by the
Community Atmosphere Model (CAM) [4].

Fig. 1.1: The cubed-sphere grid

CAM uses regional mesh refinement to provide a framework for atmospheric flow
and high-resolution measurements of climatic variables in specific regions. The Com-
munity Atmosphere Model should be able to investigate the role of seasonal and
long-term climate variability, applications to environment and policy, and define the
number of years that the climate system can be simulated [4]. This computationally
effective tool satisfies the need of variable resolution global climate modeling, increased
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resolution over defined regions, and can be used to improve forecasts through a de-
termination of how these multi-scales interact and to mathematically represent these
interactions in climate models [1]. In this paper, we will document the procedure to
generate and rotate grids in SQuadGen.

2. Global Atmosphere Models vs. Regional High-Resolution Models.
Global atmosphere models are a relatively new invention dating to about the time
of World War I and World War II. Global atmosphere models allow one to chop up
the atmosphere into grid cells. It is performed on a numerical basis with variables
that satisfy the laws of physics that propagate through time and simulate reality.
Each cell has one value of temperature, pressure, humidity, and winds in the u and
v directions. These are called the “dynamics” (fluids) or resolved variables, where
partial differential equations governing the resolved large-scale atmospheric flow are
solved. The timestep matches up with the scale of variability. The physics of the model
are for statistically parameterized variables that represent the unresolved small-scale
components and must be solved in terms of the resolved variables [2]. Clouds and
precipitation are parameterized because we cannot have one grid cell value for either
of these variables.

According to Chaos Theory, errors in the initial model data will propagate into
time and contaminate the forecast. The dynamics of atmospheric models rely on
wind values to carry the model through time (or the so-called chaos of the equations).
Most global atmospheric models rely on equations that describe the conservation of
energy, mass, and momentum for each grid cell. The set of primitive equations is
essentially a balance of equations. Newton’s Second Law describes the components of
motion associated with momentum changes upwind, the Coriolis force, and friction
at the surface (∂u∂t are winds in the east-west direction and ∂v

∂t are the winds in the

north-south). The First Law of Thermodynamics (∂T∂t ) describes the rate of change in
energy over some timestep. These equations work best at locations in the atmosphere
where resolved variables fit reality (i.e. at mid-tropospheric levels not at the surface).

Global models today are on the size of approximately 100 km and are best to show
the two-way interaction of global synoptic atmospheric flows. In addition, global mod-
els are physically consistent. With each grid cell, decreasing the size of the grid cell
by half requires computing power of 23. We can use regional high-resolution nested
models to account for surface features within a coarse global model having orders
of magnitude fewer elements that can focus in specifically on one area [3]. As op-
posed to global models, regional models can look at higher-resolution areas, show the
vertical structure of the atmosphere, and preserve topographically-forced dynamics.
The timestep is globally restricted to the finest grid scale [5]. The computing power
results in a 15-20x speedup with variable-resolution vs. uniform grids based on the
number of elements [5]. For the same cost of a global uniform/ quasi-uniform grid, we
can get higher-regional resolution, additional ensemble simulations, and longer model
runs using regional meshes. Regionally-refined meshes with fewer degrees of freedom
can produce the same local results as a global uniform grid [6].

3. Procedure for New Grid in CESM. SQuadGen must be first downloaded
from the High-Order Methods Modeling Environment (HOMME )to make a grid file.
The grid file is imported into GIMP (GNU Image Manipulation Program) containing
two image layers that can be edited. The first layer shows the uniform grid with an
average 1◦ horizontal resolution. The 1.0◦ resolution has strong biases and proposes to
use the inexpensive regional resolution within the global model. This grid is referred
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to as NE30, since there are 30x30 elements in each cube face. The second layer then
can be used to show the elements that have been marked for refinement.The elements
themselves must be quadrilateral and the refinement must be conforming (meaning
that every edge is shared by exactly two elements) [2]. For the equatorial grids, this
region of refinement can be a circle, square, or any combination of a circle/square
that is top-bottom symmetric and centered in the equatorial region. Equatorial grids
do not always have to be symmetric. For this particular study involving atmospheric
forcing, symmetric grids were used but is not a requirement for all equatorial grids.

An image containing a white shape is created in GIMP using the white shape to
mark the area of refinement and the cubed-sphere template as a guide. The image
created by GIMP is saved as a .png file, which the SQuadGen code uses to generate
the refined mesh. Parameter values can be modified for the file type, how many
levels of refinement, resolution, output, refinement type (CUBIT or LOWCONN),
and smoothing parameters. Cubed sphere grid refinements with certain parameters
create the refined grid. The LOWCONN (low connectivity) refinement can only be
used on grids with an even number of elements and also has less distortion than the
CUBIT-type transition regions with angles closer to 90◦. The refinement file is the
name of the .png that was marked and saved for refinement. The refinement level
can any integer based on how many levels of refinement are necessary. Two or three
levels of refinement are usually used with the 1.0◦ and 2.0◦ grids. A 1.0◦ → 1/4◦

refinement means that there are two levels of refinement. The resolution is the value
of the lowest refinement and can be NE15, NE16, or NE30. The NE15 resolution
grid has a grid spacing of 222 km analogous to 2◦x2◦, while the NE30 grid has a
grid spacing of 111 km. Two levels of refinement implies that a refinement level of
2 is applied twice and subdivides the grid four times. Likewise, a refinement level
of 3 will have a refinement factor of 8. Smoothing parameters are used to turn on
grid smoothing, which is applied in the transition region to reduce the distortion to
squares. The smoothing iteration tells how many times the smoothing loop will run.
Fifteen has been used for the smoothing iteration in this case. An example code for
the NE120 series grid is shown:

./SQuadGen --refine file ne120 equatorial.png

--refine level 2 --resolution 30

--refine type CUBIT --output NE30.g

--smooth type SPRING --smooth dist 3 --smooth iter 15

The National Center for Atmospheric Research (NCAR) in Boulder, Colorado
created NCL, the NCAR Command Language, which is designed specifically for sci-
entific data processing and visualization through the use of command line operations.
The NCL script, plot exodus.ncl, plots the elements and allows the new grid plot
to be viewed.

4. Developments. The major breakthroughs of this project were the shape that
was used, which template (NE60 or NE64 templates) to guide drawing the shape,
and how rotations work in SQuadGen. A trial and error approach was used in the
beginning and many different approaches were covered. The first attempt was a
square with rounded edges (“squircle”) that was hand-drawn in GIMP, but there
were notches in the bottom and top of the shape when it was refined. Notches in the
region of refinement make it difficult to for symmetry to be noticed. Next, a shape
that consisted of a basic overlay of two circles of different sizes was used. A layer
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called “Greywhite” forced SQuadGen to generate two levels of refinement by having
a white rectangle nested inside a larger grey rectangle. SQuadGen flips the colors
that GIMP uses, so white is the area of high-level refinement and the grey would be
medium-level refinement. A script in NCL was written to convert the refined mesh
into a .png file that can be loaded back into GIMP. This allowed the asymmetric
areas to be filled in for refinement. A squared-diamond shape was also created. It
was symmetric and covered the correct area of refinement, but was not used due to
the grid not being a favorite of the group.

For the first grid, the specifications of a 60◦ equatorial grid had to be met. An
irregular-shaped disk was designed that spreads 60◦ in width. The shape follows the
gridlines (straight on the vertical edges and a 45◦ diagonal along the curved portions of
the grid where the gridlines meet). The irregular shape may not be visually appealing,
but it is top-bottom symmetric and accurately takes into account flow in and out of
the high-resolution nests [5]. The symmetry was particularly important to meet the
first grid’s criteria.

To find which template the region of refinement should be drawn on, find the
resolution of the fine region and use the template with a one-half factor of the fine
resolution. A 1/8◦ refinement is an NE16 grid with three levels of refinement. For
the NE16 grid series, the region of refinement can be drawn in GIMP using the NE64
image template. Three sets of grids were generated from the irregular disk: NE16 →
NE128 with 3 levels of refinement (Figure 4.1(a)) and NE32→ NE128 (Figure 4.1(b))
and NE30→ NE120 (Figure 4.1(c)) each with 2 levels of refinement respectively. The
NE15 grid with three levels of refinement can be generated, but it is not an even grid.
The NE60 and NE64 cannot be used interchangeably due to placement of the gridded
elements.

(a) NE16 → NE128 equatorial grid (b) NE32 → NE128 equatorial grid

(c) NE30 → NE120 equatorial grid

Fig. 4.1: Equatorial grid series

In order to center the region of refinement over the United States , a midlatitude
rotation must be performed. SQuadGen has four parameters that can be used for
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rotations: lon base, lon shift, x rotate, and y rotate. The parameters are order-
dependent meaning that if y is coded before x, a rotation about the x-axis will be
performed first. A midlatitude rotation is simple if a y-rotation and a z-axis are given.
Another name for the z-axis in SQuadGen is lon base. X- and y-rotations were used
in 90◦ increments, where points on the cubed-sphere are always in the same location.
There are sixteen different combinations of x-rotations and y-rotations from 0◦ to
270◦, with 6 of those being rotations in the Northern Hemisphere. A 90◦ rotation in
x rotates the region of refinement to the left 90◦ over the southern Atlantic Ocean
from 60W to 60E and 0 to 60S. If an axis of rotation was placed through Ghana, the
globe would rotate counterclockwise in the x-direction. A 90◦ rotation in y stretches
the region of refinement from 180W to 60E and 120E to180E from 30N to 90N. It
was found that the axis of rotation in the y-direction is a clockwise rotation that goes
from the Galapagos Islands at 90W through the Bay of Bengal off the eastern coast
of India. The combination that produces the midlatitude region of refinement is a
lon base of -90◦ and y rotate 270◦. Figures 4.2(a), 4.2(b), and 4.2(c) below show the
midlatitude grid series that was generated from these rotations.

(a) NE16 → NE128 midlatitude grid (b) NE32 → NE128 midlatitude grid

(c) NE30 → NE120 midlatitude grid

Fig. 4.2: Midlatitude grids

This step-by-step method of generating grids was an improvement over the trial
and error method approached previously and seems to generate good grids. The image
and .pdf files were compiled for use in the regionally refined project.

5. Applications. Modeling sub-synoptic scale features requires high horizontal
resolution [5]. Often, high resolution data is only necessary over a small region: for
making a local forecast, comparing the model to statistics gathered locally, or using
the local statistics to tune the global high-resolution model based on the feedback in
the refined region, to name a few reasons [2]. Some examples of these features include
tropical cyclones, Arctic storms, high-intensity precipitation events, high-resolution
measurements of clouds, localized air quality events, and other variables in specific
regions [5]. These measurements are useful for tuning a global model, even though
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the data itself is not global [2]. The goal of variable-resolution Global Circulation
Models (GCM’s) is to facilitate the move towards seamless prediction, a one-model
fits all approach for numerical weather prediction and climate application [5].

One of these applications of regional grids allows us to place grids over areas
of higher topography. In regions of rough topography, such as over the Andes and
Himalayas, models often over predict precipitation due to numerical issues associated
with terrain following coordinates. This bias in precipitation is often reduced in global
high resolution models [4]. This has been seen if similar improvements can be obtained
with selective regional refinement. We thus created a suite of regionally refined grids
with a high-resolution region placed over the Andes and Himalayas (shown in Figure
5.1(a) and 5.1(b)).

(a) NE30 → NE240 Andes grid (b) NE30 → NE240 Himalaya grid

Fig. 5.1: NE60 series grids for Andes and Himalaya orographic precipitation

Another application that can be used with variable resolution is Arctic storms.
The Arctic storm tracking algorithm uses a modification of the tropical storm algo-
rithm using vorticity and pressure to identify storms and plots the tracks with NCL.
The storms that are of concern are the numerous tracks of storms that would be
considered a Category 1 on the Saffir-Simpson Hurricane Scale. Once the tracking
algorithm is working properly to detect Arctic storms, the latitude of these storms
can be determined through storm tracks and visual characteristics of the storms to
suggest where to place the refined grid. The latitude of these storms suggest that
a refined grid be placed in a belt-like band between 40N and 60N around the globe
(Figure 5.2), as suggested by the storm tracks in reanalysis data. The refinement goes
from 1 ◦ → 1/8◦ at the poles. The refined Arctic grid contains 53,000 elements, which
falls within the 10% range of the maximum computing power required to refine the
elements.

Fig. 5.2: Preliminary Arctic grid
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6. Discussion. The equatorial disk started out being centered at 30W, but a
rotation was required for the refined region to be centered over the United States.
Using GIMP, it is difficult to draw the region of refinement by hand. Even with
symmetric shapes as the input, the refined grid might not always come out symmetric.
Once a region of refinement is created, it is difficult to move the region without some
set of rotations. Coloring over the line of a grid cell will refine the next element as
well.

Initially, SQuadGen would ignore the smoothing parameters completely, but the
bug was eventually fixed. A shape that is not designed for visual effects, but is top-
bottom symmetric accurately takes into account flow in and out of the high-resolution
nests [5]. The irregular equatorial disk had a longer eastward component allows the
flow to be stronger going out of the model, where equatorial pressure gradients are
stronger and therefore the trade winds (northeast in the Northern Hemisphere and
southeast flow in the Southern Hemisphere) are also stronger in this vicinity.

7. Conclusion. Cubed-sphere grids and multi-resolution, highly-scalable dy-
namical cores may provide opportunities to improve numerical weather prediction
and regional climate forecasts [5]. In general, the model tends to oversimulate what is
observable in satellite imagery. There are systematic errors in the cyclone track and
intensity on 1/8◦. The parameterization comes across performance issues for bands
of precipitation, allowing too much light precipitation to be simulated by the model.

The variable-resolution approach focuses on cubed-sphere computational meshes
that have the potential to become a standard in future Global Circulation Models
(GCMs) [1]. The regional refinements show improved resolution in limited regions
without requiring a fine grid resolution throughout the entire domain. Using a refined
mesh provides a method to model a high-resolution climate in a particular area of
interest while producing a low-resolution simulation outside the region, reducing the
computational cost of running CAM [2]. The region of refinement can be tailored
towards the research problem associated with atmospheric model simulations. The
variable-resolution approach bridges the scale discrepancies in key features in climate
modeling between local, regional, and global phenomenon.
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OPTIMIZATION UNDER UNCERTAINTY FOR THE SHOCKLEY
AND THE DRIFT-DIFFUSION MODELS OF A DIODE

T.A. TAKHTAGANOV∗, D.P. KOURI† , D. RIDZAL‡ , AND E. KEITER§

Abstract. We solve stochastic optimal control problems involving numerical models of electrical
diodes, where diode parameters are subject to uncertainty. We consider two models of a diode, an
algebraic model given by the Shockley equation, and a partial differential equation model given by the
drift-diffusion equations. The random parameters that define the stochastic optimal control problem
are computed by solving a sequence of deterministic inverse problems based on known distributions of
auxiliary variables, such as the current measurements. We solve the inverse and the optimal control
problems using gradient-based optimization methods from the Rapid Optimization Library (ROL),
Trilinos. We present numerical studies of the stochastic optimal control problem for a variety of risk
measures implemented in ROL.

1. Introduction. Our goal is to formulate and solve optimization problems with
uncertain parameters for the electrical circuit consisting of a voltage source V src and
a diode connected in series, as shown in Figure 1.1. The diode is modeled as an
intrinsic diode in series with a resistive load RS .

Fig. 1.1: Voltage source V src in series with a diode and resistor. [1]

First we consider an algebraic model of a p-n junction diode given by the Shockley
diode equation. This model relates the current I through a diode to the voltage VD
accross it. This relationship, known as an I-V characteristic of a diode, leads naturally
to a parameter estimation problem for the intrinsic diode parameters that appear in
the Shockley equation. By solving the inverse problem for the diode parameters, and
a range of I-V curves, we obtain a distribution of these parameters. We subsequently
use this distribution as a sample space for the stochastic control problem. Specifically,
we are interested in computing the optimal voltage source to achieve a prescribed
current under uncertainty in the diode parameters.

Next we consider a partial differential equation (PDE) model of a p-n junction
diode given by the drift-diffusion (DD) equations. Optimal design of semiconductors
using the DD model is studied extensively in the literature [2, 4, 3]. In this work we
formulate and solve an inverse problem for the doping profile of the diode using an
approach similar to [4]. As in the case of the algebraic model, we then formulate a
stochastic optimal control problem, with randomness introduced in the shape of the
doping profile of the diode.

∗Rice University, tat3@rice.edu
†Sandia National Laboratories, dpkouri@sandia.gov
‡Sandia National Laboratories, dridzal@sandia.gov
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To the best of our knowledge, optimal control problems governed by diode models
with uncertain parameters have not been studied previously.

This paper is structured as follows. In section 2 we describe in detail the algebraic
and the PDE models. In section 3 we formulate inverse and optimal control problems
of interest. We discuss various risk measures used to formulate the stochastic optimal
control problem. In section 4 we describe the numerical results obtained using the
Rapid Optimization Library (ROL), Trilinos. In section 5 we draw conclusions and
discuss future directions.

2. Diode modelling. We consider two models of a p-n junction diode: an al-
gebraic model given by Shockley diode equation and a PDE model described by the
drift-diffusion system of equations. In both cases the current through the diode is the
same as in the whole circuit.

2.1. Shockley diode equation. The Shockley diode equation or the diode law
provides a formula for the diode current I given voltage drop VD accross the diode:

I = IS

(
exp

(
VD
ηV th

)
− 1

)
. (2.1)

Here IS is the saturation current, V th is the thermal voltage (≈ 26 mV at room
temperature) and η is the ideality factor that depends on the manufacturing process
and ranges between 1 and 2 (for our purposes set to 1).

We use Kirchhoff’s voltage law to obtain VD:

VD = V src − IRS . (2.2)

Substituting (2.2) in (2.1) we obtain a formula for the circuit current given the source
voltage:

I = IS

(
exp

(
V src − IRS

ηV th

)
− 1

)
. (2.3)

We solve this nonlinear equation for the current using Newton’s method. Two impor-
tant parameters of the diode are the saturation current IS and the ohmic resistance
RS (as we assume the resistor to be a part of the diode).

2.2. Drift-diffusion formulation. The PDE model of the diode is based on
the drift-diffusion formulation [5]. This formulation consists of three coupled PDEs:
a Poisson equation for the electrostatic potential (φ(x)) and two continuity equations,
one for the concentration of electrons, n(x), and one for the concentration of holes,
p(x). The resulting system is as follows:

−∇ ·
(
ε

q
∇φ(x)

)
= p(x)− n(x) + C(x) (2.4a)

∇ · Jn(x) = R(x) (2.4b)

∇ · Jp(x) = −R(x). (2.4c)

Here ε is the permittivity of the material, q is the magnitude of the electron
charge, and C(x) is the total doping concentration which can be represented as

C(x) = N+
D (x)−N−A (x), (2.5)
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where N+
D (x) is the concentration of positively ionized donors and N−A (x) is the con-

centration of negatively ionized acceptors.
Furthermore, R(x) is the generation/recombination rate for both species (elec-

trons and holes), Jn(x) and Jp(x) are the current densities of electrons and holes,
repectively. In the drift-diffusion model the quantities Jn(x) and Jp(x) are deter-
mined from

Jn(x) = −µn(x)n(x)∇φ(x) +Dn∇n(x)

Jp(x) = −µp(x)p(x)∇φ(x)−Dp∇p(x),
(2.6)

where µn(x), µp(x) are mobilities for electrons and holes, and Dn, Dp are diffusion
coefficients. Recombination rate R(x) consists of two terms: the Shockley-Read-Hall
term

RSRH(x) =
n(x)p(x)−N2

in

τp(x)(n(x) +Nin) + τn(x)(p(x) +Nin)
, (2.7)

where τn(x) and τp(x) are the carrier lifetimes, and Nin is the intrinsic carrier density
(constant), and the Auger term

RAUG(x) = (Cnn(x) + Cpp(x))(n(x)p(x)−N2
in), (2.8)

where Cn, Cp are constants dependent on the material.
The boundary of the domain is split into two disjoint parts ΓN and ΓD. The first

one corresponds to an insulated boundary of the device, while the second corresponds
to the ohmic contacts (electrodes). The boundary data is

n = nD, p = pD, φ = φD on ΓD

∇n · ν = ∇p · ν = ∇φ · ν = 0 on ΓN ,
(2.9)

where ν is unit outward normal to the boundary and

nD =
1

2
(
√
C2
D + 4N2

in + CD)

pD =
1

2
(
√
C2
D + 4N2

in − CD)

φD = V th log

(
ND
Nin

)
+ V src,

(2.10)

with CD and ND the values of the doping and the maximum donor concentration at
the Dirichlet boundary ΓD, respectively.

For this work we consider a one-dimensional finite-difference discretization of the
DD equations. Furthermore, we use the stabilization method by Scharfetter and
Gummel (SG) to avoid oscillations in the solution [7]. The SG method simplifies the
expressions (2.6) for the current densities by assuming Einstein relations Dn = V thµn
and Dp = V thµp, which are valid if the variables are scaled correctly (2.14). Current
densities are then computed at the midpoints between mesh nodes as described on
page 15 in [5]. The solution process, following the implementation in Sandia’s circuit
simulator Xyce, has three stages:

1. Start with the equilibrium approximation for the electron and hole concen-
trations and the electrostatic potential (see [5]), calculated using information
about the doping profile;
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2. Use the equilibrium potential as an initial guess for the nonlinear Poisson
equation, given by

−∇·
(
ε

q
∇φ(x)

)
= NA exp

(
φmin − φ(x)

V th

)
−ND exp

(
φ(x)− φmax

V th

)
+C(x),

(2.11)
which is a modification of (2.4a) with n(x) and p(x) approximated by the
nonlinear functions of φ(x) (here NA and ND are the maximum acceptor and
donor concentrations); and

3. Solve the drift-diffusion system (2.4) using as the initial guess the solution of
the nonlinear Poisson equation, φNLP (x), along with the hole and electron
densities pNLP (x) and nNLP (x) computed using the expressions in (2.11).

Upon solving the drift-diffusion system we compute the electron and hole current
densities Jn(x) and Jp(x). The total current density is given by J(x) = Jn(x)+Jp(x).
The current flow I over a contact Γ ∈ ΓD is given by

I =

∫
Γ

J · νds. (2.12)

Evaluating this integral at two contacts (electrodes), which in the one-dimensional
case amounts to scaling the values of the current density J at the endpoints of the
interval by the “area” constant, we obtain the currents Icathode and Ianode. Finally,
we take the average of the current flows at the electrodes to be the current in the
diode (note that at one electrode the current is positive, and negative at the other):

I =
1

2
(Ianode − Icathode). (2.13)

If NX points are used to discretize the space, there are 3×NX unknown variables
in the drift-diffusion system—the potential, φ, the electron density, n, and the hole
density, p, for each of the mesh points. To better capture the position of the p-n
junction the middle interval is refined further, bringing the number of variables to
3 × (NX + NR), where NR is the number of points in the refined region. The mesh
points are indexed as follows: x1, . . . , xNX

2

, xNX
2 +1

, . . . , xNX
2 +NR

, . . . , xNX+NR .

In the simulation the variables are scaled as follows:

NA, ND, Nin →
NA
C0

,
ND
C0

,
Nin
C0

φ, φD, n, nD, p, pD →
φ

V0
,
φD
V0
,
n

C0
,
nD
C0

,
p

C0
,
pD
C0

x, τn, τp →
x

x0
,
τn
τ0
,
τp
τ0
,

(2.14)

where the scaling constants are defined in Table 4.5.

3. Optimization Problems. With the models of the diode circuit defined we
are ready to formulate optimization problems.

3.1. Parameter Estimation. The behavior of the diode in the circuit is de-
scribed by its current-voltage characteristics, or the I-V curve (Figure 3.1(a)). We
will use the following notation to denote this curve: (Imeasn , V srcn )Nn=1. Here N is the
number of measurements taken, V srcn is the value of the source voltage for the n-th
measurement and Imeasn is the corresponding current.
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(b) 1000 I-V curves with 10% noise

Fig. 3.1: I-V curve without and with noise

A natural question to ask is “What can we infer about the diode parameters from
its I-V characterization?”.

For the case of an algebraic model we are interested in recovering the saturation
current of the diode IS and the resistance of the internal resistor RS . For the case of a
PDE model we would like to know the doping profile of the diode C(x) and estimate
the position of the p-n junction. In particular, we are interested in the doping values
close to the center of the diode, therefore, we keep the boundary values of the doping
concentration fixed.

We consider the following optimization problem:

min
1

2

N∑
n=1

(In − Imeasn )2 (3.1)

where In = In(V srcn ) is either the solution to the equation (2.3) or obtained from the
solution of the drift-diffusion system (2.4) with V srcn as an input (boundary condition).
For the algebraic model we minimize with respect to IS and RS , while for the PDE
model we minimize with respect to C(xi) with i = 2, . . . , NX + NR − 1. Moreover,
for the PDE model, in order for the resulting doping profile to be reasonably smooth,
we add to the objective (3.1) a regularization term of the form

γ

2

xNX+NR∫
x1

(
∂C

∂x

)2

dx, (3.2)

where the parameter γ is chosen experimentally.
In order to use gradient-based methods from ROL we need to provide not only

the objective function but also its gradient and preferrably the Hessian as well. This
means we need derivatives of the current with respect to the inversion parameters.
In the case of the algebraic model it is straightforward to compute the first and
second order derivatives of the current I with respect to IS and RS . In the case
of the PDE model the task becomes more complicated, as many of the parameters
of the system (2.4) depend on the doping profile, including the mobilities, µn(x)
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and µp(x), the lifetimes, τn(x) and τp(x), and the recombination rate, R(x). In
our implementation we use automatic differentiation to obtain the derivatives of the
current I with respect to the (φ,n,p) variables, and the derivatives of the (φ,n,p)
variables with respect to the doping variable. We use the Jacobian of the system to
find the derivative of the current with respect to the doping. Formally this can be
expressed as

∂I

∂C
=

∂I

∂X

T ( ∂F
∂X

)−1
∂F

∂C
, (3.3)

where X denotes the vector of variables (φ,n,p), and the system (2.4) is represented by
F (X,C) = 0. Furthermore, we use a “Gauss-Newton approximation” to the Hessian
of the objective function. This approximation avoids the computation of the second
derivatives of the governing nonlinear equation, by assuming a linear model.

To keep the optimization variables within a meaningful physical range we in-
corporate lower and upper bounds in the formulation. For the algebraic model we
use 10−18 ≤ IS ≤ 0.1 and 10−4 ≤ RS ≤ 100. For the PDE model the constraints
are placed on the values of the doping at the boundary, −1015 ≤ C(xi) ≤ 1015 for
i = 2, . . . , NX +NR − 1.

3.2. Optimal Control. The typical goal of optimal semiconductor design is
to obtain the best current flow at one of the contacts [4]. We formulate a different
problem, of obtaining the desired current in the diode circuit by choosing an optimal
voltage source:

min
V src

1

2
(I − Itarget)2 +

α

2
(V src)2. (3.4)

Again, here I = I(V src) is either the solution to the equation (2.3) or is the
function of the solution to the drift-diffusion system (2.4). In the first case we com-
pute analytic derivatives of the current with respect to the V src. For the PDE model
we differentiate the weak form, since the source voltage V src appears as an essen-
tial (Dirichlet) boundary condition, and use an expression similar to (3.3) with ∂F

∂C

replaced by ∂F
∂V src .

The solution of the optimal control problem (3.4) is nearly trivial, assuming ef-
ficient solvers for the diode equations. The problem (3.4) becomes much more inter-
esting if we introduce uncertainty in the diode parameters.

3.3. Uncertainty and Risk Measures. We introduce uncertainty in the op-
timal control problem by taking specified diode parameters to be random variables
with some given distribution. For the algebraic model we choose these parameters to
be the saturation current IS and the ohmic resistance RS , while for the PDE model
we introduce randomness in the shape of the doping profile.

To obtain the distributions of our random variables we do the following. For the
algebraic model we first add random Gaussian noise to the measured currents Imeasn

to obtain the range of I-V curves (Figure 3.1(b)), then solve inverse problems for the
IS and RS parameters, for each of the I-V curves. The results of the inversion serve
as the sample space for the stochastic optimal control problem, Figure 3.2(a). For
the PDE model we create a random variable ξ normally distibuted in the interval
[xNX

2 +1
, xNX

2 +NR
], that is, between the two middle points of the coarse mesh. We

then take the zero level of the doping to be at the point xi closest to the value of ξ
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Fig. 3.2: Sample spaces: (a) values of IS , RS ; (b) doping profiles.

and interpolate the doping profile between the value at xNX
2

and xi, and between xi
and the value at xNX

2 +NR+1. We thus obtain a range of doping profiles, Figure 3.2(b).

As the parameters of our models become random variables, the solutions to (2.3)
and (2.4) become random variables as well. Thus, to make sense of formulation (3.4)
we need to introduce some measure of randomness. This is done by introducing risk
measures. We rewrite (3.4) as

min
V src

1

2
σ((I − Itarget)2) +

α

2
(V src)2 (3.5)

where σ is a risk measure and I = I(V src; ξ) is the solution to (2.3) or (2.4) with
uncertain parameter ξ. In the case of the algebraic formulation, ξ is two-dimensional
and represents possible values of (IS , RS). In the case of the PDE formulation we take
ξ to be a one-dimensional uniformly distributed variable representing the position of
the zero level of the doping profile.

For a given random variable Y we consider the following risk measures:

1. expected value, σ(Y ) = E[Y ];

2. mean plus deviation of order q, σ(Y ) = E[Y ] + E [[Y − E[Y ]]q]
1/q

;

3. mean plus semi-deviation of order q, σ(Y ) = E[Y ] + E
[
[Y − E[Y ]]q+

]1/q
;

4. conditional value-at-risk, σ(Y ) = min
t∈R
{t+ cE[Y − t]+}.

Here “x+” denotes max{0, x}. With the first risk measure we solve for the optimal
control that on average minimizes the misfit between the current in the circuit and
the target current. The other risk measures provide additional safety margins [6].

4. Numerical Results. The inverse problem and the optimal control problem
under uncertainty are implemented in the Rapid Optimization Library framework.
Several optimization algorithms from ROL are tested. We obtain consistently good
results using Newton-Krylov descent type methods; either the truncated Conjugate
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Gradient (CG) method with trust regions ot the Newton-CG method with a line
search.

For the deterministic inverse problem we generated the data (Imeasn , V srcn )Nn=1 by
specifying either the (IS ,RS) parameters or the doping profile C(x), and running the
forward simulation.

For the algebraic model the “true” values of IS and RS are chosen to be 10−12

and 0.25, respectively, and the source voltage is swept between 0 and 1 with a step
of 0.01, thus producing 101 measurement points. The results of the inversion for
(IS ,RS), even for remote starting points, are almost exact with relative errors being
on the order of machine precision, see Table 4.1.

Initial guess Obtained solution # of iterations Rel. error
10−13, 0.1 10−12, 0.25 17 0.0
10−10, 0.5 10−12, 0.25 21 2.2× 10−16

10−8, 1.0 10−12, 0.25 38 1.1× 10−16

Table 4.1: Results of the inversion for IS , RS using Newton-CG with line search.

For the PDE model the “true” doping profile was taken to be constant with
opposite signs in the p and n regions with linear interpolation in the middle region of
the diode. Inverting with respect to the doping profile proved to be more challenging
due to the highly ill-conditioned nature of the problem.

The following setup was used to test the PDE model. The length of the device
was set to 5×10−4. The coarse uniform discretization (NX points) was used together
with a finer mesh in the middle part of the device (NR points). The values of the
doping concentration were fixed at the endpoints of the domain, specifically, C(x1)
was set to 1015 and C(x(NX+NR)) to −1015. The initial guess for the doping at the
mesh points xi, i = 2, . . . , NX + NR − 1, was chosen to be zero. The results of the
inversion for NX = 6 and NR = 19 and different values of γ are plotted in the Figures
4.1(a)-4.1(d).

For the stochastic optimal control problem in the case of the algebraic model we
used 1000 samples obtained from the solutions of the inverse problem (Figure3.2(a)).
The goal was to then solve the problem (3.5) for each of the four risk measures
described in section 3.3.

The results of running ROL with the initial guess V src0 = 0.5, Itarget = 0.595083889
(corresponding to V src = 0.85 when IS = 10−12, RS = 0.25), and using the truncated
CG trust-region method with constraints 0.01 < V src < 1.0 are presented in Table
4.2.

Risk measure Resulting V src Objective value
E[Y ] 0.849952396 6.697007× 10−5

E[Y ] + E
[
[Y − E[Y ]]2

]1/2
0.849952396 6.697007× 10−5

E[Y ] + E
[
[Y − E[Y ]]2+

]1/2
0.849955417 5.366958× 10−4

min
t∈R
{t+ 5E[Y − t]+} 0.849959059 2.583095× 10−3

Table 4.2: Results of solving (3.5) for algebraic model
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(a) γ = 10−25, rel. error = 0.26

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x 10
15

x, (cm)

C
(x
),

(c
m

−
3
)

(b) γ = 10−26, rel. error = 0.21
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(c) γ = 10−27, rel. error = 0.16
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(d) γ = 10−28, rel. error = 0.2

Fig. 4.1: True doping profile (solid line) and inverted doping profile (dash-dotted line)

In case of the PDE model we used 20 samples of the position of the zero-level of
the doping profile (Figure 3.2(b)).

The results of running ROL with initial guess V src0 = −0.5, Itarget = 1.70076740e−
09 (corresponding to V src = −0.14 when NR = 19, NX = 25), and using Newton-CG
method without constraints are presented in Table 4.3.

Risk measure Resulting V src Objective value
E[Y ] -0.134854562 4.709111× 10−23

E[Y ] + E
[
[Y − E[Y ]]2

]1/2
-0.134854562 4.709111× 10−23

E[Y ] + E
[
[Y − E[Y ]]2+

]1/2
-0.134611985 4.687500× 10−11

min
t∈R
{t+ 5E[Y − t]+} -0.135460491 2.513903× 10−10

Table 4.3: Results of solving (3.5) for DD model
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Parameter Physical meaning Numerical value
q Electric charge 1.602176565× 10−19 (A · s)
Nin Intrinsic density 6263659575.67454 (cm−3)
V th Thermal voltage 0.02586492315346 (V )
ε Relative permittivity 11.8

Table 4.4: Physical parameters for silicon

Parameter Description Value
C0 Doping 1014(cm−3)
V0 Potential = V th

x0 Length 5× 10−4

Table 4.5: Scaling variables

5. Conclusions. In this work we considered the new task of solving stochastic
optimal control problems involving algebraic and PDE models of diodes. We studied
the Shockley diode model and the drift-diffusion model. We formulated optimal con-
trol problems using a variety of risk measures and studied their solutions. This work
was done using the Rapid Optimization Library (ROL), Trilinos.
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Software and High Performance Computing

The articles in this section discuss the implementation of high performance com-
puting software for a variety of applications from high-level linear algebra operations
such as solving eigenvalue problems to low-level message passing functions for MPI-
based computations. The high-level computational mathematics algorithms discussed
in the first four articles require large numbers of reliable operations including arith-
metic and system communication. The fifth paper in this section discusses lightweight
kernel operating systems, while the final two papers discuss the power issues associ-
ated with such communication schemes and present ideas to reduce the associated
power requirements.

Klinvex et al. provide a user’s manual for the TraceMin functionality in Anasazi.
The TraceMin algorithm in Anasazi implements a trace minimization solver for sym-
metric generalized eigenvalue problems. Peterson and Dunlavy present a Python-
based software tool for tensor computations. This tool wraps implementations of
tensor data structures as well as algorithms for tensor manipulation and model fitting
from the C++ tensor toolkit SWIG. Schroots and Moreland discuss the implemen-
tation of parallel algorithms using the Dax Toolkit. The Dax Toolkit implements
infrastructure to exploit concurrency in data anaysis and visualization. The authors
demonstrate this exploited concurrency through the implementation of parallel merge
sort and marching tetrahedra. Slota et al. discuss the implementation of graph-based
analytics algorithms on manycore systems such as GPUs. The authors present a GPU
implementation of the breadth-first search and color propogation subroutines common
in graph-based analytics. This implementation uses the Kokkos package and achieves
a considerable speed up over the state-of-the-art. Cabrera and Pedretti implement a
function shipping layer for the Kitten operating system. This function shipping layer
offloads I/O from the compute nodes to specialized I/O nodes. Their implementation
leverages specific features of high performance computing networks to move the I/O
data efficiently. Groves and Ferreira hypothesize that one can reduce peak power
consumption during system communication operations by adjusting meassage size.
The authors evaluate this hypothesis by testing in the MPI framework. They found
that a reduction in power consumption is possible, but results in extreme costs to
bandwidth and latency. Jean-Baptiste and Lofstead discuss the extreme costs of high
volume transfers between compute nodes and staging area machines in Integrated
Application Workflows and provide a software solution called Delta. Delta provides
an algorithm to identify and prune duplicate information prior to transfer and then
restore these copies following transfer.

D.P. Kouri
M.L. Parks

December 18, 2014
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ANASAZI TRACEMIN USER MANUAL

ALICIA M. KLINVEX ∗, MICHEAL A. HEROUX † , MICHEAL L. PARKS ‡ , AND KAREN

D. DEVINE §

Abstract. Sparse symmetric eigenvalue problems arise in many computational science and
engineering applications: in structural mechanics, nanoelectronics, spectral reordering, and Google’s
PageRank link analysis, for example. Often, the large size of these problems requires the development
of eigensolvers that scale well on parallel computing platforms. In this document, we will present
three such eigensolvers recently developed for the Anasazi package of Trilinos: TraceMin, TraceMin-
Davidson, and Jacobi-Davidson. These methods are different from many other eigensolvers in that
they do not require accurate linear solves to be performed at each iteration in order to find the
smallest eigenvalues and the associated eigenvectors. After reading this document, you should have
a reasonable understanding of how these methods work and how to use them in your research.

1. Introduction. Our goal is the solution of symmetric generalized eigenvalue
problems of the form

Ax = λBx (1.1)

where A and B are both symmetric sparse matrices, with B being positive definite.
Although A and B are large n × n matrices, we are only interested in finding the p
smallest eigenpairs, where p� n. Such problems arise in many applications, such as
determining automotive acoustics, modeling particles moving through electric fields
via the Schrödinger equation, and spectral reordering. Since these problems can be
quite large (n ∼ 10, 000, 000 or greater), we want code that can run efficiently on
a large parallel cluster. To solve this problem, we have implemented several trace-
minimization eigensolvers within the Trilinos framework.

The goal of this document is to get you to use our eigensolvers as quickly and
painlessly as possible. First, we will give a basic overview of what Trilinos is and
how it can benefit you. Then, we will explain the theory behind our eigensolvers and
some of the important implementation details. We will also present a few examples
demonstrating how to use TraceMin in various situations.

2. A Brief Overview of Trilinos. Trilinos is a collection of open source soft-
ware libraries (Table 2.1) intended to be used as building blocks for the development of
scientific applications. We have chosen to implement our solver in the Trilinos frame-
work because it provides so many of the distributed memory kernels we need. Trilinos
code is templated to perform efficiently on many different types of architectures, and
it has impressive scalability. It is capable of performing operations with matrices that
have more than 2 billion rows, and most packages only require the action of a matrix
on a vector, rather than having to explicitly store the matrix. Unlike PETSc and the
associated eigensolver package SLEPc, Trilinos is capable of handling operations and
solves with multiple vectors rather than one at a time. As a result, Trilinos is capable
of grouping its communications during a linear solve, and will probably scale better.

∗Purdue University, aklinvex@purdue.edu
†Sandia National Laboratories, maherou@sandia.gov
‡Sandia National Laboratories, mlparks@sandia.gov
§Sandia National Laboratories, kddevin@sandia.gov
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Package Description

Anasazi The Eigensolver Package
Belos The Iterative Solver Package

Our trace-minimization solvers require the solution of a linear
system at each iteration (when computing the smallest eigenpairs
of a matrix or solving a generalized eigenvalue problem).

Ifpack The Preconditioner Packages
Ifpack2 Preconditioners can help iterative solvers perform better by im-

proving the spectrum of eigenvalues of the operator.
Epetra The Container Packages
Tpetra These packages define sparse matrices, dense matrices, and mul-

tivectors. They also contain basic linear algebra operations such
as dot products and matvecs. Tpetra is the newer version which
has native MPI+X support and support for arbitrary data types.

Table 2.1: Relevant Packages of Trilinos

3. The Trace Minimization Algorithms. In this section, we outline the three
trace-minimization eigensolvers of Trilinos: TraceMin (with a static subspace dimen-
sion), TraceMin-Davidson (which uses an expanding subspace), and Jacobi-Davidson.

3.1. TraceMin with a Static Subspace Dimension. TraceMin is an eigen-
solver developed by Ahmed Sameh and John Wisniewski in 1982 [5]. It is based on
the following observation derived from the Courant-Fischer theorem.

min
Y TBY=I

trace
(
Y TAY

)
=

p∑
i=1

λi (3.1)

where λ1 ≤ λ2 ≤ · · · ≤ λp < λp+1 ≤ · · · ≤ λn. The Y ∈ Rn×p which minimizes that
trace is the set of eigenvectors corresponding to the smallest eigenvalues.

Our eigensolver is iterative (as are all eigensolvers), which means that we start
with some initial guess and gradually refine it until we converge to the desired eigen-
pairs. We wish to find a sequence of iterates Yk+1 = (Yk −∆k)Sk where both
Yk and Yk+1 form a section of the eigenvalue problem with trace

(
Y Tk+1AYk+1

)
<

trace
(
Y Tk AYk

)
. Y ∈ Rn×p forms a section of the eigenvalue problem if

Y TAY = Σ and Y TBY = I (3.2)

where Σ is a diagonal matrix whose diagonal entries approximate the eigenvalues;
these are what we refer to as ”Ritz values”.

Computing the Adjustment ∆k. We find our update ∆k by solving the fol-
lowing constrained minimization problem

min
Y Tk B∆k=0

trace
(

(Yk −∆k)
T
A (Yk −∆k)

)
(3.3)

If A is symmetric positive definite, solving problem 3.3 is equivalent to solving

min
Y Tk Bdi=0

(
(yi − di)T A (yi − di)

)
∀1 ≤ i ≤ p (3.4)
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where yi is the ith column of Yk and di is the ith column of ∆k. Using Lagrange
multipliers, we see that problem 3.4 is equivalent to[

A BYk
Y Tk B 0

] [
∆k

Lk

]
=

[
AYk

0

]
(3.5)

where 2Lk represents the Lagrange multipliers.

Computing Sk, i.e. Forming a Section. Given that

Vk = Yk −∆k (3.6)

consider the following small dense eigenvalue problem.(
V Tk AVk

)
Sk =

(
V Tk BVk

)
SkΩk (3.7)

It is straightforward to prove that Yk+1 = VkSk forms a section of our original eigen-
value problem, where Sk is the set of eigenvectors of 3.7. Alternatively, we could
orthonormalize Vk via Gram-Schmidt (or any other orthogonal factorization process)
and then solve a small standard eigenvalue problem

(
V Tk AVk

)
Sk = SkΩk to obtain

the same result.

Convergence Properties and Ritz Shifts. TraceMin has global linear conver-
gence. The global part is good, as it means we will always converge to the eigenpairs
of interest, given enough time. Linear convergence is not ideal; it means that the
residual will decrease a great deal over the first few iterations but will then decrease
very slowly over the rest of the iterations. The convergence rate of the ith eigenpair
is bounded by the quantity

λi
λs+1

(3.8)

where s is our subspace dimension, i.e. the number of vectors in V .
The convergence rate of TraceMin is very good if the eigenvalues are well separated

and near the origin, as in λi
λs+1

≈ 0. If the eigenvalues are poorly separated and far

from the origin, λi
λs+1

≈ 1 and the convergence rate is terrible. Fortunately, we can

solve this problem by using Ritz shifts. Instead of solving Ax = λBx with convergence
rate λi

λs+1
, we will solve

(A− σB)x = (λ− σ)Bx (3.9)

with convergence rate

λi − σ
λs+1 − σ

(3.10)

where σ is our chosen shift. If σ approximates our smallest eigenvalue, the convergence
rate is greatly improved.

To demonstrate the impact of Ritz shifts, we generated a random sparse matrix in
Matlab of order 1000 with eigenvalues equally spaced in the interval [0.91, 10.9]. We
are seeking the 4 smallest eigenpairs using a subspace dimension of 9. A comparison
of the results obtained with a Ritz shift of 0.9 and the results obtained with no
shifting can be found in Figure 3.1. Note that TraceMin with shifts took only 10
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(a) A bad eigenvalue distribution (without
shift)

(b) A better eigenvalue distribution (with shift)

(c) Convergence plot (without shift) (d) Convergence plot (with shift)

Fig. 3.1: A demonstration of the importance of Ritz shifts

iterations to converge to a relative residual of 10−6, but TraceMin with no shifts took
120 iterations.

We must be careful when selecting these shifts. If our shift is too small, we
don’t improve our convergence rate much. If our shift is too large, we may destroy
TraceMin’s global convergence. (TraceMin will find the eigenvalues closest to the
shift. If we had chosen 1 as the shift in our example rather than 0.9, TraceMin would
not have converged to the desired eigenvalues 0.91, 0.92, 0.93, and 0.94 as those are
not the closest eigenvalues to 1.) Our Ritz shift selection process is based on the Ritz
values, the residuals, and the clustering of the eigenvalues; this process is detailed in
[4].

Note that while our example only used one Ritz shift, we can use a separate
shift for each right hand side of the saddle point problem to improve convergence.
Each shift should approximate the eigenvalue it corresponds to. For instance, the
magenta (bottom) line in Figure 3.1(d) shows that the first eigenpair converged after
only 5 iterations, but the navy blue (top) line corresponding to the fourth eigenpair
took twice as many. That means our shift of 0.9 was a really good choice for the first
eigenpair, but the fourth would have been better off with a shift closer to 0.94. Instead
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of using the same shift for all eigenpairs, which gives us the saddle point problem[
A− σB BYk
Y Tk B 0

] [
∆k

Lk

]
=

[
(A− σB)Yk

0

]
(3.11)

we can use a separate shift for each and solve this set of problems:[
A− σiB BYk
Y Tk B 0

] [
di
li

]
=

[
(A− σiB) yi

0

]
(3.12)

As a result, the convergence rate of each eigenpair will be dramatically improved
rather than just the first one.

The choice of our subspace dimension s is very important. If we choose s to be
too small, the convergence rate is terrible. If it is too large, we will converge in a
lower number of iterations, but each iteration will be very expensive since it involves
solving k linear systems. In practice, s = 2p or s = 3p are usually good choices.

Algorithm 1 summarizes the overall process of computing the smallest eigenpairs.

Algorithm 1 TraceMin (with a fixed subspace dimension)

1: Choose an initial V
2: repeat
3: Form a section from V

Y TAY = Σ and Y TBY = I

where Σ is a diagonal matrix whose diagonal entries approximate the eigenvalues
4: Compute the residual R = AY −BY Σ
5: Choose the Ritz shifts σi based on the Ritz values and residuals
6: Solve the saddle point problems 1 ≤ i ≤ s[

A− σiB BY
Y TB 0

] [
di
li

]
=

[
(A− σiB) yi

0

]
(3.13)

7: Update V = Y −∆
8: until converged

3.1.1. What makes TraceMin so special?. Many eigensolvers such as Krylov-
Schur depend on solving linear systems to a great degree of accuracy (when finding the
smallest eigenpairs). The trace-minimization eigensolvers presented in this chapter do
not require the saddle point problems to be solved very accurately. Even if a matrix
is ill-conditioned or too large to be factored, or if we are incapable of constructing a
good preconditioner, TraceMin will still converge.

TraceMin has been tested against numerous eigensolvers and has proven to be
competitive in terms of robustness, speed, and scalability [1].

3.2. Jacobi-Davidson. Jacobi-Davidson is a similar eigensolver developed by
Gerard Sleijpen and Henk Van der Vorst in 1996 [6]. There are only two differences
between TraceMin and Jacobi-Davidson:

• Jacobi-Davidson uses expanding subspaces unlike TraceMin’s constant sub-
space dimension.
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• Jacobi-Davidson uses the Ritz values as shifts at each iteration, whereas
TraceMin uses a complicated shift-selection algorithm to preserve conver-
gence.

These differences have been highlighted in Algorithm 2.

3.2.1. Handling the expanding subspaces. First, we must introduce some
additional constants. Here, we redefine s as the block size, the number of vectors
we add to the subspace at each iteration. The block size should always be greater
than the multiplicity of the desired eigenvalues, i.e. if one of the eigenvalues you
desire has a multiplicity of 4, s should be at least 4, or else Jacobi-Davidson may not
capture the correct multiplicity. We define m as the maximum subspace dimension,
c as the current subspace dimension, and r as the restart dimension. For simplicity,
we will assume r = s, though it may be greater. A reasonable value for the maximum
subspace dimension m ≥ 2s is 10p, where p is the number of desired eigenvalues.

Like before, we start by forming a section from V ∈ Rn×c. This involves com-
puting the eigenvectors of

(
V TAV

)
X =

(
V TBV

)
XΩ. Previously, we computed

Y = V X; now, we use only the s eigenvectors corresponding to the smallest eigen-
values. Computing the residual does not change, and neither does solving the saddle
point problems (although it should be noted that we only solve s linear systems at
each iteration). Instead of taking V = Y −∆ as we did before, we now expand V by
inserting ∆ at the end of it, so V = [V ∆]. When V gets to be too large, meaning
c + s > m, we restart. When we restart, we reinitialize V = Y and continue the
iterations, meaning we keep the most meaningful part of the subspace and discard
the rest.

3.2.2. Why Jacobi-Davidson’s Ritz shift selection is problematic. The
Ritz values will always be greater than the corresponding eigenvalues (because we are
minimizing the trace). For the first few iterations of these eigensolvers, the Ritz values
provide an extremely poor estimate for the eigenvalues. If we choose our shifts to be
equal to the Ritz values, global convergence is not preserved. That means Jacobi-
Davidson is not a globally convergent eigensolver. Sometimes, the Ritz shifts will lead
Jacobi-Davidson far away from the desired eigenpairs, and while the eigenpairs it
returns are in fact valid eigenpairs, they may not be the smallest ones. We decided to
make Jacobi-Davidson available in Trilinos because it is a very popular method, but
we do not recommend using it. Please consider running TraceMin-Davidson instead,
which will be described in the next section.

If you have run Jacobi-Davidson in the past, you may be wondering why it worked
for you. Some implementations of Jacobi-Davidson, such as the one in SLEPc, do
very clever things to try and maintain global convergence. SLEPc’s implementation
does not use any Ritz shifts until the residuals become very small, which makes
their implementation closer to TraceMin-Davidson than the original Jacobi-Davidson
method.

3.3. TraceMin-Davidson. TraceMin-Davidson is a variant of TraceMin that
uses expanding subspaces like Jacobi-Davidson, but is still globally convergent[4].
The only difference between TraceMin-Davidson and Jacobi-Davidson is that we use
the same criteria for the Ritz shifts here as we do in TraceMin; we do not use the
Ritz values as shifts, meaning we preserve the global convergence. This difference has
been highlighted in Algorithm 3.
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Algorithm 2 Jacobi-Davidson

1: Choose an initial V
2: repeat
3: Form a section from V

Y TAY = Σ and Y TBY = I

where Σ is a diagonal matrix whose diagonal entries approximate the eigenvalues
and Y ∈ Rn×s

4: if the subspace is full (meaning c+ s > m) then
5: Shrink the subspace, reinitializing V = Y

6: Compute the residual R = AY −BY Σ
7: Choose the Ritz shifts σi to be equal to the Ritz values
8: Solve the saddle point problems 1 ≤ i ≤ s[

A− σiB BY
Y TB 0

] [
di
li

]
=

[
(A− σiB) yi

0

]
(3.14)

9: Update V = [V ∆]
10: until converged

Algorithm 3 TraceMin-Davidson

1: Choose an initial V
2: repeat
3: Form a section from V

Y TAY = Σ and Y TBY = I

where Σ is a diagonal matrix whose diagonal entries approximate the eigenvalues
and Y ∈ Rn×s

4: if the subspace is full (meaning c+ s > m) then
5: Shrink the subspace, reinitializing V = Y

6: Compute the residual R = AY −BY Σ
7: Choose the Ritz shifts σi based on the Ritz values and residuals
8: Solve the saddle point problems 1 ≤ i ≤ s[

A− σiB BY
Y TB 0

] [
di
li

]
=

[
(A− σiB) yi

0

]
(3.15)

9: Update V = [V ∆]
10: until converged

4. The General Structure of Anasazi. You may have noticed that for ev-
ery solver in Anasazi, there is a class called [Solver Name] and one named [Solver
Name]SolMgr; for instance, you will find TraceMin and TraceMinSolMgr. The class
TraceMin implements a basic TraceMin iteration. It handles the solution of saddle
point problems, orthogonalization, and other things of that nature. The solver man-
ager handles the locking of converged eigenpairs (i.e. moving them to a separate
location so we don’t continue to do unnecessary computations with them) and the
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restarting process (for eigensolvers that use expanding subspaces). When you wish
to use Trilinos’ eigensolvers, you should always create a solver manager, which will
manage the solver class for you.

Each solver and solver manager in Anasazi is templated on three parameters:
ScalarType, MV, and OP as in

TraceMinDavidsonSolMgr< ScalarType, MV, OP >

ScalarType defines the precision you wish to use; one example is double. MV is the
type of multivector being used to store your eigenvectors, such as Tpetra::Multivector.
OP is the operator type, an example of which is Tpetra::Operator.

The solver manager constructors only take two parameters:

BlockDavidsonSolMgr(

const Teuchos::RCP< Eigenproblem< ScalarType, MV, OP > > & problem,

Teuchos::ParameterList & pl )

The first parameter is an RCP, or Reference-Counted Pointer, to an Eigenproblem.
You can think of an RCP as a wrapper around a standard C-style pointer. An Eigen-
problem contains info about the problem you wish to solve, such as the stiffness and
mass matrices of your problem, the preconditioner you want to use (if you want to use
one), and the number of eigenvalues you desire. The second item is a ParameterList.
A parameter list stores all the optional arguments you might want to give the solver.
Each solver in Anasazi has slightly different parameters. The valid parameters of our
trace-minimization eigensolvers are described in the next section.

4.1. TraceMin parameters. These parameters determine how Anasazi’s trace-
minimization eigensolvers perform. Don’t be intimidated by the long list of options!
All of these are optional, and if you’re ever unsure which parameters are optimal for
your particular problem, you can always contact us. Also, these eigensolvers will check
your parameter list to make sure everything is valid before they do anything else. If
you passed in an invalid parameter, the solver manager should catch it and provide a
clear error message explaining what went wrong and how to fix the problem.

Which. Specifies whether we want to find the largest (“LM”) or smallest (“SM”)
eigenpairs. Default: “SM”.

Note: For most of the eigensolvers in Anasazi, the “Which” parameter does noth-
ing more than change how the eigenvalues are sorted (and therefore which ones are
saved upon restarting). When you ask the trace-minimization eigensolvers for the
largest eigenpairs, the solver manager will perform a spectral transformation for you
based on the following observation: if (λ1, x1) is the smallest eigenpair of Bx = λAx,
then

(
λ−1

1 , x1

)
is the largest eigenpair of Ax = λBx. If you want to find the largest

eigenpairs of a standard eigenvalue problem, these eigensolvers will never have to
solve a single linear system.

Another note: If you want to find the largest eigenpairs of a standard eigenvalue
problem, you can not use Ritz shifts. Using Ritz shifts would force us to solve linear
systems at each iteration with the operator I+σA, which is probably more expensive
than it’s worth.

Convergence Tolerance. Specifies how small the residual norms must be before
we consider them to be converged. Default: machine precision.

Relative Convergence Tolerance. Specifies whether residual norms should
be scaled by the corresponding eigenvalues for the purpose of deciding convergence.
Default: true.
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Convergence Norm. Specifies the norm for convergence testing, either “2” or
“M”. Default: “2”.

Use Locking. Specifies whether the algorithm should employ locking of con-
verged eigenpairs. Default: true.

If locking is enabled, once the residual associated with a given eigenpair becomes
smaller than a certain threshold, that eigenvector is moved to the set of auxiliary
vectors. That prevents us from doing a lot of unnecessary computations with a vector
that has already converged. We strongly recommend leaving this option enabled if
you are using Ritz shifts; otherwise, it should not greatly impact the performance of
your program.

Max Locked. Specifies the maximum number of eigenpairs to be locked. De-
fault: the number of desired eigenvalues.

Locking Quorum. Specifies the number of eigenpairs that must meet the lock-
ing criteria before locking actually occurs. Default: 1.

Locking Tolerance. Specifies how accurate the residual norms must be before
we lock the associated eigenpair. Default: Convergence Tolerance / 10.

Must be at least as small as the convergence tolerance.

Relative Locking Tolerance. Specifies whether residual norms should be scaled
by the corresponding eigenvalues for the purpose of deciding whether to lock that
eigenpair. Default: true.

Should be the same as Relative Convergence Tolerance.

Locking Norm. Specifies the norm for testing whether to lock a given eigenpair,
either “2” or “M”. Default: “2”.

Should be the same as Convergence Norm.

When To Shift. Specifies when Ritz shifts should be performed. Options are
“Never”, “After Trace Levels”, and “Always”. Default: “Always”.

“After Trace Levels” means our eigensolver will only shift after the quantity

trace
(
Y Tk−1AYk−1

)
− trace

(
Y Tk AYk

)
trace

(
Y Tk−1AYk−1

)
becomes smaller than a certain threshold, specified by the parameter “Trace Thresh-
old”. This “Trace Threshold” has a default value of 0.02.

How To Choose Shift. Specifies how to choose the Ritz shifts, assuming Ritz
shifts are being used. Options are “Largest Converged”, “Adjusted Ritz Values”, and
“Ritz Values”. Default: “Adjusted Ritz Values”.

“Largest Converged” means that we will not shift until one of the eigenpairs is
locked, and then we will use the largest locked eigenvalue as a shift. This method is
safe, but it will be slow.

“Adjusted Ritz Values” means that the Ritz shifts will be chosen based on the
Ritz values and their associated residuals in a way that preserves global convergence.
This method is described in [4].

“Ritz Values” means that the Ritz shifts will be chosen to be equal to the Ritz
values. Note that this does not guarantee global convergence. This option is only
provided in order to support Jacobi-Davidson.
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Use Multiple Shifts. Specifies whether to use one or many Ritz shifts (assuming
shifting is enabled). Default: true.

Saddle Solver Type. Specifies how to solve the saddle point problem arising
at each iteration. Current options are “Projected Krylov” and “Schur Complement”.
Default: “Projected Krylov”.

The option “Projected Krylov” transforms our saddle point problem into the
following linear system

P (A− σiB)Pdi = P (A− σiB) yi (4.1)

with

P = I −BY
(
Y TB2Y

)−1
Y TB (4.2)

Since Trilinos is templated on operators rather than matrices, we never have to form
the large dense matrix P (A− σiB)P . However, each application of that operator
will involve two sets of inner products and a matrix-vector multiplication, so it may
not perform very well. Since we are projecting the operator, we must also project our
preconditioner. If we wish to use a preconditioner M ≈ A, F = (PMP )

−1
must be

applied as

F =
[
I −M−1BY

(
Y TBM−1BY

)−1
Y TB

]
M−1 (4.3)

as shown in [3].
The option “Schur Complement” solves the Schur complement system by comput-

ing zi = (A− σiB)
−1
Byi using an iterative method, then using Gaussian elimination

on the resulting small linear system in ∆ = Y + Z
(
Y TBZ

)−1
. Because we only

compute the Schur complement approximately, we do not necessarily preserve the or-
thogonality between ∆ and Y . This option is not very numerically stable as a result.
However, since we do not have to perform projections at each iteration of the Krylov
solver, this option may yield better performance.

We are currently working on providing additional options for solving the saddle
point problem, such as the block diagonal preconditioner of [2].

Verbosity. Specifies how much output you want. Accepts a sum of the fol-
lowing MsgTypes: Errors, Warnings, IterationDetails, OrthoDetails, FinalSummary,
TimingDetails, StatusTestDetails, and Debug. Default: Errors.

If you want to really understand how TraceMin works and how it selects the Ritz
shifts, you should use Debug. If you are running tests where time is important, you
should use Errors only.

Block Size. For TraceMin-Davidson, this specifies the number of vectors being
added to the subspace at each iteration with a default value of 1. Remember that
this should always be at least as large as the multiplicity of the eigenvalues you seek.

For TraceMin, this specifies the number of vectors we work with at each iteration
(since we’re not using expanding subspaces). A larger block size means more work
per iteration, but it may also decrease the number of iterations required. The default
is 2 * the number of eigenvalues we seek.

Num Blocks. Only valid for TraceMin-Davidson, not TraceMin. Specifies the
maximum number of blocks in the subspace. After we compute this many blocks, we
will restart. Default: 10 * the number of eigenvalues we seek / block size.
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Num Restart Blocks. Only valid for TraceMin-Davidson, not TraceMin. Spec-
ifies how many blocks we keep when restarting. Default: 2 * the number of eigenvalues
we seek / block size.

Maximum Restarts. Only valid for TraceMin-Davidson, not TraceMin. Spec-
ifies the maximum number of restarts to be performed. Default: 50.

Maximum Iterations. Only valid for TraceMin, not TraceMin-Davidson. Spec-
ifies the maximum number of TraceMin iterations to be performed. Default: 100.

5. Conclusions. In this document, we presented a comprehensive overview of
three trace-minimization schemes: TraceMin, TraceMin-Davidson, and Jacobi-Davidson.
These methods are very appealing in that they do not require accurate linear solves
to be performed at each iteration, like many other eigensolvers. We briefly outlined
what Trilinos is and why we have chosen to implement these methods in its Anasazi
package. Then, we reviewed the basic structure of Anasazi and the valid parameters
for our solvers. The full-length manual also reveals how to build and run these solvers,
and it explains how our example drivers work as well as how to modify them to solve
your own eigenvalue problems.
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TENSOR TOOLBOX: WRAPPING TO PYTHON USING SWIG

M.G. PETERSON ∗ AND D.M. DUNLAVY †

Abstract. Tensor Toolbox was developed as a Matlab package to allow users to interact with
tensors (ie. multidimensional or N -way arrays). A subset of this Matlab version was implemented in
C++ with the focus on increased speed for computing. This paper discusses how a Python version
was implemented using SWIG (a C++ wrapping tool) on the C++ subset of Tensor Toolbox. All
three of the versions were compared against each other based on their computing time for the CPAPR
(CANDECOMP/PARAFAC Alternating Poisson Regression) algorithm. The C++ version was by
far the fastest, the Python version was the second, and the Matlab version third.

1. Introduction. Tensors are multidimensional arrays (i.e., N -way arrays) and
are often used the fields of machine learning, chemometrics, signal processing, graph
analysis, and more (see [5] for a survey for more details). Several different imple-
mentations of tensor data structures, models, and model fitting algorithms have been
developed for data analysis in these fields: e.g., Matlab Tensor Toolbox (TTB) [2],
N-Way Toolbox [1], among others. To date, much of the algorithmic work for tensors
applied to data analysis has been implemented in Matlab. We present here an imple-
mentation of the operations and algorithms for tensor analysis in Python, following
the main class structure of TTB and leveraging a C++ version of the data structures
and algorithms available in TTB. We discuss some of the challenges in developing a
Python version of a limited subset of functionality of TTB, which we call PyTTB.
Further, we demonstrate some of the benefits of using PyTTB over TTB in terms of
computational speed.

The CANDECOMP/PARAFAC (CP) tensor model can be used to approximate
the relationships amongst data represented in a tensor. The CP model is often referred
to as a high-order analog of principal components analysis (PCA) without orthogo-
nality constraints on the factors. Like PCA, the CP model is a sum of vector outer
products and can be used to identify a reduced-dimension approximation of data rela-
tionships. Algorithms for fitting CP models to data include CPALS (CP Alternating
Least Squares) for continuous data and CPAPR (CP Alternating Poisson Regression)
for count data. These two models have been implemented in the C++ version of
TTB and available in PyTTB. CPAPR will be the method used for comparisons of
the different implementations of TTB presented in Section 4.

The Matlab Tensor Toolbox is a software package used for constructing tensor
objects and models, computing tensor factorizations, and performing data analysis
of multiway data using those structures and models. One of the main strengths of
TTB is its efficient computations and algorithms for large, sparse data. TTB was
originally written in Matlab, and later a subset of the functions were implemented in
C++ with the goal of improving speeds for larger tensors. Challenges is using these
two implementations include the cost of a Matlab license for TTB and the lack of an
interactive environment for the more efficient C++ implementation. PyTTB is an
effort to address these two challenges.

PyTTB provides both an interactive environment for “on-the-fly” object mod-
ifications via the Python interactive shell and computational efficiency via binding
to the C++ implementation mentioned above. Python is free to use and is a very
common language used for interactive purposes. Also, including C++ code in Python
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via extensions can be accomplished without requiring changes to the original C++
code using a software tool called SWIG.

2. Extending C++ Code Using SWIG. SWIG (Simplified Wrapper and
Interface Generator)1 is a software tool that wraps C++ classes and functions into
other languages such as Perl, Java, Python, TCL, and more [3, 4]. Python wrapping
using SWIG is the main focus in the sections below.

The SWIG files created by the developer are referred to as interface files. These
files are where the developer can make use of the wrapping features that SWIG offers.
The most important features available in SWIG and used in PyTTB are extension
blocks, python code blocks, and typemaps.

2.1. Extension Blocks. Extension blocks allow the developer to add methods
to a class without having to modify the original C++ code. This is useful when you
have a method that only applies to the specific language you are trying to wrap to
and not in the general use cases of the C++ code, such as mapping a custom object’s
size() method to len in Python.

Extensions are written in C++ and their scope are functions/methods defined
in the original C++ code. This means that methods defined SWIG interface files
are outside the scope of methods defined in extensions; even if two given methods
are inside the same extension block. Despite the scoping constraint extensions prove
useful, especially with adding target language built-in functions, such as str and
len in Python.

2.2. Python Code Block. SWIG interface files are written in C++, but with
the
pythoncode tag the user can write Python code which will be directly inserted into
the generated .py package. This can be used for adding additional functions to the
package or can be written within an extension block to add more methods to a class.

Unlike extension blocks, the scope of pythoncode blocks is the entire Python
package. This allows the developer to use methods and functions previously defined
elsewhere in the SWIG interface files, including those in extension blocks.

2.3. Typemaps. Typemaps are arguably the most convenient feature of SWIG.
They are used for converting an object of one type into that of another type, either
on input or output. This provides a simple, global way to convert an object from the
target language into a C++ object, or vice versa.

For every typemap(in) (ie. a typemap from target language to C++), there needs
to be a special typemap defined called a typecheck; this function returns a boolean
value. A typecheck is used to determine whether an object can use a given typemap;
it returns true if the input object can be converted or false if it cannot be converted.

An example of the impact of typemaps in SWIG on Python wrapping of C++
code is presented in Figure 2.1, where a package is imported and an array object
is printed. A typecheck for the typemap used in MyPackage.printArray() would
check if the input object is a sequence, only contained three items, and that the items
contained inside the sequence were all integers. The typecheck would return false if
any of those attributes were not true for the input object, otherwise it would run the
conversion typemap.

There is a precedence value associated with each typecheck. This value is re-
sponsible for creating the order in which a typecheck gets called. The developer can

1http://www.swig.org/

http://www.swig.org/
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EXAMPLE 1: (without a typemap)

>>> import MyPackage
>>> v = MyPackage . ThreeArray (1 , 2 , 3 ) # Creates a ThreeArray .
>>> MyPackage . pr intArray ( v )
Pr in t ing Array : [ 1 , 2 , 3 ]

EXAMPLE 2: (using a typemap)

>>> import MyPackage
>>> MyPackage . pr intArray ( [ 1 , 2 , 3 ] ) # Using a Python l i s t .
Pr in t ing Array : [ 1 , 2 , 3 ]

Fig. 2.1: MyPackage is a package that was created using SWIG; it contains a class ob-
ject called ThreeArray which is a container object that holds three integers. MyPack-
age also has a function called printArray that takes in a ThreeArray as a parameter.
EXAMPLE 1 shows how printArray would be used without a typemap. EXAMPLE 2
shows how it could work if a typemap from a Python list to ThreeArray was previously
defined.

modify the precedence value of the typecheck that he/she has constructed.

3. Python Tensor Toolbox. PyTTB is the Python version of the C++ imple-
mentation of Tensor Toolbox and is intended to provide the same capabilities as the
Matlab version, TTB. SWIG was used to map all the C++ functions and classes into
Python (see Section 2 above). This section provides specific examples of how PyTTB
utilizes features provided by SWIG.

3.1. Class Wrapping. Within the PyTTB package there are several C++
classes that were wrapped; Array, IndxArray, FacMatrix, FacMatArray, Tensor,
Sptensor, and
Ktensor. Some of the classes are used primarily as an underlying data structure
for the tensor classes. Each class has their own SWIG interface file containing the
mapping rules from C++ for the given class.

3.1.1. Operator and Method Extensions. All of the classes implemented
in PyTTB include an extension block. Within these extension blocks are arith-
metic operators and special object methods for that particular class; such as add ,
sub , mul , div , pow , eq , setitem , getitem , iter , str ,

and len .
Below is an example of calling the special object methods add (using ‘+’) and

str (using print) for Array.

>>> import t e n s o r t o o l b o x as ttb
>>> a = ttb . Array ( [ 2 , 1 , 3 ] )
>>> b = ttb . Array ( [ 1 , 1 , 1 ] )
>>> print a + b #Elementwise a d d i t i o n
[ 3 2 4 ]

3.1.2. Error Handling. Within each class there is an exception block which
contains a try/catch block. This is used for converting C++ errors into Python
errors. One thing to note is that if an error is not explicitly thrown within a C++
method it will not be caught by the exception block.
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This what an exception would look like:

>>> a = ttb . Array ( [ 2 , 3 , 1 ] )
>>> b = ttb . Array ( [ 2 , 2 ] )
>>> a + b
Traceback ( most r e c en t c a l l l a s t ) :

F i l e ”<s td in>” , l i n e 1 , in <module>
F i l e ”/home / . . . / python/ t e n s o r t o o l b o x . py” , l i n e 332 ,
in a d d

def a d d ( s e l f , ∗ args ) :
return t e n s o r t o o l b o x . Ar ray add ( s e l f , ∗ args )

StandardError : S i z e s o f Arrays do not match

3.1.3. Merge Types. These were functions added to the PyTTB package that
are not included in the C++ version. This will merge two objects of the same class
into one. For example, with an Array you could think of a merge as a concatenation
function. With an object like a FacMatrix we can merge as rows or columns; in other
words it adds the rows from one FacMatrix to another, or adds the columns. An
example can be seen in the listing below.

>>> import t e n s o r t o o l b o x as ttb
>>> f 1 = ttb . FacMatrix (2 , 2 )
>>> f 1 . setValue (1 ) # 2x2 matrix with a l l 1 ’ s
>>> f 2 = ttb . FacMatrix (1 , 2 )
>>> f 2 . setValue (2 ) # 1x2 matrix with a l l 2 ’ s
>>> t tb . mergeAsRows ( f1 , f 2 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
matrix
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S i z e = [ 3 2 ]
X(0 , 0 ) = 1
X(1 , 0 ) = 1
X(2 , 0 ) = 2
X(0 , 1 ) = 1
X(1 , 1 ) = 1
X(2 , 1 ) = 2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3.1.4. CPALS and CPAPR. Although the CPALS and CPAPR algorithms for
fitting CP models are provided in the C++ implementation, they are also implemented
in PyTTB as well. In Python, they are implemented as an illustration of the use of
several C++ classes and methods in a complete algorithm. These implementations
are the ones used in experiments discussed in Section 4.

3.2. Style Choices. Several style choices were made during the process of de-
veloping the PyTTB package. There are other ways to achieve similar results, but
these seem to be better in the long run, motivated by the goal to make it simple for
developers to add new classes to PyTTB in the future.

3.2.1. EQUALITY TOLERANCE. For a few classes there is a method,
isEqual(object,tolerance), defined in the original C++ package. This method
compares two objects of the same class and determines whether they are equal to
each other within some tolerance level. This method seems like a logical choice to
map to the eq operator in Python where the tolerance level would be zero, but
there is a small problem. Even if the two objects are exactly the same, the method
will return false because the tolerance level is a strict inequality; i.e. since the the
comparision result is always greater than or equal to zero, it cannot be strictly less
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than zero. So a global variable is defined, EQUALITY TOLERANCE, that is set to 1.0e-8

by default and is used instead of zero for the eq methods to compensate for the
strict inequality issue.

3.2.2. Python Code Blocks. The scope of extension blocks are very limited,
but the scope of Python code blocks includes the entire package. The underlying data
structures in the tensor classes are either an Array or a FacMatrix. So when defining
a mathematical operator for the tensor class, such as add , a Python code block
was used. This gave the develeoper the ability to use the underlying data structure’s
add method when defining the tensor’s method for add .

This style was chosen to reduce the amount of error handling that had to be
implemented as well as to provide a simple way to modify the code for multiple
classes at once.

3.2.3. Typemaps. The goal of typemaps were to make the C++ code feel more
Pythonic. Typemaps, such as Python list to Array and IndxArray, were implemented
to allow users to easily change parameters on the fly while in the Python interface.

3.3. IPython Notebooks. IPython Notebooks2 are a useful way to design a
tutorial for Python code [6]. Notebooks are set up into cells which are classified as
Markdown, Python Code, and various Header Fonts. This allows the designer to use
a mixture of Python code and HTML when designing a tutorial.

The Python tutorials were designed to look exactly like the TTB tutorials pro-
vided in Matlab. The goal of this was to make an easy transition for Matlab users by
making the environment as similar as possible.

When the design of the notebook is finished, there are options to convert the
notebook to HTML or Python. The HTML version can be open/viewed from a
browser and is useful for displaying the tutorial. The Python version will comment
out everything except for Python Code cells, which is useful when a user wants to
interact with the code directly.

4. Experiments. In this section, we present the results of comparing Matlab,
C++, and Python implementations of the CPAPR (CP Alternating Poisson Regres-
sion) algoritm . Specifically, we focus on the speed of the implementations (from the
user point of view), as we have verified that the 3 implementations generate identi-
cal iterations and solutions. The data used for testing were random sparse tensors
containing approximately 0.1% nonzeros. The rank of the tensors, 10, was the same
for all the tests. The dimensions of the tensors were all of size three, where the
first two dimensions remained constant but the third varied. The complete set test
characteristics can be found in Fig 4.1.

The second data set varied in all three dimensions. For each of the tests the
dimensions were scaled by a factor of 2. More information about the data set is
described in Fig 4.2.

Timing information were collected using the time Linux system call. The time
recorded included the time to run the CPAPR algorithm as well as the time it took to
read-in the sparse tensor data and the k-tensor initial guess. Comparisons are made
using a paired sample t-test of timing information from the results of running CPAPR
on ten different initial guesses for each test size.

The experiments were performed on system with 8 Intel i7-3940XM CPUs (3.00
GHz) with 32GB RAM running Ubuntu 12.04 (64-bit).

2http://ipython.org/notebook.html

http://ipython.org/notebook.html
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Test Number Dimensions Rank Nonzeroes Coefficients

1 [20,30,15] 10 836 650
2 [20,30,50] 10 2,836 1,000
3 [20,30,100] 10 5,684 1,500
4 [20,30,500] 10 28,371 5,500
5 [20,30,1000] 10 56,569 10,500
6 [20,30,5000] 10 282,885 50,500

Fig. 4.1: A brief description of the attributes for each the test data files used to check
performance on each of the languages. In this first data set only the third dimension
was changed.

Test Number Dimensions Rank Nonzeroes Coefficients

1 [20,30,15] 10 836 650
2 [40,60,30] 10 6,808 1,300
3 [80,120,60] 10 54,476 2,600
4 [160,240,120] 10 434,638 5,200

Fig. 4.2: A brief description of the attributes for each the test data files used to check
performance on each of the languages. In this second data set all dimensions were
scaled by a factor of 2.

4.1. Python vs Matlab. Figs. 4.3–4.6 present the results of running CPAPR
for the test cases described above. These results demonstrate that the Python imple-
mentation is much faster than the Matlab version. Also, this conclusion is confirmed
by the results of the paired sample t-test results presented in Fig. 4.7 and Fig. 4.8.
When Python and Matlab are compared it can be seen that the t-statistic is con-
sistently negative and decreasing. This implies that Matlab computation time is in-
creasing faster than that of the Python implementation as the problem size increases.

Test 1 2 3 4 5 6

C++ 0.005 0.005 0.005 0.005 0.004 0.015
Python 3.042 15.098 32.823 179.425 354.016 969.710
Matlab 16.162 56.926 92.586 314.409 577.373 2,750.293

Fig. 4.3: Average timing results (in seconds) of 10 runs of CPAPR on each of the test
cases described in Fig. 4.1.

4.2. Python vs C++. The C++ implementation was clearly the fastest of the
three versions. In Fig. 4.7 one can see that the t-statistic for Python vs C++ is
positive and increasing, which implies that the Python version’s computation time is
increasing at a faster rate than the C++ version. Another item to note is that the
t-statistics for Python vs C++ is much larger than that of Matlab vs C++. This is
an indication that the Python version’s computation time is growing faster than the
Matlab’s version in respect to the C++ version.
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Test 1 2 3 4

C++ 0.004 0.004 0.005 0.005
Python 3.043 41.536 204.732 1,235.935
Matlab 16.318 132.133 609.617 4,729.493

Fig. 4.4: Average timing results (in seconds) of 10 runs of CPAPR on each of the test
cases described in Fig. 4.2.

Fig. 4.5: Average timing results (in seconds on a log scale) of 10 runs of CPAPR on
each of the test cases described in Fig. 4.1. The x-axes include the number of nozeros,
NNZ (left) and number of coefficients in the CPAPR models (right).

Fig. 4.6: Average timing results (in seconds on a log scale) of 10 runs of CPAPR on
each of the test cases described in Fig. 4.2. The x-axes include the number of nozeros,
NNZ (left) and number of coefficients in the CPAPR models (right).
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Python vs Matlab Python vs C++ Matlab vs C++
Test t-stat p-value t-stat p-value t-stat p-value

1 -4.93 1.08e-04 5.56 2.81e-05 6.20 7.44e-06
2 -5.35 4.41e-05 7.46 6.57e-07 7.53 5.71e-07
3 -7.12 1.24e-06 11.68 7.77e-10 11.70 7.55e-10
4 -9.25 2.92e-08 47.48 2.29e-20 22.31 1.45e-14
5 -12.44 2.81e-10 80.04 1.98e-24 36.04 3.11e-18
6 -28.63 1.83e-16 206.78 7.72e-32 44.70 6.71e-20

Fig. 4.7: Above is a short summary of statsistcal values of the experiments described
in Fig. 4.1. A negative t-value indicates the first faster than the second, and a positive
t-value implies the first is slower than the second. The p-value is the probability that
one would be correct if they reject the hypothesis in regards to the t-value

Python vs Matlab Python vs C++ Matlab vs C++
Test t-stat p-value t-stat p-value t-stat p-value

1 -5.12 7.18e-05 5.78 1.74e-05 6.42 4.73e-06
2 -17.45 9.92e-13 27.82 3.02e-16 26.58 6.74e-16
3 -166.05 3.97e-30 239.58 5.42e-33 266.94 7.74e-34
4 -296.58 1.16e-34 716.74 1.47e-41 405.88 4.11e-37

Fig. 4.8: Above is a short summary of statsistcal values of the experiments described
in Fig. 4.2. For information about the meaning of the values please refer to Fig. 4.7.
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5. Conclusion. The Python version was not as fast as the C++ version, but it
was faster than the Matlab version. The goal of PyTTB was to offer an alternative to
the Matlab version, while leveraging the efficiency of the C++ implementation when
possible. PyTTB currently offers a subset of the Matlab TTB functionality, and this
subset can produce the same results in less time.

The style choices chosen in PyTTB help consolidate shared functionality into
reusable code. The use of pythoncode tags decreased the amount of error checking
needed. It provided a coordinated approach to error checking of previously defined
functions containing a diverse set of error checking measures. But the choice that
impacted the code the most was typemaps.

Typemaps allowed an easy way to use make PyTTB feel more “Pythonic.” The
methods and functions defined in the C++ version were able to take in a larger variety
of arguments by defining a hand full of mappings. Without the typemaps, a majority
of the methods would have required overloaded implementations to handle Python
objects (e.g., lists).

5.1. Future Work. As mentioned in Section 3.1.2, there is room for improve-
ment in regards to error handling. There may be a way to use typemaps to handle
errors, avoiding explicitly throwing errors. Another option would be to include error
try/catch blocks in every class extension block; the typemaps would convert C++
errors into python errors, even if the C++ errors were not explicitly thrown.

Lastly, there is the the fact that C++ version is much faster than the Python
version. There are some areas in the Python where optimization may be available,
primarily where Python handles mathematical operations. In a few of the mathemat-
ical methods, a copy of the object is used instead of using the original. Generating
a copy makes sense for generic cases, such as z = a + b. But if a += b is done in-
stead, a copy does not need to be generated and the a object can be modified directly.
Another option would be to run CProfile to help identify areas in the code that could
lead to timing improvements.
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IMPLEMENTING PARALLEL ALGORITHMS USING THE DAX
TOOLKIT

HENDRIK SCHROOTS‡ AND KENNETH MORELAND§

Abstract. With processor speeds no longer increasing, improving computing peformance has
been more difficult. Parallel processing offers an avenue though which performance advances can be
made, especially in this big data era. However, experts agree that to reach exascale computing even
greater amounts of concurrency must be exploited from current and future systems. The Dax Toolkit
provides a framework that focuses on exploiting that concurrency for data anlysis and visualization.
In this paper we implement two parallel algorithms using Dax. A parallel merge sort shows improved
perfromance compared to other sort algorithms, and the implementation of marching tetrahedra
provides Dax with the added functionality of handling unstructured grid data for countour surface
generation.

1. Introduction. As Moore’s law continues to apply, computers should be get-
ting faster. However, there has not been a major increase in processor speeds once
they reached around 3.2 Ghz back in 2006. The additional transistors that continue
to double every eighteen to twenty-four months as per the law have gone into addi-
tional cores on a single die. This shift in processor design has encouraged the long
held notion that programmers must approach solutions from a parallel aspect if they
are to achieve peak performance.

The push for parallel solutions and parallel processors started long before pro-
cessor speeds stopped increasing and long before multiple cores became commercially
available. Seymour Cray did groundbreaking work in the realm of supercomputing
back in 1976 with the release of the CRAY-I. This system demonstrated the appli-
cation of vector processing, which is a concept fundamental to modern parallel pro-
cessors. Today, a leader in both supercomputing and modern parallel architectures
is Nvidia. Their Kepler architecture takes a SIMD approach to processing and thus
achieves high throughput. This type of processor is commonly known as a graphics
processing unit (GPU). It took some time for GPUs to become viable supercomput-
ing processors since despite their high throughput their overall latency was just too
far behind CPUs at the time. However, advances have pushed GPU latency into the
realm of practical use while making strides in throughput as well. This dichotomy of
low latency processors (CPU) and high throughput processors (GPU) has led to what
is known as heterogeneous computing.

Heterogeneous computing is the term used to describe a system that is made up of
multiple processors that have different architectures. The advantage of such a system
is greater overall performance than that of just using one processor architecture or
the other in isolation. However, one of the major drawbacks to such a system is
the detailed care that must be taken to have a single program run across multiple
architectures. In addition, to achieve peak performance a deep understanding of the
underlying hardware for each architecture is required. This creates a divergence of
goals for the programmer. Where the goal of programming is often to create software
that is general and robust, heterogeneous computing demands software to be written
specific to a given architecture’s hardware design. One such example is Nvidias CUDA
language, which until recently required code to explicitly allocate and transfer memory
between the GPU and CPU memory systems. The Dax toolkit, on the other hand,
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is a new framework that takes care of many of the hardware specific details allowing
the programmer to focus on writing robust code that can then be run on multiple
architectures. Dax targets data analysis and visualization on exascale platforms where
large amounts of parallelism are needed in order to achieve peak performance.

As mentioned above, supercomputers today make use of every technique available
to achieve maximum computational power. This includes heterogeneous systems, no
matter how much detail must be known about the system in order to be programmed.
Dax makes developing visualization applications for such large scale computers sim-
pler by abstracting away many of the hardware specific details into an object type
named the Device Adapter. The programmer can then develop programs within the
constructs of the framework, and Dax will take care to manage the data such that it
runs correctly on the device specified.

This paper focuses on extending and testing the usability of the Dax framework.
First, a parallel version of the merge sort was implemented in Dax, and its run-time
compared to the built-in sort function. As a fundamental building block to more
complex algorithms, adding a faster sort algorithm improves Dax’s performance. The
contouring algorithm marching tetrahedra was also implemented and its performance
compared to the marching cubes algorithm. Also a common visualization algorithm,
marching tetrahedra adds to Dax’s robustness as a framework by being capable of
handling an additional type of input data for contouring.

Fig. 2.1: The traditional pipeline must process the entire data set before applying the
next filter. The Dax pipeline can execute all worklets in the order specified because
data elements are independent.

[8]

2. Related Work. As previously stated, the Dax toolkit is for data analysis
and visualization on exascale systems. Many visualization applications use what is
known as the visualization pipeline to structure a logical flow of data through the
system. The visualization pipeline works by modifying the dataset via filters where
the output of one filter is the input to the next. While many visualization applications
have had success with this construct such as the Visualization Toolkit (VTK) and the
Application Visualization System (AVS), one drawback is that between filters the
pipeline has to synchronize. Parallelism is abundant within each filter, but the next



H. Schroots and K. Moreland 199

filter cannot begin modifying the data until all the threads of the previous filter have
completed.

Dax makes use of transformation functions similar to a filter called a worklet.
A worklet is a computational unit that works on a single independent data element.
Because the processing of data elements is independent, a data element is free to
flow through a pipeline of worklets as soon as it is ready and doesnt have the need
to synchronize between worklets. Figure 2.1 shows a comparison of the traditional
pipeline and a pipeline as implemented using worklets. This approach allows for much
more concurrency in a system.

Exascale computing requires larger amounts of concurrency to be exploited [8, 7].
Amdahl’s law states that the amount of speed up from parallelizing a program is
limited by the amount of work that cannot be parallelized. In other words, given an
infinite number of resources a program simply cannot run faster than its slowest non-
parallel part [6]. This puts an upper bound on how much speed up parallel processing
can provide and in some cases that speed up is not very promising. This observation,
however, assumes that the portion of work that is parallel remains constant.

Gustafson-Barsis’ law provides a corollary to Amdahl’s law. It states that pro-
grams can in fact achieve large amounts of speed up as the number of processors
increases so long as the amount of parallel work grows with the scaling of processors.
With the big data revolution we are in right now there is no doubt that the amount
of data we are processing is in fact growing at an astounding rate. This is where Dax
steps in.

The Dax toolkit attempts to exploit the necessary parallelism needed for exascale
computing. Table 2.1 shows the projected level of concurrency needed for exascale
performance. Experts agree that to achieve this amount of concurrency even finer
levels of parallelism must be exploited. Table 2.2 shows these levels and in what
capacity they are used. The very-fine level parallelism is handled by compilers to a
certain degree and ultimately by the underlying hardware to exploit instruction level
parallelism. The Dax worklet provides the mechanism necessary to process data at
the fine-grain level throughout all data transformations.

Table 2.1: Comparison of characteristics between petascale and projected exascale
machines.

Jaguar – XT5 Titan – XK7 Exascale Increase

Cores 224,256 247,696
100 million

– 1 billion
400 – 5,000×

Threads 224,256 way
70 – 500

million way
1 – 10

billion way
4,000 –

50,000×
Storage 300 Terabytes 13.6 Petabytes

10 – 128
Petabytes

30 – 500×
Storage

Bandwidth
240 GB/s 240 GB/s 2.5 – 5TB/s 6 – 25×
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Table 2.2: Levels of Parallelism

Grain Size Level Name Implemented at Parallelized by
Large Task-Level Program Programmer
Medium Control-Lelvel Function Programmer
Fine Data-Level Loop/Instruction block Programmer/Compiler
Very fine Instruction-Level Instruction Processor

3. Algorithms. The first step was to implement parallel merge sort in Dax.
Traditionally, the merge sort algorithm is a divide and conquer algorithm. Developed
by John Von Neumann in 1945, the divide and conquer approach is inherently parallel.
The array of elements to be sorted is recursively divided in two, until at the lowest
level there are only sub arrays with one element in them. Each thread then takes a
pair of sub arrays (each of which is guaranteed to be sorted) compares the elements
of the arrays and merges the two into a sorted array. Figure 3.1 shows a top down
approach example of this. An unsorted array at the top is split in half until each
thread merges the sub arrays back into a single sorted array.

For a large number of elements one can see that there is plenty of work to do for
many threads at the lowest level of subdivision. However, once near the top there is
only a single thread in charge of a very big task, which is to compare the elements
of the two sorted sub arrays into a single array. The solution for maintaining large
amounts of concurrency is a simple binary lookup. Instead of having each thread
merge an entire subarray, a thread is spawned for each element in the array. The
threads calculate their scatter address by adding their current index location to the
number of elements less than its value found in the other array. Figure 3.2 shows
this calculation. The search into the other array is a binary search. Now the level of
concurrency is maintained throughout the entire algorithm.

The traditional merge sort implementation has a time complexity of O(n log n).
However, for the parallel implementation each element incurs the cost of a binary
search which runs in O(log n). This makes the parallel version run in O(n log2 n)
time. It is slightly slower, but because the concurrency is maintained the cost is
amortized on highly parallel hardware.

The other algorithm implemented in Dax for this paper is marching tetrahedra
(MT). Marching tetrahedra is a derivative of the algorithm marching cubes (MC)
originally conceived by William Lorensen and Harvey Cline in 1987 [5]. Marching
cubes falls into a classification of algorithms that deal with extracting a contour from
a field of scalar values. Most people are familiar with the 2D analog of MC, called
marching squares. Marching squares generates isolines commonly used in elevation
maps.

MC takes regular grid data as input. Because regular grid data is defined at
equally spaced intervals, the structure of the data is implicit and the data can be
stored as a simple list of vertices. Contouring algorithms extract the surfaces in 3D
defined at a given isovalue. Lorensen made the case that just like there are a finite
number of ways a line can pass through a square, there are a finite number of ways
a curve passes through a cube [5]. To do this each vertex of each cube undergoes
a binary classification. Each vertex is first identified as being less than (inside), or
greater than or equal to the isovalue (on or outside) the specified isolvalue. This
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Fig. 3.1: Each thread is responsible for the merging of two subarrays in a traditional
merge sort.

Fig. 3.2: The calculation of the scatter address in a parallel implementation of merge
sort.

binary classification creates a finite number of cases for each cube. Since each cube
has eight vertices, and each vertex can be either inside or outside of the curve defined
at the isovalue, there are 28 = 256 possible ways a curve passes through a cube. Using
symmetry these 256 cases are reduced to just 14 unique cases.

It was later found that certain cases are ambiguous and that there are multiple
ways a curve passes through these particular cube configurations [11]. Much work has
gone into resolving these ambiguities [11, 10, 3, 9]. By adding 44 cases to the original
256 cases these ambiguities are identified and handled to produce a topologically
continuous surface [3]. Figure 3.3 shows some of the ambiguous cases and the extra
cases that are used to resolve them [11].

Marching tetrahedra takes the same approach MC does, only it uses tetrahedra,
not hexahedra, as its cell shape. Using tetrahedra provides one primary benefit over
hexahedra. Because each face of the tetrahedron is a triangle, there are no ambiguous
cases when identifying how a curve passes through the cell. Also, because each tetra-
hedron only has four vertices, instead of the eight in hexahedra, there are only 24 = 16
cases to worry about. Figure 3.4 shows the full classification of tetrahedra for this
algorithm. This simplification does not come without its draw back though. Since
tetrahedra are not a regular shape, their sampling cannot be implicit. Extra data
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Fig. 3.3: Part of an advanced lookup table to resolve ambiguities in Marching Cubes.

[3]

Fig. 3.4: The binary calssification of tetra-
hedra for Marching Tetrahedra.

Fig. 3.5: A 5-fold subdivision of a hexahe-
dron into tetrahedra.

must be maintained to describe the structure of the tetrahedra [12]. Another point of
motivation for using MT over MC is that not all data is regularly sampled. In fact,
a large part of volume rendering deals with unstructured grid data and ultimately
many other primary cell shapes can be broken down into tetrahedra [4].

An important step in the MT algorithm is to subdivide the hexahedral cells into
tetrahedral cells. Hamish Carr details a complete taxonomy of how to subdivide hex-
ahedra into tetrahedra [2, 1]. This paper uses a 5-fold minimal subdivision shown in
Figure 3.5. This not only reduces the amount of processing (compared to subdivisions
of 6, 12, 24, or 48 tetrahedra) but maintains the original data since each tetrahedron
is defined using the original vertices from the hexahedron. In other words, no new
vertices need to be added in order to define the tetrahedral subdivision. It should be
noted that a 6-fold Freudenthal subdivision also only uses the original vertices and
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would have served the same purpose as the minimal subdivision. However, testing
different subdivisions is outside the scope of this paper.

4. Methods. The first experiment is designed to test the run-time of the imple-
mented parallel merge sort and compare it the bitonic sort algorithm that is included
with Dax. Their run-times were also compared to the radix sort algorithm built into
the Thrust libraries. Dax uses Thrust for reasons other than sorting, and it provides
a simple point of relative performance with which to compare. Thrust’s radix sort
is labeled as “Native” in the graph. At the time of the experiment bitonic sort only
worked on arrays whose lengths were a power of 2. However, this is an implementation
issue. There is nothing about the bitonic sort algorithm that restricts it to power of
two length arrays.

Three parameters were controlled to conduct this experiment. First, The values
in the arrays were randomly generated integers from 0 to the maximum integer value.
Next, the length of the array for bitonic sort started at 214 and doubled each iteration
for 13 iterations. The maximum array length for bitonic sort was 226. For the parallel
merge sort and the native sort their array sizes started at 214 plus a randomly gen-
erated integer offset between 0 and 20,000. For each iteration their array sizes were
doubled until their sizes exceeded 73 million elements individually. Last, each sort
algorithm was executed 1000 times.

The second experiment is designed to test the run-time of the MT algorithm and
compare it to the MC algorithm. The data for this experiment is a simple uniform
scalar field whose dimensions are passed in as a parameter. The value at each point
in the field is simply its distance from the origin. To this effect, both the algorithms
were run on multiple input sizes. Starting with a uniform grid of size 643, the size of
the grid is incremented by 8 units each iteration. The final size of the grid is 1043.
At each input size, the surface extracted was defined at the isovalue of 100. Data on
the number of output cells generated was also measured and compared. That is, the
number of triangles generated from each algorithm at each input size was counted.

These experiments were run using an Intel Xeon E5-1620 processor with 4 cores
at 2x hyper threading per core. The system has 8GB DDR3 1300Mhz RAM and runs
Red Hat Enterprise Linux release 6.5. For the parallel experiments an Nvidia Quadro
600 with 1GB on chip memory and a 128-bit memory interface on a PCI express 2.0
interconnect was used.

5. Results. The chart in Figure 5.1 shows the different running times of the
three sorting algorithms. The parallel bitonic sort ran the slowest as expected. Data
could only be collected for array lengths that are a power of 2 so a cubic trend line
is used to interpolate between values for the array sizes. Even though bitonic sort,
and parallel merge sort have the same time complexity of O(n log2 n) it is clear that
the parallel merge sort has a performance advantage over bitonic sort. For the largest
array size of 226 elements, parallel merge sort ran about 1.3x faster than bitonic sort.
Also as expected Thrust’s native sorting algorithm ran about 6x faster than parallel
merge sort and about 8x faster than bitonic sort. The performance of the native sort
however may not be great if floating point values were sorted instead of integer values.
Radix sort requires additional computation to handle float point values whereas both
bitonic sort and parallel merge sort are expected to run at speeds similar to the ones
shown. However, because additional effort must be taken to handle floating point
values for Thrust’s radix sort, it would not work well with floating point values. This
is where parallel merge sort provides benefit since its runtime is not affected whether
its values are integers of floating point values.
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Fig. 5.1: A comparison of the runtimes for different sorting algorithms as the number
of elements sorted increases.

Fig. 5.2: A comparision of the rumtimes of MC and MT run in serial and parallel.

In figure 5.2 we see the runtimes of the MC and the MT algorithms. Each
algorithm was run twice for each input size. The first time was run in parallel and the
second run in serial. This was done simply to demonstrate the performance speedup
that parallel processing has to offer. We see that each algorithm shows about 100x
speedup by being run in parallel. The vertical axis is on a logarithmic scale to show
better separation of the data for small input problem sizes. Comparing both the serial
and the parallel runs between the two algorithms we see that MT closely matches MC
in performance but is consistently slower. This is expected, however, because of the
5-fold minimal subdivision generates more output data.



H. Schroots and K. Moreland 205

Both algorithms perform two passes over the data. The first pass classifies each
cell and identifies how many output triangles will be generated by each cell. For
the standard 256 possible cases in MC each cube can generate at most five output
triangles. In contrast, each tetrahedron only generates at most two output triangles.
However, with each cube decomposed into five tetrahedra there is a potential for 10
output triangles compared to the original 5 from the cube. This increase in output
geometry, shown in figure 5.3, explains the difference in runtime. Because MT has
a larger output array, more data store instructions are executed. In addition to the
decomposition of the cube, both algorithms go through a sort step so that duplicated
vertices can be removed. Sorting on a larger output array will also take longer. Lastly,
the runtimes of the algorithms in parallel do not include the time to transfer data
between the GPU and CPU. Results may not show a 100x increase in performance if
data transfer times were taken in to account for both the serial and parallel runs of
the algorithms.

Fig. 5.3: A comparison of the amount of gemoetry generated by MT and MC.

Figure 5.4 shows a comparison of the isosurfaces generated by both MC and
MT. There is no visible difference between the two. However, figure 5.5 shows the
difference in the geometry between the two algorithms. It is clear that MT has much
more geometry generated.
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Fig. 5.4: A comparison of the surfaces generated by MC and MT. The surfaces are
visibly indistiguishable.

Fig. 5.5: A wireframe image of surfaces generated runnning the MC and MT algo-
rithms.

6. Conclusions. This paper implements a parallel version of merge sort and
the visualization algorithm marching tetrahedra using the Dax toolkit. A compari-
son of the runtimes of each of these to related algorithms demonstrates the powerful
performance increase realized when parallel processing techniques are used. The Dax
toolkit is a framework aimed at data analysis and visualization on exascale systems.
As the scientific community pushes the capability of computing today we approach
the threshold of exscale computing. The trend so far shows that these systems will be
heterogeneous. The ease with which Dax switches between many different architec-
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tures makes it a great tool to harness the performance capabilities that heterogeneous
systems offer. The implementation of a parallel merge sort helps Dax continue to be
a flexible tool capable of high performance. The addition of the MT algorithm adds
to Dax’s robustness as a tool as it now has a built in algorithm to handle isosurface
extraction of unstructured grid data.

There is still work to do in the extension of Dax however. The adoption of it as a
visualization tool will depend in part on its ease of use. In addition there many more
visualization algorithms and data analysis techniques that can be incorporated into
Dax to continually extend its functionality.
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STRONGLY CONNECTED COMPONENTS ON GPU

GEORGE M. SLOTA∗, SIVA RAJAMANICKAM† , AND KAMESH MADDURI‡

Abstract. Breadth-first search and color propagation are fundamental subroutines used in
many graph-based analytics. With the advent of manycore computational systems such as GPU
accelerators, the parallelization of these subroutines is not straightforward, especially on irregular
graphs with a skewed degree distributions. The aim of this work is to implement and optimize
breadth-first search and color propagation running on GPUs in the context of computing the strongly
connected components of large-scale real-world graphs. We utilize the recently developed Kokkos
framework to implement known and new algorithms. Our GPU approach shows up to a 1.5× speedup
over the present state-of-the-art for CPU computation of strongly-connected components.

1. Introduction. The recently developed Kokkos library [8, 7, 4] is an example
of a recent paradigm in scientific computing, the development of frameworks for write-
once-run-anywhere code. Due to the ever-changing nature of computational hardware
and large costs associated with updating older code to be performant on modern sys-
tems, the need for such frameworks is evident. Ideally, algorithms implemented in
such a framework should be resistant to the current trends in hardware (e.g. increas-
ing parallelism and changing memory hierarchies) by exploiting wide parallelization,
minimal synchronization, and localized memory accesses whenever possible.

We utilize the Kokkos library in an exploratory fashion, to examine the process of
altering existing parallel state-of-the-art multi-core CPU codes to run in a manycore
GPU environment. For this, we take the problem of computing strongly connected
components (SCCs) in large directed small-world graphs, a common analytic for so-
cial networks [15] and a preprocessing step for scientific computing (among other
usages) [17]. Using the multicore-optimized Multistep algorithm [18], we demonstrate
the process of optimizing the various subroutines utilized by the algorithm for many-
core performance.

1.1. Our Contributions. Our primary contribution is the implementation of a
strongly connected components algorithm that runs up to 1.5× faster than the current
state-of-the-art. Additionally, since the primary subroutines comprising our algorithm
are breadth-first search (BFS) and color propagation, we demonstrate several routes
of optimization for these algorithms on several differing graph topologies. Due to the
commonality for both BFS and color propagation, these optimizations are applicable
across a wide range of use cases.

2. Background.

2.1. Kokkos Library. The Kokkos library was originally developed as a back-
end for linear algebra solvers, but has since been extended to a more general-purpose li-
brary for parallel execution. The two primary capabilities of Kokkos include polymor-
phic multidimensional arrays optimized for varying data access patterns and thread
parallel execution that allows for fine-grained data parallelism on manycore devices.

The parallel execution model follows a dispatch model where a single master CPU
thread divides some N units of work to be processed in parallel. Each unit of work is
executed by a single thread team. On GPU, a thread team is comprised of multiple
warps each executing on the same multiprocessor. This team of threads operates in
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a data parallel SIMD fashion, and is able to communicate via shared memory. On
CPU, a thread team is comprised of a small number of threads (usually 1) executing
on a single CPU core.

2.2. Parallel Strongly Connected Components Algorithms. The optimal
serial algorithm for detection of strongly connected components is Tarjan’s algorithm,
which is based on depth-first search (DFS). Due to the lack of parallelism available
with a DFS-based approach, several alternative parallel SCC algorithm have been
developed based around bread-first search and color propagation.

2.2.1. Forward-Backward. The Forward-Backward algorithm (FW-BW) [19]
utilizes a recursive approach based on two breadth-first searches from a single root
vertex to find a single SCC. A BFS from the root following all out-edges will discover
all vertices that are reachable from the root. A BFS from the root following in-edges
will discover all vertices that are able to reach the root. Because a SCC is defined
as the maximal set of vertices that are able to reach and be reached by all other in
the set, the union of the two sets of vertices both reachable from the root and able to
reach the root forms a single SCC.

Removing this SCC from the graph results in three distinct sets: vertices that
were not visited in either search, vertices that were only reachable from the root, and
vertices that were not reachable from the root but could reach the root. The SCCs
comprising these sets are distinct and able to processed recursively with task-based
parallelism. Due to the relatively limited data parallelism available when processing
lots of small SCCs and overheads associated with task-based parallelism, this approach
tends to suffer on highly parallel systems. Although an efficient tasking model can
greatly benefit the performance of the algorithm [10], this approach will still suffer
once the number of small nontrivial SCCs gets high enough [18].

2.2.2. Trimming. Trimming was originally proposed as a preprocessing step for
the Forward-Backward algorithm [13]. It is not a fully independent SCC algorithm
on its own since it can only find trivial SCCs. Trimming simply scans over the set
of vertices and removes all vertices with a current out-degree or in-degree of zero.
It can do this once, recursively, as well as multiple times throughout the running of
Forward-Backward or another algorithm. Because of the aforementioned overheads
involved with individually processing small SCCs with the forward-backward algo-
rithm, utilizing a trimming procedure can greatly benefit computation time.

2.2.3. Color Propagation. The color propagation algorithm [16] follows a sim-
ilar processing model as FW-BW in that there are both forward and backward phases.
During the forward phase, all vertices in the graph are initialized with a unique nu-
meric color. All vertices propagate their color to all of their out-neighbors if the
vertices’ color is greater than that of their neighbors’ colors. This continues in an
iterative process until no more colors can be propagated.

On the backward phase, we consider all of the unique sets of vertices with the same
color. For a single set, we consider the vertex in that set that originally owned the
set’s color to be the root of a new SCC. From that root, we find all vertices reachable
via in-edges that are in the same colored set. This forms an SCC. This stage can
be either processed in a task-parallel with individual searches from each root or data
parallel by performing what is essentially a constrained multi-source BFS.

Note that a single pass of the forward and backward stages will not remove all
SCCs. This requires that color propagation have several iterations. However, due to
the fact that multiple SCCs can be removed during each iteration and that there is
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considerably higher data-level parallelism available for processing small SCCs, coloring
tends to run a lot faster than FW-BW when removing a lot of small but non-trivial
SCCs. However, the color propagation portion of the algorithm is highly dependent
on the diameter of the graph, and will require a large number of iterations to converge
on high diameter graphs.

2.2.4. Multistep. For real small-world graphs, it has been noted that there is
usually one large central SCC and many smaller ones [3]. Using this observation,
the Multistep algorithm was developed [18]. This algorithm runs a single iteration of
trimming followed by a single iteration of FW-BW to ideally remove the large SCC
in the graph. It then runs coloring iteratively until some minimal number of vertices
are left and then completes with a serial algorithm. In this work, we will run coloring
until all SCCs are discovered to minimize the proportion of any serial work for our
GPU algorithms.

3. Methodology. Here we will present the various implementations of breadth-
first search used for the forward-backward phase of the Multistep algorithm. Although
we explicitly demonstrate only breadth-first search, all of these implementations are
easily extensible to color propagation via altering some initializations and the contents
of the innermost loop, which will later be demonstrated.

For all of the following, we consider starting a BFS from a given vertex root on
a graph G(V,E,E′) with vertex set V , out-edges E, and in-edges E′. Note that we
also do not explicitly create a BFS tree through marking parent vertices or tracking
levels, as we only care about reachability from the given root.

For Kokkos team-based parallelization, we break up the available work (e.g. the
size of the current level queue Q) into equal portions of constant size. This work
partitioning is performed explicitly by us, with the most performant chunk size being
dependent on the algorithm and runtime architecture. From our observations, we see
chunk sizes equivalent to about 1 to 8 vertices per team member to be most performant
on GPU and chunk sizes of several thousand per thread to be most performant on
CPU. Each of these work portions is assigned to a thread team for dispatch and
execution across a GPU multiprocessor or CPU core. For simplification of presentation
for the following algorithms, we don’t explicitly show this work distribution. However,
consider this to be implicitly performed before any loop with in parallel.

3.1. Baseline Parallelization. The baseline parallelization of BFS is given by
Algorithm 4. Here, we utilize several common optimizations, including a visited
array to mark reachability status from root, a global current-level queue Q, a global
next-level queue N , and thread-owned queues Qt. Upon each insertion of a new
vertex into a thread-owned queue, the current size of the queue is checked and the
contents are moved to the global queue if the thread-owned queue is full. The usage of
thread-owned queues decreases the amount of global synchronization required while
increasing cache utilization. The size of the thread-owned queue is dependent on cache
size for performance reasons. E.g. QtSIZE on a CPU might be several thousand while
on a GPU it might be only 16.

This general approach suffers on GPU with irregular graphs for several reasons.
On highly skewed graphs, there is severe under-utilization of the entire warp and
Kokkos thread team when a large disparity exists in the number of neighbors for
each v retrieved from Q for each thread. Additionally, each thread must indepen-
dently retrieve new offsets for insertion into N via atomic operations. Kokkos has a
team scan operation which allows calculation of offsets for an entire team with only
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Algorithm 4 Baseline BFS algorithm

visited(1 · · ·n)← 0
visited(root)← 1
Insert root into Q
while Q 6= ∅ do

for all v ∈ Q in parallel do
Remove v from Q
for all 〈v, u〉 ∈ E do

if visited(u) = 0 then
visited(u) = 1
Insert u into Qt
if |Qt| = QtSIZE then

for all w ∈ Qt do
Remove w from Qt
Insert w into N

Move contents of all Qt to N
Swap(Q,N)

a single global atomic required. However, this team scan function cannot be simply
called within Algorithm 4 due to the fact that it is a blocking operation for the entire
team, but not necessarily every thread in the team will reach the inner loop where
the function needs to be called. There are workarounds to this issue, such as breaking
up the loop over 〈v, u〉 ∈ E, but this introduces additional overheads.

3.2. Bottom-Up and Hybrid Parallelization. The bottom-up BFS approach
is demonstrated in Algorithm 5. This approach benefits from not requiring an ex-
plicit queue or any global synchronization. While the approach is iterative, it is not
explicitly level-synchronous since we don’t require creations of the BFS tree, i.e. a
vertex w that is three hops away from root might be visited on the first iteration if
all vertices between root and w are visited prior to w during the first iteration. This
can result in a much smaller number of iterations being required than the distance
between root and the farthest vertex reachable from it. Additionally, the inner-most
loop is limited by the fact that only a single explored vertex u needs have been pre-
viously visited, and, since we’re considering real-world graphs, it is likely that most
large degree vertices v are within a few hops of each other which reduces the number
of times the neighbors of v need to be examined before v can be marked as visited.

Algorithm 5 Bottom-Up BFS algorithm

visited(1 · · ·n)← 0
visited(root)← 1
changes = 1
while changes > 0 do

changes = 0
for all v ∈ V in parallel do

if visited(v) = 0 then
for all 〈v, u〉 ∈ E′ do

if visited(u) = 1 then
visited(v)← 1
changes← changes+ 1
break

This approach suffers due to the fact that all v ∈ V are examined on each iteration,
so for high diameter graphs and on the first few and last few iterations on small
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diameter graphs a lot of extra work is required. It is possible to maintain a set of
unvisited vertices that gets updated on each iteration, but for a relatively disconnected
graph this has minimal benefit.

Due to these drawbacks, it is common to utilize the bottom-up algorithm in con-
junction with the baseline top-down algorithm. This is referred to as the hybrid BFS
approach of Beamer et al. [2]. With a hybrid BFS approach, the baseline algorithm
is performed for the first few levels, until, based on the size of the queue and number
of currently unexplored vertices, it is deemed more work-efficient to switch to the
bottom-up algorithm. A switch can again occur after some number of iterations back
to the top-down algorithm.

One final thing to note is that using a bottom-up approach can reduce total re-
quired memory utilization. This is because with both FW-BW and color propagation-
reverse color propagation, one can do forward searches top-down and reverse searches
bottom-up to only require out-edges. This essentially reduces total memory consump-
tion for graph storage by half. We consider this case in our results for graphs larger
than could otherwise be fully stored in the limited GPU memory.

3.3. Inner Loop Parallelization. Inner loop parallelization, given by Algo-
rithm 6 and also referred to as coarse-grained warp-based gathering [14], is similar to
the baseline approach. However, each thread team works in unison to explore the
adjacencies of each vertex in the current level queue. For large degree vertices, this
approach is preferred due to high warp utilization and the ability for synchronous
insertions into the global next level queue. However, for low degree vertices, this
approach again suffers from low warp utilization. Therefore a hybrid approach that
combines the two approaches is preferred.

Algorithm 6 Inner Loop BFS algorithm

visited(1 · · ·n)← 0
visited(root)← 1
Insert root into Q
while Q 6= ∅ do

for all v ∈ Q do
Remove v from Q
for all 〈v, u〉 ∈ E in parallel do

if visited(u) = 0 then
visited(u) = 1
Insert u into Qt
if Qt = QtSIZE then

for all w ∈ Qt do
Remove w from Qt
Insert w into N

Move contents of all Qt to N
Swap(Q,N)

3.4. Delayed Exploration. Delayed exploration, given by Algorithm 7 and also
referred to as deferring outliers [9], aims to maximize warp utilization by performing
baseline parallelization on small degree vertices delaying large degree vertices to be
explored with inner loop parallelization.

To do this, a separate per-thread team queue QD is maintained in shared memory.
When a thread encounters a high degree vertex, that vertex is placed into the queue
for later expansion by the entire team. This enables higher warp utilization by limiting
the serial expansion of any given neighbors list by a single thread.
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Algorithm 7 Delayed exploration-based BFS algorithm

visited(1 · · ·n)← 0
visited(root)← 1
Insert root into Q
while Q 6= ∅ do

for all v ∈ Q in parallel do
Remove v from Q
if outDegree(v) < MAXe then

for all 〈v, u〉 ∈ E do
if visited(u) = 0 then

visited(u) = 1
Insert u into Qt

else
QD ← v

for all w ∈ Qt do
Remove w from Qt
Insert w into N

for all v ∈ QD do
Remove v from QD
for all 〈v, u〉 ∈ E in parallel do

if visited(u) = 0 then
visited(u) = 1
Insert u into Qt
if Qt = QtSIZE then

for all w ∈ Qt do
Remove w from Qt
Insert w into N

Swap(Q,N)
Q← ∅

3.5. Manhattan Collapse. The Manhattan loop collapse [1], given by Algo-
rithm 8 and Algorithm 9 and also referred to as fine-grained, scan-based cooperative
expansion [14], aims to maximize warp utilization across the entire work set. To do
this, prefix sums are computed based on the out degrees of each vertex in the queue.
Parallelization is then performed over the total calculated workload, with the cur-
rent iteration’s vertex and adjacency (in Algorithm 8 Adj refers to a given vertex’s
adjacencies array) being computed based on a binary search (Algorithm 9) with the
iteration counter over the prefix sums.

To simplify calculation of our prefix sums, we take a work chunk from the queue
to be equal to that of the size of our thread team. A single team scan based on
out-degrees for a thread-specified vertex in the work chunk will compute the prefix
sums, which are stored in a shared memory array. The Manhattan loop collapse offers
the highest overall warp utilization out of all of the aforementioned approaches, but
at a cost of the HighestLessThan search for each iteration index. However, since the
prefix sums list is limited in size and is in localized storage, computation of the index
is relatively inexpensive.

3.6. Chunking. A final approach that aims to maximize warp utilization by
parallelizing over the total work while not requiring additional overheads of calculating
the vertex and adjacency for each work iteration is termed as chunking, and is given
by Algorithm 10. In this approach, only some limited number of any given vertex’s
adjacencies will be expanded by a given thread. If the number of adjacencies exceeds
the given limit, the remaining adjacencies are broken up into chunks to be explored
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Algorithm 8 Manhattan Loop Collapse BFS algorithm

visited(1 · · ·n)← 0
visited(root)← 1
Insert root into Q
while Q 6= ∅ do

P ← PrefixSumsOfVertexOutdegrees(Q)
s← P (|Q|+ 1)
for i = 1 · · · s in parallel do

index =HighestLessThan(P, i)
v ← Q(index)
u← Adj(i− P (index))
if visited(u) = 0 then

visited(u) = 1
Insert u into Qt
if Qt = QtSIZE then

for all w ∈ Qt do
Remove w from Qt
Insert w into N

Q← ∅
Swap(Q,N)

Algorithm 9 Highest-less-than algorithm for Manhattan collapse

procedure HighestLessThan(P, val)
found← 0
boundlow ← 0
boundhigh ← |P | − 1
while found = 0 do

index = (boundhigh + boundlow)/2
if P (index) ≤ val and P (index+ 1) > val then

found = 1
else if P (index) < val then

boundlow = index
else

boundhigh = index

return index

on subsequent iterations. Because this approach does not preserve level-synchronicity,
it has not previously been considered for BFS (the number of total iterations can be
dependent on the log of the largest out degree in the graph in the base of the number
of chunks created during each chunking phase).

To do the chunking, rather than store a single vertex u into the queue, its start
and end offsets in the adjacency list of a CSR representation, given by I(u) and
I(u + 1), are stored into two separate queues for the start and end chunks, Ns and
Ne. On a subsequent iteration when a thread reads the start and end pointers, it
begins to explore adjacencies from the start. If the difference between the start and
end pointers is greater than our pre-specified chunk size, the remaining adjacencies are
placed back into the queue into two chunks as given by Algorithm 10. The number of
chunks can be any arbitrary number, but two is chosen here for simplicity. By limiting
the amount of work any given thread does, warp-based imbalance is minimized.

3.7. Extension to Color Propagation. Extending all of the aforementioned
approaches to color propagation is fairly straightforward, and an overview of the main
difference to the inner loop is given by Algorithm 11. Instead of maintaining and
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Algorithm 10 Chunking-based BFS algorithm

visited(1 · · ·n)← 0
visited(root)← 1
Insert root into Q
Insert I(root) into Qs
Insert I(root+ 1) into Qe
while Q 6= ∅ do

for all i ∈ |Q| in parallel do
v ← Q(i), vs ← Qs(i), ve ← Qe(i)
end←Min(vs +MAXe, ve)
for j = vs · · · (end− 1) do

u← Adj(j)
if visited(u) = 0 then

visited(u)← 1
Insert u into N
Insert I(u) into Ns
Insert I(u+ 1) into Ne

if end < ve then
Insert v into N
Insert end into Ns
Insert (ve + end)/2 into Ne
Insert v into N
Insert (ve + end)/2 into Ns
Insert ve into Ns

Q← ∅, Qs ← ∅, Qe ← ∅
Swap(Q,N), Swap(Qs, Ns), Swap(Qe, Ne)

checking a visited array, comparisons are performed with a per-vertex current colors
array C. We additionally maintain InQ, which specifies if a vertex has currently been
placed into the next level queue. To avoid global synchronization on color updates,
when a vertex v propagates a color to another vertex u, both v and u are added to
the next level queue, as it is possible the color from v overwrote a superior color that
was being concurrently written by some other neighbor of u.

Algorithm 11 Demonstration of inner loop of color propagation

for all v ∈ V do
C(v)← v

· · ·
v = vertex from Q
u = current neighbor
if C(v) > C(u) then

C(u)← C(v)
if InQ(u) = 0 then

InQ(u) = 1
Insert u into N

if InQ(v) = 0 then
InQ(v) = 1
Insert v into N

· · ·
Q← ∅
for all v ∈ V do

InQ(v)← 0

Swap(Q,N)
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Because the backward stage of color propagation for SCC computation can be
considered a multi-source BFS, all of the approaches still apply. However, instead of
only checking visited status, a vertex marks a neighbor only if it is both unvisited
and both vertices have the same color.

4. Experimental Setup. Experiments were performed on Shannon, a dual
socket system with 128 GB main memory, two Intel Xeon E5-2670 processors, and
NVIDIA Tesla K40M GPUs. The K40M GPUs each have 12 GB DDR5 memory and
2880 CUDA cores running at 745 MHz. The version of Kokkos used for the tests came
from release 11.10.1 of Trilinos.

Several real small-world directed graphs were used for testing, and are given in
Table 4.1. These graphs range in scale from 800 K to 600 M edges and were retrieved
from the SNAP database [12], the Koblenz Network Collection [11], the University of
Florida Sparse Matrix Collection [6], and the Max Planck Institute [5]. The bottom
three listed graphs are only considered for the out-edge only case, as they are too
large for storage of both out and in-edges in the memory of our test GPU.

deg (S)CCs
Network n m

avg max count nontrivial max

Google 875 K 5.1 M 5.8 5 K 370 K 12 K 410 K
LiveJournal 4.8 M 69 M 14 20 K 970 K 23 K 3.8 M
Indochina 7.4 M 194 M 26 180 K 1.6 M 40 K 3.8 M
HV15R 2.0 M 283 M 140 170 K 24 K 15 120 K
uk-2002 18 M 398 M 16 4 K 3.7 M 70 K 12 M

WikiLinks 26 M 600 M 23 400 K 6.6 M 60 K 19 M

it-2004 41 M 1.2 B 28 10 K 6.8 M 150 K 30 M
sk-2005 50 M 1.9 B 39 2.9 M 8.8 M 46 K 35 M
Twitter 53 M 2.0 B 37 780 K 12 M 125 K 40 M

Table 4.1: Information about test networks. Columns are # vertices, # edges, average
and max. degree, # of SCCs, # number of nontrivial SCCs, and size of the largest
SCC.

These graphs were selected to represent a wide mix of graph sizes and topologies.
The number of total and nontrivial SCCs as well as the max SCC size all play an
important role in the general performance of decomposition algorithms. In general,
the graph topology also has a strong influence over the performance of the BFS and
color propagation subroutines.

5. Results. Here, we will demonstrate our results in four parts. For our GPU
algorithms, we will compare the performance of all of the BFS, color propagation, and
reverse color propagation algorithms. We will then choose the overall best performing
algorithm for each Multistep stage and compare the total execution times for a full
strongly connected components decomposition to the original CPU approach. For the
GPU approaches, we fix thread queue sizes, delayed exploration cutoffs, and chunk
sizes at 16.

5.1. Breadth-First Search. Figure 5.1 gives the running times of the numerous
bread-first search algorithms across our suite of test graphs. These results are for a
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single breadth-first search, so doubling the times would give an approximate running
time for the first stage of the Multistep algorithm. Results are given for the five
top-down approaches, two bottom-up approaches, and four hybrid approaches.
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Fig. 5.1: Performance of various breadth-first search algorithms across the test graphs.

Overall, the top-down Manhattan loop collapse demonstrates the most consistent
performance across the various graph topologies. The pure bottom-up approaches
are consistently the worst with the exception of LiveJournal, which is likely due to
favorable vertex ordering in the given graph. It was observed that the bottom-up
approaches finished in only six to eight iterations, considerably less than LiveJournal’s
approximate diameter of twenty. Chunking and the hybrid approaches also show
relatively good performance across most of the graphs.

Due to these performance results, we utilize the top-down Manhattan loop col-
lapse in our GPU SCC algorithm. The Multistep CPU algorithm previously utilized
an approach most similar to HybridBaseline.

5.2. Color Propagation. Color propagation was implemented with the same
top-down optimizations except for chunking. As mentioned, due to the possible re-
coloring of large degree vertices, the size of the queue can grow considerably to exceed
available memory on the larger test instances. A smarter dynamic-queue-based ap-
proach would alleviate this issue, and is saved for future work. We also include a naive
algorithm for comparison on select instances. In the naive approach, we avoid using
queues and simply examine all vertices on each iteration. This was the original ap-
proach for color propagation parallelization. Note that several of the execution times
for the naive method are excluded from the plot, due to poor performance orders of
magnitude slower than the other methods.

The color propagation running time results are given by Figure 5.2. The results
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Fig. 5.2: Performance of various color propagation algorithms across the test graphs.
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Fig. 5.3: Performance of various reverse color propagation search algorithms across
the test graphs.

shown are the total time spent for color propagation over a full run of the Multistep
algorithm, that is, the times are taken to perform color propagation with the largest
strongly connected component removed. We choose to take these times as apposed
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to running color propagation on its own as these results are more relevant to SCC
detection in this context. However, select individual runs for propagating across the
full graph have resulted in similar trends.

Overall, we again observe the best performance with the Manhattan loop collapse.
This is likely due to the skewed degree distributions inherent to all of these networks.
Again, based on these results we utilize the Manhattan loop collapse in the GPU SCC
algorithm. The original Multistep CPU algorithm is most similar to the Baseline
algorithm shown here.

Figure 5.3 gives the running time results for the reverse color propagation. Once
again, these are taken as the sum over however many necessary iterations with the
largest SCC previously removed. We note again consistent fast performance with the
Manhattan collapse and poor performance with the bottom-up algorithms. We how-
ever note that chunking outperforms the Manhattan collapse on the larger networks
where there is a considerable number of non-trivial SCCs. This is likely due to the
lower overall average but still skewed degree distribution post-removal of the largest
component. Due to this observation, we utilize chunking for the reverse propagation
stage of our GPU algorithm. Again, the Multistep approach is most similar to the
Baseline.

5.3. Putting it All Together. We now give the total running time of our
strongly connected components algorithm. The results for five different configurations
are shown in Figure 5.4. The labeling follows Algorithm-Runtime-Hardware,
where Algorithm is the original Multistep versus the modified GPU algorithm, the
runtimes are the original OpenMP and Kokkos, and the hardwares are CPU and
GPU.

Most obviously from Figure 5.4 is the poor performance of the two algorithms
running on hardware opposite that they were designed for. The original Multistep
algorithm compiled with OpenMP and running on CPU shows the most consistent
performance, followed by the GPU Kokkos algorithm running on GPU. For the two
largest and most complex instances, uk-2002 and WikiLinks, the GPU-Kokkos-GPU
configuration runs fastest. This is due to the higher available parallelism available on
these instances and the lower relative overhead costs.

Finally we show the results from using our top-down bottom-up out-edge only
approaches in Figure 5.5. This algorithm for GPU utilizes the Manhattan loop collapse
on the top-down BFS and color propagation stages and the bottom-up algorithm
for the backward BFS and reverse color propagation stages. We include the original
Multistep-OpenMP-CPU running times for comparison as well as the GPU Algorithm-
Kokkos-GPU algorithm for where the graph is able to fully fit in GPU memory.

We can observe that there is a considerable cost for most of the graphs for using
the out-edge only approach. This is especially prevalent on the high diameter we-
bcrawls (indochina, it, sk, uk), where the bottom-up algorithm performs especially
poorly. Looking at the execution time breakdown from the various stages, it is appar-
ent that the reverse color-propagation stages account for a vast majority of the total
running time for most test instances.
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Fig. 5.4: Performance of various reverse strongly connected components algorithms
across the test graphs and architectures.
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Fig. 5.5: Performance of various reverse out-edge only strongly connected components
algorithms across the test graphs and architectures.
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6. Conclusions and Future Work. This work examined the conversion of
a CPU optimized algorithm for performance on GPU for the problem of strongly
connected components. While implementing various optimizations to better utilize
the wide parallelism available on GPU, we observe that the Manhattan loop collapse
and chunking approaches tended to perform best across the various test instances. For
the larger test graphs with more available parallelism and lower relative overhead, the
GPU approach offered up to 1.5× speedup on our test system for a complete SCC
decomposition algorithm. We additionally note that it is likely necessary to store
both in and out-edges for performance reasons when computing SCCs on large high-
diameter graphs.

Future work might extend the aforementioned optimizations to various other
connectivity-based problems, including connected, weakly connected, and biconnected
components algorithms. Additionally, an exploration into the parameters controlling
the hybrid BFS approaches, delayed exploration, and chunking would lend better
insight into the performance of these approaches. Additionally, storing and transfer-
ring in and out-edges dynamically for each forward-backward stage of BFS and color
propagation during GPU computation might considerably improve execution times
compared to the out-edge only algorithm while allowing larger graph instances to be
run.
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A FUNCTION SHIPPING LAYER FOR THE KITTEN
LIGHTWEIGHT KERNEL

JORGE CABRERA∗ AND KEVIN PEDRETTI†

Abstract. In this work, we implement a function shipping layer for the Kitten lightweight
kernel. This layer enables the Kitten kernel to proxy system call requests that would normally be
performed locally to a remote system for external execution. As a test case for our framework, we
implement an I/O forwarding layer built using our function shipping layer. This I/O forwarding layer
allows I/O requests to be intercepted at Kitten’s system call level and then forwarded to a remote
Linux front-end node for servicing. Our current system allows for applications to keep their existing
interfaces, without the need to modify user code or rebuild. This paper presents the high-level design
and implementation details of the Kitten function shipping layer.

1. Introduction. Lightweight kernel (LWK) operating systems (OS), such as
Puma/Cougar [9], Catamount [6], and CNK [5], typically function ship their I/O
requests to remote I/O nodes for servicing, rather than handling them locally. This
offloads the complexity of the I/O stack from the compute nodes to a dedicated set
of specialized I/O nodes. In this work, we design and implement a new function
shipping layer for the Kitten [7] LWK OS that, unlike prior work, allows unmodified
Linux binaries (no recompile needed) to be executed on Kitten and have their I/O
functions shipped off-node. The design of our layer is modular, keeps the majority of
the function shipping functionality at user-level, and leverages the RDMA capabilities
of HPC networks to move data efficiently.

The remainder of this paper is organized as follows: Sections 2 and 3 describe the
basic approach and design of our function shipping layer. The details of our specific
implementation are then described in Section 4. In Section 5 we describe how the
function shipping layer was used as the foundation to develop an I/O forwarding layer
for the Kitten LWK, as well as some of the key optimizations that were made. Related
work is discussed in Section 6 and we conclude in Section 7.

2. Approach. Kitten’s existing I/O layer only supported on-node, in-memory
I/O handling. Its I/O stack is composed of a Virtual File System (VFS) layer that
allows for Linux-based virtual file systems (e.g. /proc, /dev, /sys) to be created.
It also supports in-memory file I/O, which leverages the system’s memory to store
file contents for the duration of a program’s execution. Because of these limitations,
Kitten could only support applications that had minimal I/O requirements.

The Kitten Function Shipping Layer (KFSL) is designed to expand the limited
I/O services provided by Kitten’s current VFS layer. Kitten’s filesystem capabilities
can be expanded through the use of a function shipping mechanism. By supporting
an I/O forwarding layer, Kitten can transfer its filesystem I/O services to a remote
system capable of handling more complex and large scale I/O functionality. Such
an I/O forwarding layer can be built using a function shipping layer that intercepts
system calls and forwards them to a handler on a remote server.

Our approach is to build a Kitten I/O forwarding layer that intercepts system
calls for non-system I/O services. Kitten’s VFS layer would still handle I/O for its
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pseudo-file systems (/proc, /dev, /sys), however, it would function ship system call
invocations for I/O services such as sys open, sys read, sys write, sys mkdir, etc.

3. Design. There are several techniques that can be used implement a func-
tion shipping layer, all of which result in a variety of advantages and disadvantages
when it comes to issues such as performance, compatibility, and functionality. Thain
and Livny discuss seven classes of interposing agents; frameworks that “transform
standard interfaces into remote I/O protocols not normally found in an operating
system” [8]. These classes are separated by their level of intrusion into the applica-
tion being executed. The first type of these is internal techniques. These are the class
of interposing techniques that modify the memory space of the original application.
An example of this approach is modifying the application to use a new implementa-
tion of an existing interface. However, this requires the application to be rebuilt, an
option that is not possible when the source code is not available. The other type of
interposing techniques are external. External techniques are those where an applica-
tion’s operation is intercepted at a level that is outside of the application’s address
space. An example of this approach is the interception of system calls. This class of
interposing technique would use a different implementation of the system call (e.g., a
remote node’s system call) instead of that of the local OS.

The KFSL is an example of the external interposing technique because it is built
at the system call level of the Kitten OS. The KFSL captures the arguments of a
system call and sends them off to a user-space daemon that is in charge of forwarding
the requests to a remote request handler. The KFSL can be structurally separated
into three main components, the Kernel Interposing Agent, the Request Forwarding
Daemon, and the Remote Request Handler. These components are described in the
following subsections.

3.1. Kernel Interposing Agent. The Kernel Interposing Agent (KIA) is a
mechanism that intercepts the invocation of a system call and packages its arguments
to send them to the user space Request Forwarding Daemon (RFD). In essence, the
KIA can nullify the Kernel’s local system call, and replace its result with the response
returned by the RFD.

The following is an example of how a call to the write() POSIX I/O function is
captured:

1. Application: When the application makes a call to the write() function,
its arguments are passed on from user space to the kernel via the normal
system call mechanism. In the kernel, the call is handled by the sys write()

handler.
2. System Call: The corresponding call is intercepted by way of a function hook.

In essence, inside the system call the kernel will first check if the file belongs to
one of the pseudo file systems (/proc, /dev, /sys). If not then the arguments
of the system call are shipped.

3. Argument Packaging Hook: Each system call has a corresponding hook, which
will wrap a system call’s arguments into a special request structure and then
insert it into a pending request queue. A user-space daemon will fetch each
request one by one from the pending queue, and then forward it to a remote
server.

3.2. Request Forwarding Daemon. The Request Forwarding Daemon (RFD)
is a user space daemon whose job is to fetch system call requests from the KIA, and
then send the corresponding packaged requests to a remote server. Once the RFD
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Fig. 3.1: Overview of the Kitten Function Shipping Layer.

receives the response from the remove server, it will send it back to the KIA, which
will in turn send it back to the application. Currently the RFD sends one request at
a time to the remote server.

3.3. Remote Request Handler. The Remote Request Handler (RRH) is a
daemon running on an remote I/O server that is responsible for receiving system call
requests from a RFD and executing the requests locally. The requests that the RRH
receives from the RFD contain information such as the system call type, its arguments,
network contact information from the initiator node, and a unique request identifier.

4. Implementation. This section describes the implementation details of the
Kitten function shipping layer’s KIA, RFD, and RRH components. The KIA is privi-
leged OS-level code implemented inside of the Kitten kernel, while the RFD and RRH
are implemented at user-level.

4.1. KIA. There are two core functions that are performed by the KIA compo-
nent of the KFSL: function argument passing from the user application to the KIA,
and the communication between kernel and user space.

The KIA has a series of function hooks, one for each system call that is intercepted.
Each function hook has an identical prototype to that of the system call. The hook’s
job is to capture the system call’s arguments and package them into a special data
structure. These special data structures are then embedded into a request which is
inserted into a queue of pending requests. The caller application will be put to sleep
until the request has been completed and returned with a response.

One of the data structures contained in a request used by the KFSL is the
kfs in header:

s t r u c t k f s l i n h e a d e r {
u32 len ;
u32 opcode ;
u64 unique ;

} ;
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A kfsl in header struct contains general information about each request: the
length of the header plus the arguments, the opcode or type of system call, and a
unique id. The request is followed by the struct containing the arguments of the sys-
tem call. Since each system call has different arguments, there is one struct for each
of these. Here is an example of the arguments struct for the read system call:

s t r u c t k f s l r e a d i n {
u64 pr iv da ta ;
u64 buffer ;
u32 s i z e ;
u32 o f f s e t ;
u32 pos ;

} ;

These requests are fetched by the RFD through the use of a special kernel file
located in the /dev directory, in a similar way to how FUSE works [2]. This special
file is used to allow communication from the user space RFD and the kernel space
KIA.

4.2. RFD. The RFD fetches a single request at a time from the KIA and then
forwards it to the RRH. In the future the implementation will be improved to process
multiple requests at a time, allowing multiple requests to be pipelined to the RRH.

As previously mentioned, the RFD uses the special /dev file to fetch requests from
the KIA. Basically, the RFD will run a loop that constantly tries to do a blocking
read from the /dev file. A read to this file launches a call to special handler in the
KIA which will check to see if there are any requests in the pending queue. If there
are it will dequeue a request and copy it to a user space buffer provided by the RFD.
The request is moved from the pending queue to a processing queue. The processing
queue is used to search for the request when it is completed. If there are no requests
the RFD will be put to sleep using Kitten’s waitqueue mechanism. The RFD is woken
up when a new request is inserted in the pending queue.

Communication between the RFD on the Kitten node and the RRH on a remote
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node is done using the Portals network programming API [1]. Portals is a special
networking API designed for HPC systems. One of its main characteristics is that
it is capable of moving data without the need for intermediary memory-to-memory
copies, performing network transfers directly to and from user application buffers.
Instead of multiple memory copies, which can be detrimental to performance for HPC
systems, Portals supports the use of matching semantics to specify the memory buffer
into which to copy the data directly. Specifically, there are two Portals operations
which we use in our implementation of the RFD: Portals PtlPut() and PtlGet().
The PtlPut() operation allows us to send data from the RFD to the RRH, and
the PtlGet() operation allows us to request data from the RRH. Using these two
operations we implemented the RFD to perform a PtlPut() operation to send a
request to the RRH server. The RFD then waits for the RRH server to perform a
PtlPut() operation to the RFD, which writes the result of the operation into a special
buffer allocated by the RFD. This special buffer is just a kfsl out header struct, which
contains information about the return values of a system call:

s t r u c t k f s l o u t h e a d e r {
u64 data ;
u64 e r r o r ;
u64 unique ;

} ;

The data field contains a special value returned by the system call (if any) such as
an error code, or file handle value. The error field contains special codes that represent
internal errors that must be handled by KFSL. Lastly, the unique field contains the
ID of the request that was just completed. This is the key used to search for the
request in the processing queue.

Each I/O request from the application results in one request being received by
the RFD. The RFD may internally chose to split up a large I/O request into a number
smaller requests made to the RRH, but the current implementation does not do this.
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Each request results in a single PtlPut() or PtlGet() being used to move the request’s
data to or from the RRH.

4.3. RRH. The RRH is a daemon that runs on the remote server that is in
charge of receiving system calls requests and performing them locally.

The RRH waits for a request to arrive using the Portals API’s PtlEQPoll()

interface. Once a request arrives, it will determine the type of request by checking
the opcode, and will then unpack the request to the corresponding data structure
which contains the system call arguments. The RRH will pass the request and its
arguments to a specific handler, one of which exists one for each system call; this
handler will perform the operation. Since requests do not include data, the handler is
responsible for pushing or pulling payload data from the application running on the
compute node. This is done using PtlPut() for read requests (data moves from the
I/O node to the compute node) and PtlGet() for write requests (data moves from
the compute node to the I/O node). The handler returns the result of the request to
the RRH, which then packages it into a kfsl out header data structure and sends this
back to the RFD client using a Portals PtlPut().

5. I/O Forwarding Layer. An I/O Forwarding Layer (IOFL) has been imple-
mented using Kitten’s function shipping framework. In order to implement the IOFL,
there are few components which must added to the KFSL framework. First of all, a
hook must be added to each system call that needs to be function-shipped. Currently
the Kitten IOFL supports the forwarding of the following system calls: open, write,
lseek, read, close, unlink, mkdir, and rmdir, so each contains a hook to intercept the
arguments. Secondly, a new opcode together with its arguments data structure must
be added to the framework to hold the values of the system call arguments. This is
the data structure that will be sent as part of the request. Lastly, a handler must be
implemented on the RRH to perform the operation for the new opcode. These are
the basic modifications which must be done to the KFSL framework.

In addition to the functionality added to the KFSL, there are some special opti-
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mizations which are done to reduce the overhead of the IOFL. The main optimization
performed is the use of SMARTMAP as the memory management protocol used by
the framework. SMARTMAP allows a portion of one process’s address space to be
mapped into another process’s address space directly [3]. This mechanism allows us to
bypass the need to perform multiple memory copies. For example, our framework uses
SMARTMAP to copy data directly to and from the application’s user space buffer,
without the need to copy the data to a kernel buffer or intermediary RFD buffer.

6. Related Work. Interposing techniques, I/O forwarding layers, and function
shipping frameworks systems are active research areas. Ali et al. developed the
I/O Forwarding Scalability Layer (IOFSL), a scalable I/O forwarding framework for
HPC systems [4]. In their work, they present a framework which allows the I/O
functionality of an HPC system to be forwarded to dedicated I/O nodes. Their work
is similar to the KFSL, but differs in the interposing techniques that they use for
implementation. Specifically, they implement an API called ZOIDFS, which is used
by the application to perform I/O that is forwarded by IOFSL. In addition, they
implement a FUSE filesystem that can be used to support applications that cannot
be recompiled. Our approach of intercepting at the system call layer eliminates the
need to recompile an application to use our IOFL.

Thain et al. present an excellent overview of the different interposing techniques
that can be implemented, as well as the pros and cons of using each [8].

7. Conclusion. We have presented the design and implementation of a function
shipping layer for the Kitten Lightweight Kernel. This framework was utilized to
create an I/O Forwarding Layer for Kitten, enabling I/O requests to be offloaded
from Kitten compute nodes onto dedicated remote I/O nodes. Kitten’s support for
the SMARTMAP memory mapping protocol and Portals API were used to optimize
our IOFL implementation, eliminating the need for intermediate data copies. In the
future we plan to further optimize the communication path between the Kitten RFD
client and Linux RRH daemon, as well as explore transforming our protocol from its
current stateful connection design into a stateless protocol.
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BALANCING POWER AND TIME OF MPI OPERATIONS

TAYLOR GROVES ∗ AND KURT B. FERREIRA†

Abstract. The hypothesis of this paper is that: By adjusting message sizes and altering the
underlying algorithms of collectives, a reduction in peak power of a system’s communication opera-
tions is achievable, with reasonable costs to the throughput and latency of the network. To evaluate
the hypothesis we tested the power and performance of point to point communication 0 in the MPI
framework as well four algorithms for two collective 0: AllReduce and AllGather. For our testbeds,
we found that power did differ for varying message sizes and mechanisms in point to point com-
munications, but at extreme costs to bandwidth and latency making such a tradeoff impractical on
current systems. Contrasting the results of the point to point communications, collective operations
saw relatively stable power draw across differing algorithms despite the difference in message sizes.

1. Introduction. Power consumption has been identified as a massive obstacle
to building an exascale computer. A power budget of 20MW [1] set by the United
States Department of Energy (DOE) means that existing approaches to system design
must be reevaluated, with the goal of maximizing flops per watt. As of this writing,
the top rated computer from The Top500 list, Tianhe-2, consumes near 18 MW of this
20MW power budget while providing only 34 petaflops of computation [13]. Despite
it’s tremendous size, Tianhe-2 is one of the world’s most energy efficient comput-
ers with a Green500 ranking of 49 [4], consuming 1,902 MFLOPS/watt. In order
to match the DOE’s goals for exascale computation, flops per watt must reach 50
GFLOPS/watt – a 25X increase in power efficiency. Improving the flops to watt ratio
by this amount requires prudent use of power by system components and application
design. In some cases, hard caps on power will necessitate strategies that reduce
power at the expense of longer run-times and energy costs.

While there are many techniques for reducing the power of a system, some ap-
proaches are understood better than others. CPU frequency scaling is a well under-
stood mechanism for reducing the power of a system at the expense of execution time.
However, as future systems move towards an architecture of many cores, operating at
low frequency, this technique may be limited in its effectiveness. Additionally, there
is the case, where an application is computationally-bound or memory-bound, such
that a reduction in power at the expense of network throughput has little impact on
the overall runtime of the application.

In this work, we explore alternative strategies for reducing the power of a subset of
MPI point to point and collective operations, as well as the impact of these strategies
on the run time of the system. In Section 3 we explore the trade-off between power
consumption and run time, for sending data using MPI buffers of varied size. We test
this by performing ping-pong and streaming tests for both onload and offload network
cards on systems with specialized power 0 capabilities. Later, in Section 4 we look
at the effects that different algorithms for MPI AllGather have on the runtime and
power costs for different node counts. To clarify, the specific contributions of this
paper are:

• An exploration of the effects of message sizes on the power/time of MPI point
to point communications.

∗University of New Mexico Department of Computer Science, tgroves@cs.unm.edu
†Sandia National Laboratories, kbferre@sandia.gov
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• An evaluation of the power/time trade-off for different algorithms/implemen-
tations of MPI AllGather.

In the past, algorithms and systems have treated power as a ancillary concern,
with the primary focus being execution time. With increased interest in power-efficient
design, this work provides systems and application developers insight, so that they
may leverage approaches that provide the best trade-off between power and time
of communication operations. Additionally, this work informs simulation design –
revealing what features of communication are most significant and how they should
be modeled, in order to provide an accurate representation of the power and run times
of real systems.

2. Background. For this work, we limit our analysis to the Teller system at San-
dia National Laboratories. Teller is comprised of 104 nodes, each with an AMD A10-
5800K, 3.8GHz, quad-core processor. Nodes are connected by a onloaded, QLogic,
quad data rate, Infiniband network. A subset of the Teller nodes are equipped with
offloaded, Mellanox HCA’s. All of our experiments utilize version 1.6.4 of OpenMPI.
To measure power, our experiments utilize the PowerInsight framework. As described
in [6], PowerInsight facilitates component level power and energy instrumentation in
commodity hardware. PowerInsight avoids the observer effect by running on electri-
cally separated hardware from the system being tested – allowing for a high sampling
rate without perturbing the system being measured. For the purposes of this work,
we sample instantaneous power at a rate of 75 Hz per power rail, across a total of 7
rails. These rails represent the power devoted to CPU, memory, local storage, network
interface cards, and motherboard.

3. The Many Small vs. the Few Large. How to best break up information to
send it across the network, is a question that has traditionally been directed towards
finding the optimal network throughput. Coming into this work, we decided to explore
the topic with a focus on power. We had two initial questions:

• What is the effect on power and throughput, for sending a fixed amount of
data at varying message sizes?

• With respect to the question above, how do offloaded and onloaded HCA’s
differ?

In this section, we answer these questions with respect to the system described in
Section 2. Additionally, we offer some insight as to the underlying factors responsible
for the results observed. The goal being that these insights may be generalized, to
provide an understanding of the the power and throughput trade-offs for a broader
set of systems.

3.1. Experiment Design. In order to answer the questions above we ran a set
of experiments using the NetPipe [10] benchmark. NetPipe is a protocol independent
performance tool, which provides a measurements for latency and throughput of a
network through a series of ping pong or streaming tests over increasing message
sizes. NetPipe is extendable through modules allowing the evaluation of a variety of
environments. For the purposes of this work we utilize the MPI module.

We evaluate the power and performance of MPI point to point communications
using three sets of experiments, namely a ping-pong and a streaming evaluation and
an evaluation of the power/throughput tradeoff for different MPI eager/rendezvous
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Fig. 3.1: Power and throughput measurements for ping-pong, power-of-two message
sizes (1 B to 1MiB) on onloaded and offloaded HCA’s.

transition points. For each experiment, we evaluate the power and performance across
message sizes at power-of-two intervals, ranging from 1 byte to 1 megabyte in size.
Each experiment is performed on both onloaded and offloaded HCA’s.

For all tests, we divide the experiments such that each plot represents a fixed
amount of data being sent over the network. For example, if a total of 5,000 messages
are sent across the network at message size 1MiB, then a message size of 1KiB results
in 5,120,000 messages. 1 Power measurements (described in Section 2) are collected
during MPI Send and MPI Recv operations and averaged, to determine the power
costs of point to point communication for each message size.

While NetPipe offers many interesting configurable options such as the ability
to disable cache effects, the scope of the current paper did not allow an in depth
exploration of all applicable options. However, exploring additional configurations
will be considered in future work.

3.2. Ping-Pong Results. Figure 3.1 contains the results of sending 5 GB of
data between two hosts in ping-pong style. Displayed in each plot, is the average
power recorded at both Rank 0 and Rank 1, as well as the throughput recorded by
NetPipe.

First, examining the results for the offloaded cards, it is clear that at lower message
sizes, both the power and throughput are low with little growth until a message size
of 128 Bytes. As the message sizes reach the Kilobyte range, we see a increased rate
of growth in throughput and the corresponding power draw. As message sizes near 1
MiB in size, the growth in throughput begins to taper off. There are two additional
points of interesting behavior in this plot. The first is at 16 KiB, where the power
draw of the system decreases slightly as the throughput continues to increase. The
cause of this shift in power is the eager to rendezvous transition that takes place in
MPI, which for the nodes with offloaded cards takes place at 12K.

The results of the ping-pong test using onloaded cards is different from the on-
loaded results in several ways. At first glance one of the major differences appears
to be the absolute power values of the Rank 1 process. However, this is not as
significant as it seems. In the shift to running the experiments on onloaded cards,
Rank 0 and Rank 1 are executed on different nodes entirely, such that the absolute

1The total amount of data transfer ed for each plot point can be calculated as 5000 × the largest
message size of the plot.
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power values across experiments should not be compared. As discussed in [6], this
difference in power is within the range expected for manufacturing and temperature
differences across different nodes. While a comparison between the absolute power
values recorded across the two plots is inappropriate, the trends in power growth are
comparable.

Another noticeable difference can be seen at the eager to rendezvous transition
point – which is for the onloaded cards takes place at 64 KiB. At the transition point
there is a sharp decrease to throughput on the onloaded cards, after which, power
continues a steady growth. We discuss the effects of the eager to rendezvous transition
point further in Section 3.4. In this work we did examine what subcomponents are
responsible for the growth in power. For the onloaded nodes, approximately 60 percent
of the increased power costs can be attributed to the CPU, with roughly 30 percent
of the increased power costs stemming from memory. The remaining 10 percent
is attributed to the NIC and rails that represent miscellaneous power costs of the
motherboard.

Overall, for the ping-pong experiments, we see a slow increase to power as we
increase the message size and enable higher levels of throughput. The only significant
exception to this observation is for the onloaded cards at 64MiB. However these results
do not tell the entire story. The nature of a ping-pong experiment means that much
of the time spent on either end is in polling, as sender and receiver swap roles each
iteration. In order to contrast this with a more communication intensive workload, in
the next section we explore the power/throughput tradeoff in the scope of a streaming
communication.

3.3. Streaming Results. Streaming tests provide insight about the power costs
of a workload which rapidly sends data in a single direction. In our tests, the source
node sends a continuous stream of data to the destination who provides a non-blocking
receive.

With default settings, examination of the results for the onloaded card show a
significant trade-off in throughput for small and large messages. At the low end
throughput begins at 19 Mbps at a cost of 54 Watts. The increases to power are
modest until we pass 128 bytes in size. One notable exception is in the range of
32 to 64 byte messages. At this point we see a decrease in power and an increase
to throughput. Specifically, power goes to it’s lowest point of our tests 52, and 48
Watts, respectively. The gains in throughput continue to grow doubling with the
message size, from 390 to 730 Mbps. An application with modest bandwidth needs
could optimize its message sizes accordingly.

For example if the total amount of data requiring transmission was 1024 bytes,
this could be split into 16 × 64 byte sub-messages. By doing so the application could
reduce it’s power costs by 14 Watts or 23% of total system power. While, there is a
substantial cap placed on the throughput of the node, The other cost to this power
savings comes from latency of the network. While smaller messages have reduced
overheads and lower latency, this strategy requires that we send more of them. In the
case of this example, NetPipe reported a latency of 1.7 µs for the 64 byte message.
And 2.5 µs for the 1024 byte message. An upper bound on the total latency for
splitting the messages would be 16×1.7 = 27.2µs. However, this upper bound greatly
overestimates the costs since there is significant overlap when sending a series of
messages. Analyzing the results of our tests show that a closer estimate would be 2.5
µs for the 1024 byte message and 4.7 µs for the series of 16 smaller messages.

From 128 bytes to 4096 bytes the throughput rises rapidly while power increases
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Fig. 3.2: Power and throughput measurements for streaming, power-of-two message
sizes (1 B to 1MiB) on onloaded HCA’s.
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Fig. 3.3: Power and throughput measurements for streaming, power-of-two message
sizes (1 B to 1MiB) on offloaded HCA’s.

at a slower rate. Afterwards power and throughput remain relatively flat. The ea-
ger/rendezvous transition point is reached at 65536 bytes and a shift in power and
throughput is apparent. At the transition point, throughput is briefly reduced, with a
reduction in power on the receiving end. Immediately following this point, throughput
rises rapidly. While both sender’s and receiver’s power increase, the rate of increase
is greater at the sender.

In our streaming tests, the offloaded cards present less opportunity for worthwhile
tradeoffs among power and throughput, than their onloaded counterparts. At lower
message sizes throughput slowly increases and then drops for messages sizes exceeding
128 bytes. Past 128 bytes, there is a power increase in the 5 Watt range and then
temporary 5 Watt increase in power, observed for message sizes of 1024 bytes.

When comparing onloaded and offloaded cards, there are several distinguishing
features of the offloaded cards. Firstly, the offloaded cards see a large shift in through-
put and power for message sizes of 8KiB. Additionally, the offloaded cards see a
decrease in power on both the sending and receiving node at the eager/rendezvous
transition point.

3.4. Eager to Rendezvous Transition Point.
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Fig. 3.4: The effect of changing the eager/rendezvous transition point default(12K),
64KiB and 512KiB, for offloaded HCA’s.

4. A power centric evaluation of AllReduce and AllGather. In Section 3
we examined the effect different message sizes had on power of a system utilizing
point to point communication. Using this knowledge as a foundation, in this section
we explore the power and performance tradeoffs of an MPI collective. For this work
we focus on the collectives AllReduce and AllGather.

We focus on how power changes while adjusting these collectives in two ways.
Firstly, like Section 3, we explore the collectives with respect to varying message size.
Secondly, we look at how different underlying algorithms for the collectives could
effect the power and performance. Specifically the algorithms we examine are linear
and logarithmic algorithm for AllReduce and a textitlinear and recursive doubling
algorithm.

Here, we give a brief description of how the algorithms differ for the AllGather
collective and refer the reader to [12] for additional details. The linear algorithm is a
simple algorithm with poor scaling characteristics. The approach of this algorithm is
for each node to send their original send buffer directly to the rank 0 node. The rank
0 node then concatenates the data from each node, before sending the final result
back to all n− 1 nodes. This results in a wave of n− 1 small messages being sent to
rank 0, followed by final wave of n − 1, sizeof(send buffer) ×n being sent from rank
0. For a large number n, the bottleneck at rank 0 becomes problematic.

In contrast the recursive doubling algorithm, as described in [], each node begins
sending it’s original send buffer to it’s nearest ranking node. For the additional,
lg(n) − 1 iterations, each node swaps data with another node from the remaining
set of uncontacted nodes. 2 In each of the iterations, the amount of data swapped
doubles, reaching a maximum of sizeof(send buffer)×n2 in the final iteration.

While both algorithms provide the same end-result, the linear algorithm’s maxi-
mum message size is twice that of the recursive doubling algorithm. Additionally the
linear algorithm results in a larger number of messages overall. For a given N nodes
and an initial send buffer of k data, the amount of data sent over the network for each
algorithm is:
Recursive Doubling kn(2lgn − 1)
Linear kn+ kn2

4.1. Experiment Design. In order to test the power and performance of the
collectives, we utilize an allocation of 64 nodes on the Teller cluster. On these 64
nodes we performed 5,000 iterations of each collective. For AllReduce, our initial

2A node is considered uncontacted, if it, nor any of its previously communicated nodes have been
contacted.
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data size scales up to 1KiB in size For AllGather, the initial send buffer on each node
ranged from 4 bytes to 1MiB of unique data. During each run, the power is measured
on as described in Section 2. Afterwards we take the per-node averages of power for
every node. For all of the plots representing our collective experiments, we plot the
minimum, the maximum, and the average of the per-node averages. Additionally,
we plot the average time taken for the completion of a single collective operation.
The results of these experiments show the power and time trade-off for very different
algorithms.
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Fig. 4.1: Power and completion time for linear AllReduce for varying message size.

4.2. AllReduce Results. Figure 4.1 and Figure 4.2 show very little difference
in power costs of AllReduce tests, relative to the algorithm selected. In fact, we see
little to no shift in power, even as the time to perform an AllReduce operation ramps
up. As expected logarithmic AllReduce scales significantly better than the linear
AllReduce. These tests only perform reductions on relatively small messages – going
up to 1024 bytes. This covers the range of message buffers expected in a typical HPC
application.

4.3. AllGather Results.
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Fig. 4.2: Power and completion time for logarithmic AllReduce for varying message
size.
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Fig. 4.3: Power and completion time for linear AllGather for varying message size.
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Fig. 4.4: Power and completion time for recursive-doubling AllGather for varying
message size.

In an effort to determine if negative results from the AllReduce Experiment were
indicative of a broader range of collective operations, our second experiments exam-
ined the power costs of different AllGather algorithms. AllGather collects a fixed
size buffer from each of the collective participants, merging them together until each
participant has gathered the data from all other participants. AllGather makes a
good candidate for exploring power tradeoffs since it works with a variety of message
sizes. In each iteration the block of data sent from the jth process is received by every
process and placed in the jth block of the buffer recvbuf, per the MPI standard. How-
ever, Figure 4.3 and Figure 4.4 show very little difference in power costs of AllGather
tests, relative to the algorithm selected. In fact, we see little to no shift in power,
even as the time to perform an AllGather operation ramps up. As expected recursive
doubling AllGather scales significantly better than the linear AllGather.

The larger question is why is the power cost of these collective operations so
stable when performance is so different across algorithms? Our hypothesis is that
this is the result of polling within the MPI collective. In each phase of the collective
nodes spend a large portion of time polling or idle waiting for the slowest participant
of the collective to complete. The amount of time spent waiting on messages or other
nodes results in relatively flat power costs when compared to the set of streaming
point to point messages seen in Section 3. Verifying this hypothesis is designated as
future work.

5. Related Work. Authors have explored the performance of MPI operations
in a variety of publications [8, 11]. This earlier work did not reflect the power and
energy constraints expected on future systems.
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There has been work exploring power and energy savings on systems running high
performance, MPI-based applications [3, 5, 2, 7]. However, the majority of these focus
on finding power savings by adjusting the frequency/voltage of the system directly
rather than examining differences relative to message sizes or collective algorithms.
Other approaches have looked at scheduling policy to manage power consumption of
a system [9].

6. Conclusions. In conclusion we found that there are some power savings to
be found in point to point communications. The most noticeable changes in power
occurring in the transition from eager to rendezvous messages. However, these power
savings are offset by a tremendous cost to potential bandwidth and a significant
cost to latency. Furthermore we did not see a substantial difference in power across
the AllReduce and AllGather algorithms that we tested on our system. As future
systems shift towards many-core architectures, operating at reduced power, this topic
may merit further examination.
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DELTA: DATA REDUCTION FOR INTEGRATED APPLICATION
WORKFLOWS

GREGORY JEAN-BAPTISTE‡ AND GERALD LOFSTEAD§

Abstract. Integrated Application Workflows (IAWs) require high frequency and high volume
data transfers between compute nodes and staging area machines during the lifetime of a large,
distributed computation. The available network bandwidth between the two areas may not be
enough to efficiently support the data movement. As the processing power available to compute
resources increases, the requirements for this data transfer will become more difficult to satisfy and
perhaps will not be satisfiable at all, since network capablilites are not expanding at a comparable
rate. Furthermore, energy consumption in HPC environments are expected to grow by an order of
magnitude as exscale systems become a reality. The energy cost of moving large amounts of data
frequently will contribute to this issue. It is necessary to reduce the volume of data without reducing
the quality of data when it is being processed and analyzed. Delta attempts to resolve the issue by
removing multiple copies of the same data during transfers and restoring those copies once the data
has reached the staging area. Delta is able to identify duplicated information and determine the
most space efficient way to represent it.

1. Introduction. Scientific computing at a large scale has driven trends in su-
percomputing including data parallelism, distributed computing and fault tolerance.
That is because scientific applications are becoming increasingly complex as develop-
ers and researchers attempt to solve more difficult and varying problems. Through
simulation and data analysis, researchers are able to model their use cases more accu-
rately and gather more meaningful information as a result. Not only are these models
complex, but they are also increasing in size. The underlying hardware and software
had to evolve to accomidate applications that require such capabilites and they are
continuing to improve. In the past, users of such systems would have wait until the
applications were finished running before the data could be analyzed or presented in a
more intuitive format. At the time, the output from the application would be moved
into persistent storage over the course of a run. Integrated Application Workflows
(IAWs) refers to the practice of moving the data to an intermediate staging area be-
fore being placed in persistent storage. In the staging area, users can process, analyze
and visualize the data as the application is still running, leading to greater insights
and more detailed understanding. IAWs also avoid writing intermediate, transient
data to slower persistent storage during the computation. Instead, various methods
are employed to move the required data to where it is needed or making it quickly
accessable remotely.

IAWs are becoming more popular, as it is appealing to have realtime insights
during the course of a simulation. However, the amount of relevant data produced
during the run of such an application is quite large and is getting larger as the com-
putational capabilites of supercomputers approaches exascale. Transferring such a
high volume of data repeatedly during runtime can have a severely negative impact
on the network, where the improvement in bandwidth cannot match the growing data
size. The resulting backlogging could affect performance on both the compute area
and the staging area. Compounding the issue is the amount of energy consumed over
the course of such an application, including the cost of transferring data. Currently,
computation cost dominates energy usage but if the data volume grows at the same
rate, the cost of moving data can easily become the limiting factor when it comes to
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operating these systems. One way to deal with this issue is to understand how most
scientific applications work. After an initial setup, these applications run in loops
that represent individual timesteps in the simulation. Usually, the same type of data
is produced every time (for example, temperature, velocity, position, etc.), but the
value may or may not change from timestep to timestep. An application developer
could adjust their program such that if a particular variable does not change between
timesteps, it is not transfered to the staging area. When the analysis software does
not receive the variable, it can assume that it has not changed from the previous
timestep and use the value that was obtained previously. An even better (and easier
for application developers) solution would be an underlying system that could do this
for any application running on top of it.

ADIOS is the implementation of such a system. It removes the responsibility of
transporting data from the application developer and handles all the details under-
neath. The developer only needs to define which variables are to be transported and
which transport method to use. Delta is a prototype transport method that does
what was previously described: using the variable definitions described by the user,
Delta only transports data that has changed between timesteps. Delta can also read
data in at the staging area and rebuild what is missing based on data from previous
timesteps. The user can transport data and access it on the other side, leaving Delta
to handle the packing and unpacking that occurs in between. Delta works even when
there are multiple nodes (as expected) participating in the computation and produc-
ing output. Figure 1.1 illustrates the architecture of IAWs using ADIOS and Delta
to handle the data transportation.

In order to motivate this work, two separate scientific applications were modified
to measure the change of output between timesteps. The first, LAMMPS can simulate
a number of interactions and events at a fine level. The user can define the interaction
in an application specific manner and let it run over a number of timesteps. Here,
the modified code was run with and example called “crack”, which simulates a crack
propagating through some solid. Roughly 40% of the variables changed between
timesteps, getting as high as 60% at times. Figure 1.2 displays the changes aggregated
over time. Another example, which simulated a melting solid had 60% of its variables
changing between timesteps, getting as high as 75%. Similar results were found when
running an exmaple built on DEALII, another scientific simulator. It is easy to see
that this strategy will work better with some simulations that others. Simulations
that have some form of propagation (such as a crack or melting) would have many
of its parts remain static for some period of time. Other simulations even have parts
that don’t change at all (such as the ground over which a liquid is flowing). These
kinds of simulations would benefit the most from applying Delta or an application
specific version. Since ADIOS can be used to support such applications, Delta aims
to be an application independent version.
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Fig. 1.1: A diagram of the IAW architecture, including ADIOS and Delta
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Fig. 1.2: A graph showing the pattern of reduced writes in LAMMPS for the “Crack”
example
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2. Related Work. Improving workflows and workflow managment for scientific
computation has been the focus of several projects. Many scientific works involve
multiple components in order to get the desired results. Managing these pieces can
be difficult and confusing because of the variety of settings, platforms, data formats
and tools. A knowledgable user can create their own scripts using Python for ex-
ample, to manage the ordering of the necessary components and the intermediate
procedures such as moving data. On the other hand, there are workload management
systems specifically designed for scientific applications. Pegasus simplifies the oper-
ation of such applications by mapping high level descriptions of a workflow to the
available computational resources. The user does not need to have a deep understand
the underlying infrastructure, as Pegasus will automatically locate and allocate them
according to the input provided by the user. Pegasus has an array of features, includ-
ing data replication and transfer. Similar to Pegasus is Kepler, which also provides
the user with a graphical interface, allowing them to define a workflow visually while
Kepler takes care of the details of execution. While useful, these managers, like many
others are offline, which in this case means that slower, centralized storage is used
to hold intermediate data and provide access to various components. There are on-
line systems that instead use faster storage mechanisms (direct transfer, staging area,
etc.) for data storage and movement operations. Zookeeper for example keeps copies
of the relevant data distributed across the main memory of several servers which are
eventually consistent. The focus of this paper is a workflow that employs staging
areas for intermediate data, but the principles described are not limited to that case.

3. Actual Content. In order to reduce data transferred over the network, Delta
must determine how much data is changed between every round of the running com-
putation. Each node in the system keeps track of the full set of output from the
previous round. When the current round completes, the new output is compared to
the previous output. During the first round, there is no comparison because there is no
old output to compare with. Every subsequent round compares each variable against
its matching predecessor. This includes both scalars and vectors. Delta calculates the
difference between the rounds. Anything that has not changed is not included in the
payload, and is instead replaced by metadata to describe what is left out. Once the
payload arrives at its destination, it can be determined through the metadata what
is missing. Whatever it is that is missing can be found in a previous payload. If the
change is too small, then the cost of the metadata summed with the changed data
will be greater than the cost of just sending the data plainly. Therefore, if the amount
of change is below a certain threshold, all the data is sent as is.

Packing the data for transport requires several steps. At top of each payload,
certain pieces of information are required.

Group ID: The identifier for the group that was designated in the adios open()
call. In ADIOS, a group is a set of variables that are transported with the same
transport method. A group can consist of both scalar and vector variables, each with
different data types and sizes. A single application can consist of many groups, each
possibly using a different transport method.

Epoch: The epoch is the identifier of the current computation round. This value
is written once per payload, regardless of the number of variables.

Current Rank: The rank of the process preparing to write the current payload.
This is written once per payload.

Group Name Length: The reader will need to know the length of the name of the
current group to read it properly.
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Group Name: The name of the group involved in the current payload is required.
This value is only written once throughout the entire computation as well as its length.
After this, the group id will be sufficient to identify the group.

Variable Count: The number of variables belonging to the group that was desig-
nated during the adios open() call. This is written only once during the length the
the operation.

The previously mentioned parameters are written once during each adios open-
adios close cycle except for the variable count of a previously written group. Variable
counts will not change during the course of a full operation. After this section, the in-
dividual variables for the designated group are added. Each variable has two required
components:

Status: The status has a value of NONE, SOME or NEW. If the status is SOME,
there was a change in the variable between the rounds. If the status is NONE, there
was no change and no data should be sent besides the required metadata. If the status
is NEW, that means that the variable in question is being written for the first time
and all the necessary metadata will be sent along with it.

Id: The variable id number used to identify the variable once it is delivered by
the receiver.

If the status is NONE, then only these two fields are sent as metadata for a
particular variable. The actual data is exactly the same as the previous round. If the
status is SOME, then more data is required, but since this variable was previously
written, some pieces of information can be left out. Otherwise, the variable is new
and will be padded accordingly.

Name Length: The length of the variable name, needed to read in the name when
the variable is being unpacked. This is only included for new variables being written
for the first time.

Name: The name of the variable, used to identify the variable in the user appli-
cation. This is also only required for first time variables. During subsequent rounds,
the Id will be a sufficient identifier for the variable.

Dim Count: The number of dimensions for the variable. If the variable is a scalar,
this value is 0.

Global: A Boolean value that signals whether or not the variable is global. A
global array has its dimensions and values split between the processes involved in the
computation. The way the array is divided in user defined, and it is up to the reader
method to corretly identify an individual piece should it be requested later on.

Dim Sizes: If the variable is a vector, then the size of each dimension must be
included in the metadata. If the vector is global, then for each dimension, three
pieces of information are necessary. First, the global value represents the total size of
the dimension across every involved process. Second, the local value represents the
starting point in the current dimension for the current process. Finally, the offset
represents the amount of entries in the dimension that belong to the current process,
starting from the local value.

Type: This is an integer that represents the data type. The type only needs to
be written the first time the variable is encountered.

Type Size: This is the size of the specified data type. This information is also
only required the first time.

Next, it must be determined whether all of the data should be sent, or if a portion
should be left out with some metadata that describes it. If there are no copies of the
variable, then all of the information is sent. If the variable is a scalar, this is not an
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issue. If a scalar changed, it must be sent. If it did not change, it is not sent. Vectors
present a challenge. Delta represents a vector variable using a bit vector. The bit
vector is set to the size of the full output from the round. For example, if the variable
is question was an array with 100 elements, the bit vector would consist of 100 bits,
etc. Each element in the output is compared to an element in the same position in
the previous round. If it is the same as before, the value of the matching bit is set to
0 and the element is excluded from the payload. Otherwise, the bit is set to 1 and the
data remains in the payload. If the new output vector is larger than the last, then the
overflow is all represented by 1s. All of the extra new data is included in the payload.
The output from the last round is then replaced by the current output. Next, the
size of the current rounds output is compared to the size of the reduced payload plus
the bit vector. If the reduction summed with the bit vector is larger than the original
output size, then the bit vector is discarded and all of the data is sent. Otherwise,
the reduction and the bit vector are prepared for transport. Here are the remaining
metadata fields:

Total Size: The total size of the payload data (number of elements multiplied by
the type size).

Data: The actual payload, whether it is the full output or the reduced output.

Bit Count: The number of bits in the bit vector. If this is 0, then there is no bit
vector, meaning that it was not worth it to reduce the output or all of the data was
changed from the last round (or, as a special case, it is the first round). The bit count
also tells the size of the original output, for unpacking purposes.

Bit Vector: The actual bit vector. If the bit count was 0, then the bit vector is
not included in the metadata.

This is the format for every variable in every group in the package. When com-
plete, the package is written to whatever the destination is. Figure 3.1 illustrates a
full data set with all of the associated metadata included. Figure 3.2 shows the same
data set in the following epoch. Some of its data values have changed, so a bit vector
has been added to describe the change. Much of the metadata is no longer necessary
at that point since it is unchanging and has already been written previously.

In order to unpack the payload, there are a set of data structures to manage the
parts of the payload. At the top is the Delta Data Struct, which keeps track of two
different types of information: The information that can change from epoch to epoch,
and the information that stays the same.

For the changing information, The Delta Data Struct (or DDS) keeps a linked
list of Group Struct structures. Each Group Struct represents a different group and
contains a linked list of Epoch structures. An Epoch structure represents a single
timestep in the associated groups lifespan. It also keeps track of the process (rank)
that submitted the group data during that timestep. Finally, each Epoch has a vector
of Var Struct structures that hold the state of each variable during that particular
epoch such as its value and size (if it is a vector, for example).

For the unchanging information, the DDS has a linked list of Group Record
structures that hold the group name and the number of variables for that group since
those don’t change. Also, each contains a vector of Variable Record structures that
hold information such as the variable name, data type, and whether or not it is global.

Unpacking begins at the top of the payload. First, the group id is read in, followed
by the epoch. The DDS keeps track of the current group and epoch. If the current
epoch is 1, that means that the current group is being seen for the first time. The
Group Record and Group Struct are initialized at that point. The name length,
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Group id = 1

Epoch = 1

Current rank = 1

Group name length =  4

Group name = “vars”

Variable count = 1

Status = NEW

Id = 1

Dim count = 1

Dim sizes = 5

Total size = 20

Data = 1,3,5,7,9

Bit count = 0

Global = false

Type = 1 (integer)

Type size = 4

Name length = 6

Name = “vector”

Variable

Fig. 3.1: A diagram depicting the structure of a full payload of data

group name and variable count are read in and saved in the Group Record. These
will never be changed.

Next in line is the rank, which is then used to initialize the current Epoch for
the current group. The DDS also keeps track of the current rank. Once all of this is
done, the current group, rank, epoch and the number of possible incoming variables
is known. The reader can now loop through the remainder of file, extracting the
information for each variable and filling in its data structures.

First, the variable id and its status are read from the file. If the status is NONE,
that means that the variable was same as from the previous epoch. The reader refers
to the previous epoch for the variable in the new epoch. If the status is NEW, the
name length and the name come next, since this is a variable that has never been seen
before. Otherwise, the number of dimensions is read. If the number of dimensions is
0 (scalar variable), the reader skips reading anything dimension related. Otherwise,
there is some extra work. If the status was NEW, the reader does not know if the
variable is global or not. It reads that and stores the result once, since that will not
change throughout the computation. Based on the dimension count, the reader knows
how much of the file to scan to get the size of each dimension, whether it is global
or not. Next, if the status was NEW, the reader scans the type and type size of the
variable, information that also does not change. Otherwise, the total size, the actual
data and the bit count are read. If the bit count is 0, that means all of the data was
in the payload and no extra work is needed. If the bit count is greater, then some
addition unpacking is necessary.
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Group id = 1

Epoch = 2

Current rank = 1

Status = SOME

Id = 1

Dim count = 1

Dim sizes = 5

Total size = 8

Data = 2,6

Bit count = 5

Bit vector = 1,0,1,0,0

Variable

Fig. 3.2: A reduced version of the first depiction, in a subsequent epoch

In the case of having a bit count larger than 0, the reader will scan in the bit
vector from the file. An element pointer will be set to the top of the partial data read
from the payload. Next, a vector of the variable type equivalent to the size of the bit
vector will be created. This will be the full, unpacked data vector. Then, the reader
will step through each element is the bit vector. If the value is 1, then the data is in
the partial vector at the spot pointed to by the element pointer set earlier. The data
is copied into the new vector and the element pointer is incremented. If the value is 0,
the data is in the previous epoch, at the position equal to the readers current position
in the bit vector. That data is copied into the new vector. When the bit vector ends,
the full new data vector has all of the correct data and is saved.

All of these steps are repeated for each variable in the file. Once complete, the
payload is saved in the appropriate data structures for retrieval by the application
running on top of ADIOS.

4. Conclusions. As supercomputers continue gaining ground on the road to ex-
ascale, many of the currently acceptable practices when it comes to managing data
will become obsolete because of the resulting bottlenecks and the associated energy
consumption. One of these prectices involves taking up bandwidth to transfer infor-
mation that was already previously transmitted and already exists at the destination.
Delta makes an attempt to prevent that by keeping track of changes between timesteps
in a computation in order to detect stagnant data. By blocking the transfer of such
data, the extra bandwidth that would have been consumed is now available to the rest
of the application or not used at all. In that process, no data is lost to the staging area
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for IAWs. The reader in Delta can rebuild the reduced data using previously obtained
information, giving a complete picture of the output produced during computation.
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