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Abstract—We are on the threshold of a transformative change
in the basic architecture of high-performance computing. The use
of accelerator processors, characterized by large core counts,
shared but asymmetrical memory, and heavy thread loading,
is quickly becoming the norm in high performance computing.
These accelerators represent significant challenges in updating
our existing base of software. An intrinsic problem with this
transition is a fundamental programming shift from message
passing processes to much more fine thread scheduling with
memory sharing. Another problem is the lack of stability in
accelerator implementation; processor and compiler technology
is currently changing rapidly. In this paper we describe our
approach to address these two immediate problems with respect
to scientific analysis and visualization algorithms. Our approach
to accelerator programming forms the basis of the Dax toolkit,
a framework to build data analysis and visualization algorithms
applicable to exascale computing.

I. INTRODUCTION

Whereas supercomputers throughout the terascale era were
almost unilaterally built from general purpose CPU proces-
sors on distributed memory nodes with a message passing
interface, in petascale computing we are seeing the emerging
use of accelerators to meet the execution and computation
requirements of modern leadership-class facilities. This trend
was kicked off when the Roadrunner supercomputer, first to
achieve a petaFLOP, was built with Cell BE processors [11].
At the time, Roadrunner was an anomaly, but since then many
high-performance computers followed this example. Today,
over 12% of the Top 500 supercomputers, including the top
performing system, Titan, incorporate accelerators, and that
number is growing.1

These accelerators represent a significant departure from
how we most often perform parallel processing. Computing
on the previous generation of high performance computers
involved partitioning data among distributed memory nodes
and running independent processes that pass messages. How-
ever, accelerators do not work well with such an approach.
Threads on an accelerator may be grouped in SIMD “warps,”
can have indeterminate scheduling, and may be incapable of
direct message passing [17]. Even on processors with more
complete and independent cores, taking advantage of shared
memory threads can have its advantages [7], [12]. Ultimately,
our algorithms must exhibit a more “pervasive parallelism”

1According to the 40th edition of the Top500 list of the world’s supercom-
puters released November 12, 2012. Available from http://www.top500.org.

comprising a marked increase in concurrency and careful data
management [1], [9].

Another problem facing current research and development
is the shifting landscape of the development environment.
The Cell BE processors (and associated compiler environ-
ment) comprising Roadrunner is already discontinued. Instead,
NVIDIA is aggressively pursing leadership in accelerator
technology for scientific computation with Intel hot on its
heels. Several compiler technologies such as OpenMP, CUDA,
Intel Threading Building Blocks, and OpenACC also compete
for multi-threaded programming.

Our team is creating the Dax toolkit [14], which seeks to
provide a development framework for scientific data analysis
and visualization algorithms for the next generation of high-
performance computers and beyond. In this paper we docu-
ment the following features.

• A general approach to data analysis and visualization
algorithm development that provides a pervasive paral-
lelism without the complexity of parallel programming.

• An adapter mechanism that encapsulates the change in
behavior required to port the toolkit among devices and
compilers.

• A concept-enabled mechanism to automatically build
parallel scheduling code from signatures using C++ tem-
plates.

II. PREVIOUS WORK

To implement algorithms that are configurable with respect
to operations, data structures, and processor idiosyncrasies,
Dax relies on well-established techniques of generic program-
ming [15]. Generic programming uses C++ templates to direct
the compiler to specialize a particular piece of code to alternate
implementations.

To maximize the amount of code that has no parallel depen-
dencies, Dax employs a functor-based execution mode [3]. The
intention of this approach is to write a sequential section of
code that operates on a small section of data as a functional ob-
ject, and then schedule this function in parallel independently
on large vector components. The technique can be thought
of as a generalization of the map and reduce operations in a
MapReduce [8] framework.

A toolkit with similar goals of simplifying many-core paral-
lel programming and cross-device porting is Thrust [4]. Thrust
is a more general template library that provides a number
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of generic parallel algorithms. Thrust provides many of the
desired attributes of Dax and is in fact used to implement
many of them. What differentiates Dax is the simplification
and specialization of its interface. We can provide generic
algorithms and classes designed specifically for data analysis
and visualization as well as better specialize the data manage-
ment.

It should be noted that this paper does not cover mes-
sage passing, distributed memory, or “hybrid” parallelism.
Although this is clearly important in high-performance com-
puting, the scope of this paper is only on the shared-memory,
many-core parallelism part of this problem. The techniques
discussed here can be coupled with existing distributed mem-
ory approaches [2], [16] to complete the hybrid parallelism
required to run concurrently across an entire machine.

III. ALGORITHMIC APPROACH

Our basic approach to building algorithms is to build kernels of
execution as functors. These functors are designed to operate
on a small element of data in a serial and stateless manner.
Because this kernel does work on a small amount of data, we
call it a worklet. Around this concept, we build a system to
concurrently schedule these worklets across multiple elements
of a vector.

This approach mirrors that of Baker et al. [3]. Both ap-
proaches use C++ templating to generically apply functors
in parallel to vectors of data. Where our work significantly
differs from that of Baker’s is in that we are more focused
on the computational geometry problems related to scientific
visualization and data analysis.

Where Baker provides a simple mapping mechanism onto a
vector, our system is designed to provide a variety of parallel
scheduling operations. These result in worklet types that get
scheduled in different ways. Each worklet type has a different
set of capabilities. The current set of worklet types are

Field Map
The Field Map is functionally equivalent to Baker’s
functional approach. It applies a worklet operation in-
dependently and in parallel to each entry in one or more
field arrays.

Cell Map
The Cell Map is similar to the Field Map in functionally
except that it takes the topology of the mesh into
consideration. The worklet is applied to each cell in
the mesh and has access to any data, including point
fields, on that cell. This map enables operations that
must interpolate across the cell.

Topology Generator
The Topology Generator works similarly to the Cell
Map with the exception that instead of creating a new
field, it creates a new topology (that is, new cells). One
of the prerequisites of invoking a Topology Generator is
a classification of how many new cells will be generated
for each of the input cells. This could be a constant
value (which would be typical for a tetrahedralization),
or it might be different for each input cell (which would

be typical for operations like threshold or contour) and
captured in an array.

Point Reduction
A Point Reduction operation collects values associated
with a vertex in the mesh and performs an operation
that reduces to a single value. Point Reduction has two
primary uses. First, when topology generation creates
new vertices, field and other information can be reduced
to the new point. Second, a point reduction can gather
information about all of its incident cells, which can be
used to interpolate fields created with a Cell Map.

A common theme among all of the worklet types is their
behavior of applying the same operation across many small
elements. This approach is well proven to be an efficient
mechanism to drive many compute cores simultaneously.

IV. DEVICE ADAPTER

As multiple vendors vie to provide accelerator-type processors,
a great variance in the computer architecture exists, and we
expect to encounter further changes in the near future. Like-
wise, there exist multiple compiler environments and libraries
for these devices. The most popular of these include OpenMP,
CUDA, and OpenCL (although the latter does not yet support
C++ classes and templates). These compiler technologies also
vary from system to system.

Consequently, we require our Dax toolkit to easily port
from one system to the next. At a minimum, we require
a base language support, and the language we choose to
support is C++. The majority of the code in Dax is constrained
to the standard C++ language constructs to minimize the
specialization from one system to the next.
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Fig. 1: Diagram of the Dax framework.

Figure 1 provides an overall diagram of the Dax framework.
Dax is split into two environments, each with its own API.
The control environment is used to describe data, interface
with other libraries, and invoke parallel operations. The control
environment is designed to run in a single thread within a pro-
cess. Parallel algorithms are run in the execution environment.
Worklets are built using the execution environment API, which
constrains their operations to a safe region of data.



The control and execution environments are logically equiv-
alent to the host and device environments, respectively, in
CUDA. When compiling with CUDA, these environments
mirror each other, but the same logical approach is taken when
no such physical separation exists.

In between these two environments sits the device adapter.
The device adapter encapsulates all the specialized code re-
quired for running on a particular device with a particular
compiler technology. The functionality of the device adapter
comprises two main parts: a collection of parallel algorithms
and a module to transfer data between the control and execu-
tion environments.

Each device adapter is expected to implement a set algo-
rithms containing parallel for, scan, lower bounds (parallel
find), stream compact, and unique (remove duplicates). This
list of operations is similar to those suggested by Blelloch [5]
and also a subset of those provided by the Thrust library [4].
Thrust itself provides a convenient implementation for device
adapters because it itself is portable among devices. However,
the interface to the device adapter algorithms is independent
of Thrust, and we have an example of a device adapter that
can be built without Thrust.

A device adapter also provides a module to handle the
transfer of data between the control and execution environ-
ments. Unlike other systems such as CUDA and Thrust, which
explicitly define separate arrays and copy between them, the
Dax device adapter allocates and copies data in one monolithic
operation. The advantage of this approach is that a device
adapter for a system that shares memory between the two
environments (such as with OpenMP) can perform shallow
copies to share the data.

With these basic device adapter facilities, we can build
a support library for visualization algorithms. Because the
interface for the device adapter is independent of the imple-
mentation for each device, this support library can be built in
such a way to be portable across many devices.

V. GENERIC ARRAY HANDLE

The data model for Dax is deliberately simple. The basic data
container in Dax is an array handle. The array handle acts
like a smart pointer to the data to manage its resource usage.
Array handle objects maintain a reference count of how many
instances point to the same array.

Array handle objects can also allocate and de-allocate data
as necessary. For example, when an array handle is used
to store the output of an algorithm, Dax will automatically
allocate data in the array to store the appropriate amount of
data.

An array handle object manages data in both the control and
execution environment. When an array handle is used as input
to an algorithm, the array handle automatically copies data to
the execution environment. This is done using the data transfer
module of the device adapter discussed in Section IV. As
described previously, if the control and execution environments
can share memory, then this data is not physically copied
but rather shared. The array handle also maintains where

data resides to avoid unnecessary copies. That is, if data is
needed in the execution environment and is already available
in the execution environment, no copy will be made. To
help applications manage limited memory, the array handle
allows applications to free memory either in the execution
environment or in both environments.

In addition to adapting to various device memory spaces
with the device adapter, the array handle can also adapt
to memory layout in the control environment. This is an
important technique when applying Dax algorithms to data
defined in other library spaces. For example, some systems
may define an array of coordinates as a single array with
each entry containing 3 coordinates (an array of structures)
whereas another might define the same data with three arrays,
each containing a single coordinate (a structure of arrays).
Rather than copy this data to some canonical structure, the
array handle uses generic access to adapt to any layout.

This generic access is achieved through a container object.
The container provides an encapsulated interface around the
data so that any necessary strides or offsets may be handled
internally.

One interesting consequence of using a generic container
object to manage data within an array handle is that the
container can be defined functionally rather than point to
data stored in physical memory. Thus, implicit array handles
are easily created by adapting to functional containers. For
example, the point coordinates of a uniform rectilinear grid
are implicit based on the topological position of the point.
Thus, the point coordinates for uniform rectilinear grids can
be implemented as an implicit array with the same interface
as explicit arrays (where unstructured grid points would be
stored).

VI. SCHEDULE METAPROGRAMS

Dax aims to relieve its users from the details of scheduling
work in the execution environment. We ask the author of
a worklet only to specify declarative meta-data describing
its interfaces in the control and execution environments. A
worklet is defined as a C++ class deriving from the worklet
type and providing two meta-data typedefs and a function call
operator implementing the functor.

1 struct Sine: public dax::exec::WorkletMapField {
2 typedef void ControlSignature(Field(In), Field(Out));
3 typedef _2 ExecutionSignature(_1);
4

5 template <class T>
6 DAX_EXEC_EXPORT T operator()(T v) const {
7 return dax::math::Sin(v);
8 }
9 };

Fig. 2: Example Worklet Definition

Figure 2 shows a sample Dax worklet definition with
Dax-provided names shown as Blue text. The worklet type
WorkletMapField (line 1) corresponds to the “Field Map”
worklet type discussed in Section III.



The ControlSignature (line 2) has an entry for each
argument one must provide to invoke the worklet from the
control environment. Borrowing terminology from the C++
“concepts” proposal by Gregor et al. [10], each entry specifies
a concept documenting requirements its argument must meet.
Dax binds each invocation argument to its corresponding
concept using a concept map defining how the concrete value
type meets the requirements. Tags optionally specified in
parentheses after the concept name in a control signature entry
are provided to concepts maps to tell them more about how
their argument will be used. Our example uses the Field

concept to specify that arguments must provide an array of
values indexable over some domain. The arguments have In

and Out tags to indicate that they will be used as the input
and output of the Field Map operation, respectively.

The ExecutionSignature entries (line 3) map one-to-one
by position to the function call operator signature and specify
what Dax should pass to invoke the worklet in the execution
environment. The function call operator() (line 6) provides
the implementation for the execution environment and must
be marked with DAX_EXEC_EXPORT (like __device__ for
CUDA). Each execution signature entry typically references a
control signature argument position using a placeholder e.g. _1
for the first argument and _2 for the second argument. It also
allows for signature entries that represent runtime information,
such as current iteration index.

Dax automatically converts argument representations be-
tween the control and execution environments and extracts for
each scheduled worklet execution argument values local to its
operation.

1 std::vector<dax::Scalar> input(10);
2 for(std::size_t i=0; i < intput.size(); ++i)
3 { input[i]=1.0f+i; }
4

5 dax::cont::ArrayHandle<dax::Scalar> inputHandle =
6 dax::cont::make_ArrayHandle(input);
7 dax::cont::ArrayHandle<dax::Scalar> sineResult;
8

9 dax::cont::Schedule<> scheduler;
10 scheduler(Sine(), 1.0f, sineResult);
11 scheduler(Sine(), inputHandle, sineResult);

Fig. 3: Example Worklet Invocation

Schedule (line 9) is a variadic functor which is templated
on the execution environment where worklets will be executed.
The operator() of Schedule is the variadic function whose
first argument is the worklet followed by the arguments that
fulfill the worklet’s ControlSignature.

When Dax binds each control invocation argument to its
corresponding concept it determines the execution range for
the argument given the worklet’s domain. Combining these
ranges determines how we schedule each worklet. Line 10 of
Figure 3 shows the invocation of the Sine worklet for a length
of one whereas line 11 shows the Sine worklet executing over
the length of inputHandle.

VII. RESULTS

A common problem introduced when adding layers of abstrac-
tion to a programming interface is the reduction in efficiency
with the algorithms. To demonstrate that the added overhead of
our generic programming is minimal, we perform timing mea-
surements for threshold, a non-trivial algorithm that produces
a new topology. Our implementation of threshold produces a
compact mesh with unused vertices removed and connectivity
information intact.

Fig. 4: Supernova dataset used in threshold timing experi-
ments.

Our threshold algorithm in all instances is run on a large
regular mesh from a supernova simulation made available
by John Blondin at the North Carolina State University and
Anthony Mezzacappa of Oak Ridge National Laboratory [6].
The data comprises a uniform grid of 4323 points with a 32-
bit floating point field value associated with each point. The
result of our threshold algorithm, shown in Figure 4, contains
3,245,512 cells and 4,090,196 points. All runs are performed
on a Mac desktop with dual Quad-Core Intel Xeon processors
(8 cores total) and 32 GB of system memory. The system
contains an NVIDIA Quadro 4000 with 2 GB of memory on
which CUDA tests were run.

As described in Section IV, Dax’s device adapter mech-
anism makes it easy to port the toolkit among different
execution environments. We currently implement four device
adapters: a serial execution that uses the C++ standard tem-
plate library’s algorithms, an OpenMP execution on multiple
CPU cores that uses the Thrust library’s algorithms, a CUDA
execution on NVIDIA GPUs that also uses Thrust, and an
Intel Threading Building Blocks (TBB) enabled execution on
multiple CPU cores. We run our Dax threshold algorithm using



all three of these device adapters for comparison purposes.
Because our threshold operation in Dax produces results that
are isomorphic to those produced by VTK, we also run our
algorithm using the VTK filter. The timing results of all these
runs are summarized in Figure 5.
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Fig. 5: Timing results for threshold operation.

First we note that even when Dax is running in serial it
outperforms the VTK implementation. Because of the large
differences between the implementations of these two algo-
rithms as well as the toolkits they are in, we cannot draw
too many direct conclusions from this comparison. However,
these timings validate the general approach we are talking and
indicate that our generic programming is a viable alternative
to the direct memory access and polymorphic object behavior
implemented in VTK.

Because the serial, OpenMP, and TBB device adapters use
different algorithms, we ran the OpenMP and TBB implemen-
tations on a single core for comparison purposes. We note that
the standard template library implementation is faster than the
Thrust implementation. This probably indicates an additional
overhead in the parallel algorithms. When the OpenMP and
TBB implementations are run using all 8 cores of our system,
we see a notable performance improvement. We also note that
using CUDA to run the threshold algorithm on the GPU is
much faster than any of the multi-core CPU versions. This
time includes loading data from the CPU into the GPU and
then pulling the results back to the CPU.

In addition to comparing the performance of the various
device adapters available within Dax, we also present a com-
parison to the similar threshold implementation available in
the PISTON library [13]. Like Dax, PISTON provides visual-
ization algorithms that can be run on many threads and can be
ported between architectures like multi-core CPU and GPU.
Furthermore, both Dax and PISTON use similar algorithms to
achieve this. However, whereas PISTON simply implements
algorithms on top of the Thrust library, Dax implements the

added layers of worklets, device adapters, array handles, and
scheduling metaprograms. Thus, a comparison of these two
implementations is a good indication of the overhead incurred
from these added layers in Dax. Furthermore, Lo et al. [13]
provide evidence that PISTON has comparable performance
to tuned code in other libraries such as parallel VTK and
NVIDIA SDK, which makes PISTON a good representation
for the state of the art. The results for this experiment are
summarized in Figure 6

Although our comparison tests for Dax and PISTON are run
using the same data set and hardware as before, the details
of the algorithm are slightly different to facilitate a better
comparison. Whereas Dax provides an output isomorphic to
VTK in the previous example, the PISTON implementation
generates a somewhat different output. The first difference is
that PISTON does not attempt to find duplicate or remove
unused points in the output mesh. Dax has the ability to
either perform this point resolution or skip it, so although
point resolution is included in Figure 5, it is not included
in Figure 6. Also, the PISTON threshold implementation is
optimized to send its output directly to OpenGL for rendering.
Thus, it adds an extra step of removing any interior cells that
cannot be “seen” and providing arrays containing vertex and
normal information for the quadrilateral faces of the cells.
These vertex and normal arrays tend to be much larger than
the list of hexahedra indices provided by Dax. So although
we providing timing for the original algorithm implemented
in PISTON, we also provide timing for a slightly modified
PISTON algorithm that outputs the same hexahedra indices as
Dax.

Examining the results in Figure 6, we note that the original
PISTON is slower than the others by a small margin; however,
this is principally from the fact that this version of threshold is
generating larger arrays that are better suited for rendering. A
more interesting comparison is between Dax and the modified
version of PISTON. Our timings for OpenMP, shown in the left
side of Figure 6, are roughly equivalent for the two algorithms.
Our timings on a GPU, shown in the right side of Figure 6,
show a marginal improvement with the modified PISTON, but
otherwise very similar performance.

VIII. CONCLUSION

Recent advances in computer architecture represent many
opportunities and challenges for scientific visualization as
well as many other fields in high-performance computing.
Accelerators represent a low-cost, low-power mechanism to
achieve high computation rates.

Because of the diversity of accelerator architectures avail-
able, a project must do better than excel at any one specific
system to be successful; it must adapt itself to a changing
landscape of computer architectures.

One of the goals of our Dax project is to provide the
flexibility to adjust to the idiosyncrasies of various processor
technologies that might be available. We have demonstrated
that it is possible through generic programming to adapt to a
variety of programming environments with little overhead.
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