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A Survey of Visualization Pipelines
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Abstract—The most common abstraction used by visualization libraries and applications today is what is known as the visualization pipeline.
The visualization pipeline provides a mechanism to encapsulate algorithms and then couple them together in a variety of ways. The visualization
pipeline has been in existence for over twenty years, and over this time many variations and improvements have been proposed. This paper
provides a literature review of the most prevalent features of visualization pipelines and some of the most recent research directions.
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1 INTRODUCTION

HE field of scientific visualization was launched with
Tthe 1987 National Science Foundation Visualization in
Scientific Computing workshop report [1], and some of
the first proposed frameworks used a visualization pipeline
for managing the ingestion, transformation, display, and
recording of data [2], [3]. The combination of simplicity
and power makes the visualization pipeline still the most
prevalent metaphor encountered today.

The visualization pipeline provides the key structure
in many visualization development systems built over
the years such as the Application Visualization System
(AVS) [4], DataVis [5], apE [6], Iris Explorer [7], VIS-
AGE [8], OpenDX [9], SCIRun [10], and the Visualization
Toolkit (VTK) [11]. Similar pipeline structures are also ex-
tensively used in the related fields of computer graph-
ics [2], [12], rendering shaders [13], [14], [15], and image
processing [16], [17], [18], [19]. Visualization applications
like ParaView [20], VisTrails [21], and Mayavi [22] allow end
users to build visualization pipelines with graphical user
interface representations. The visualization pipeline is also
used internally in a number of other applications including
Vislt [23], VolView [24], OsiriX [25], 3D Slicer [26], and
BiolmageXD [27].

In this paper we review the visualization pipeline. We
begin with a basic description of what the visualization
pipeline is and then move to advancements introduced over
the years and current research.

2 BAsSIC VISUALIZATION PIPELINES

A visualization pipeline embodies a dataflow network in
which computation is described as a collection of executable
modules that are connected in a directed graph representing
how data moves between modules. There are three types
of modules: sources, filters, and sinks. A source module
produces data that it makes available through an output.
File readers and synthetic data generators are typical source
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modules. A sink module accepts data through an input and
performs an operation with no further result (as far as the
pipeline is concerned). Typical sinks are file writers and
rendering modules that provide images to a user interface. A
filter module has at least one input from which it transforms
data and provides results through at least one output.

The intention is to encapsulate algorithms in interchange-
able source, filter, and sink modules with generic connection
ports (inputs and outputs). An output from one module can
be connected to the input from another module such that
the results of one algorithm become the inputs to another
algorithm. These connected modules form a pipeline. Fig. 1
demonstrates a simple but common pipeline featuring a file
reader (source), an isosurface generator [28] (filter), and an
image renderer (sink).
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Fig. 1: A simple visualization pipeline.

Pipeline modules are highly interchangeable. Any two
modules can be connected so long as the data in the output
is compatible with the expected data of the downstream
input. Pipelines can be arbitrarily deep. Pipelines can also
branch. A fan out occurs when the output of one module
is connected to the inputs of multiple other modules. A fan
in occurs when a module accepts multiple inputs that can
come from separate module outputs. Fig. 2 demonstrates a
pipeline with branching.

These diagrams are typical representations of pipeline
structure: blocks representing modules connected by arrows
representing the direction in which data flows. In Fig. 1 and
Fig. 2, data clearly originates in the read module and ter-
minates in the render module. However, keep in mind that
this is a logical flow of data. As documented later, data and
control can flow in a variety of ways through the network.
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Fig. 2: A visualization pipeline with branching. Intermediate results are shown next to each filter and the final visualization
is shown at the bottom. Shuttle data courtesy of the NASA Advanced Supercomputing Division.

However, such deviation can be considered implementation
details. From a user’s standpoint, this conceptual flow of
data from sources to sinks is sufficient. This paper will
always display this same conceptual model of the dataflow
network. Where appropriate, new elements will be attached
to describe further pipeline features and implementations.

To better scope the contents of this survey, we consider
the following formal definition. A visualization pipeline is
a dataflow network comprising the following three primary
components.

e Modules are functional units. Each module has zero or
more input ports that ingest data and an independent
number of zero or more output ports that produce
data. The function of the module is fixed whereas data
entering an input port typically change. Data emitted
from the output ports are the result of the module’s
function operating on the input data.

o Connections are directional attachments from the out-
put port of one module to the input port of another
module. Any data emitted from the output port of
the connection enter the input port of the connection.
Together modules and connections form the nodes and
arcs, respectively, of a directional graph. The dataflow
network can be configured by defining connections and
connections are arbitrary subject to constraints.

o Execution management is inherent in the pipeline. Typi-
cally there is a mechanism to invoke execution, but once
invoked data automatically flows through the network.

For a system or body of research to be considered in

this survey, it must be the embodiment of a visualization
pipeline. It must allow the construction of objects that
represent modules, and it must provide a means to connect
these modules. This definition excludes interfaces that are
imperative or functional as well as interfaces based on data
structures defining graphical representation such as scene
graphs or marks on hierarchies.

This paper is less formal about what it means to be a
visualization pipeline (as opposed to, say, an image pipeline).
Suffice it to say that the surveyed literature here are self-
declared to have a major component for scientific visualiza-
tion.

For more information on using visualization pipelines and
the modules they typically contain, consult the documenta-
tion for one of the numerous libraries or applications using
a visualization pipeline [11], [20], [29], [30], [31], [32], [33].

3 EXECUTION MANAGEMENT

The topology of a pipeline dictates the flow of data and
places constraints on the order in which modules can be
executed, but it does not determine how or when modules
get executed. Visualization pipeline systems can vary signif-
icantly in how they manage execution.

3.1

The visualization pipeline represents a static network of
operations through which data flows. Typical usage en-
tails first establishing the visualization pipeline and then

Execution Drivers
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executing the pipeline on one or more data collections.
Consequently, the behavior of when modules get executed is
a primary feature of visualization pipeline systems. Visual-
ization pipelines generally fall under two execution systems:
event driven and demand driven.

An event-driven pipeline launches execution as data be-
comes available in sources. When new data becomes avail-
able in a source, that source module must be alerted. When
sources produce data, they push it to the downstream
modules and trigger an event to execute them. Those down-
stream modules in turn may produce their own data to push
to the next module. Because the method of the event-driven
pipeline is to push data to the downstream modules, this
method is also known as the push model. The event-driven
method of execution is useful when applying a visualization
pipeline to data that is expected to change over time.

A demand-driven pipeline launches execution in response
to requests for data. Execution is initiated at the bottom of
the pipeline in a sink. The sink’s upstream modules satisfy
this request by first requesting data from their upstream
modules, and so on up to the sources. Once execution
reaches a source, it produces data and returns execution
back to its downstream modules. The execution eventually
unrolls back to the originating sink. Because the method
of the demand-driven pipeline is to pull data from the
upstream modules, this method is also known as the pull
model. The demand-driven method of execution is useful
when using a visualization pipeline to provide data to
an end user system. For example, the visualization could
respond to render requests to update a GUIL

3.2 Caching Intermediate Values

Caching, which saves module execution outputs, is an im-
portant feature for both execution methods. In the case of
the event-driven pipeline, a module may execute only when
data from all inputs is pushed to it. Thus, the execution must
know when to cache the data and where to retrieve it when
the rest of the data is later pushed.

In the case of the demand-driven pipeline, a module
with fan out could receive pull requests from multiple
downstream modules during the same original sink request.
Rather than execute multiple times, the module can first
check to see if the previously computed result is still valid
and return that if possible.

Although caching all the intermediate values in a pipeline
can remove redundant computation, it also clearly requires
more storage. Thus, managing the caching often involves a
trade-off between speed and memory. The cost of caching
can be mitigated by favoring shallow copies of data from a
module’s inputs to its outputs.

3.3 Centralized vs. Distributed Control

The control mechanism for a visualization pipeline can be
either centralized or distributed. A centralized control has a
single unit managing the execution of all modules in the
pipeline. The centralized control has links to all modules,
understands their connections, and initiates all execution in
the pipeline.
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A distributed control has a separate unit for each module in
the pipeline. The distributed control unit nominally knows
only about a single module and its inputs and outputs.
The distributed control unit can initiate execution on only
its own module and must send messages to propagate
execution elsewhere.

Centralized control is advantageous in that it can per-
form a more thorough analysis of the pipeline’s network
to more finely control the execution. Such knowledge can
be useful in making decisions about caching (described
in Section 3.2) and load balancing for parallel execution
(described in Section 5). However, the implementation of
a centralized control is more complex because of the larger
management task. Centralized control can also suffer from
scalability problems when applied to large pipelines or
across parallel computers. Distributed control, in contrast,
has more limited knowledge of the pipeline, but tends to be
simpler to implement and manage.

3.4

Many visualization pipeline implementations have a fixed
execution management system. However, such a system
can provide more flexibility by separating its execution
management into an executive object. The executive object
is an independent object that manages pipeline execution.
Through polymorphism, different types of execution models
can be supported. For example, VIK is designed as a
demand-driven pipeline, but with its interchangeable exec-
utives it can be converted to an event-driven pipeline, as
demonstrated by Vo et al. [34].

Replacing the executive in a pipeline with centralized
control is straightforward. The control is, by definition, its
own separate unit. In contrast, a distributed control system
must have an independent executive object attached to each
module in the pipeline. The module objects get relegated to
only a function to execute whereas the executive manages
pipeline connections, data movement, and execution [35].

Interchangeable Executive

3.5 Out-of-Core Streaming

An out-of-core algorithm (or more formally an external-
memory algorithm) is a general algorithmic technique that
can be applied when a data set is too large to fit within
a computer’s internal memory. When processing data out
of core, only a fraction of the data is read from storage at
any one time [36]. The results for that region of data are
generated and stored, then the next segment of data is read.

A rudimentary but effective way of performing out-of-
core processing in a visualization pipeline is to read data
in pieces and let each piece flow through the pipe indepen-
dently. Because pieces are fed into the pipeline sequentially,
this method of execution is often called streaming. Streaming
can only work on certain algorithms. The algorithms must
be separable (that is, can break the work into pieces and work
on one piece at a time), and the algorithms must be result
invariant (that is, the order in which pieces are processed
does not matter). In a demand-driven pipeline, it is also
necessary that the algorithm is mappable in that it is able to
identify what piece of input is required to process each piece
of output [37].
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Fig. 3: The three pipeline passes for using regional data.

Because the input data set is broken into pieces, the
boundary between pieces is important for many algorithms.
Boundaries are often handled by adding an extra layer of
cells, called ghost cells [38] (or also often called halo cells).
These ghost cells complete the neighborhood information
for each piece and can be removed from the final result.

Some algorithms can be run out-of-core with a simple
execution model that iterates over pieces. However, most
pipelines can implement streaming more effectively with
metadata, discussed in Section 4.

3.6 Block Iteration

Some data sets are actually a conglomerate of smaller data
sets. These smaller data sets are called either blocks or
domains of the whole. One example of a multi-block data set
is an assembly of parts. Another example is adaptive mesh
refinement (AMR) [39] in which a hierarchy of progressively
finer grids selectively refines regions of interest.

Many visualization algorithms can be applied indepen-
dently to each block in a multi-block data set. Rather than
have every module specifically attend to the multi-block
nature of the data, the execution management can implicitly
run an algorithm independently on every block in the data
set [35].

4 METADATA

So far, we have considered the visualization pipeline as
simply a flow network for data, and the earliest implemen-
tations were just that. Modern visualization pipelines have
introduced the concept of metadata, a brief description of
the actual data, into the pipeline. The introduction of meta-
data allows the pipeline to process data in more powerful
ways. Metadata can flow through the pipeline independent
of, and often in different directions than, the actual data. The
introduction of metadata can in turn change the execution
management of the pipeline.

4.1 Regions

Perhaps the most important piece of information a visual-
ization pipeline can use is the region the data is defined over
and the regions the data can be split up into. Knowing and
specifying regions supports execution management for out

of core and parallel computation (described in Sections 3.5
and 5, respectively).

Visualization pipelines operate on three basic types of
regions.

o Extents are valid index ranges for regular multidimen-
sional arrays of data. Extents allow a fine granularity
in defining regions as sub-arrays within a larger array.

o Pieces are arbitrary collections of cells. Pieces allow
unstructured grids to be easily decomposed into dis-
cretionary regions.

o Blocks (or domains) represent a logical domain decom-
position. Blocks are similar to pieces in that they can
represent arbitrary collections, but blocks are defined
by the data set and their structures are considered to
have some meaning.

The region metadata may also include the spatial range of
each region. Such information is useful when performing
operations with known spatial bounds.

Region metadata can flow throughout the pipeline inde-
pendently of data. A general implementation to propagate
region information and select regions requires the three
pipeline passes demonstrated in Fig. 3 [38].

In the first update information pass, sources describe the
entire region they can generate, and that region gets passed
down the pipeline. As the region passes through filters, they
have the opportunity to change the region. This could be be-
cause the filter is combining multiple regions from multiple
inputs. It could also be because the filter is generating a new
topology, which has its own independent regions. It could
also be because the filter transforms the data in space or
removes data from a particular region in space.

In the second update region pass, the application decides
what region of data it would like a sink to process. This
update region is then passed backward up the pipeline
during which each filter transforms the region respective of
the output to a region respective of the input. The update
region pass terminates at the sources, which receive the
region of data they must produce.

In the final update data pass, the actual data flows through
the pipeline as described in Section 3.

4.2 Time

Until recently, visualization pipelines operated on data at a
single snapshot in time. Operating on data that evolved over
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time entailed an external mechanism executing the pipeline
repeatedly over a sequence of time steps. Such behavior
arose from data sets being organized as a sequence of time
steps and the abundance of visualization algorithms that are
time invariant.

Time control can be added to the visualization pipeline
by adding time information to the metadata [40]. The basic
approach is to add a time dimension to the region metadata
described in Section 4.1. A source declares what time steps
are available, and each filter has the ability to augment that
time during the update information pass. Likewise, in the
update region pass each filter may request additional or
different time steps. The region request may contain one
or more time steps.

These temporal regions enable filters that operate on data
that changes over time. For example, a temporal interpolator
filter can estimate continuous time by requesting multiple
time steps from upstream and interpolating the results for
downstream modules.

Some algorithms, such as particle tracing, may need all
data over all time. Although such a region may be requested
by this mechanism, it is seldom feasible to load this much
data at one time. Instead, an algorithm may operate on a
small number of time steps at one time, iterate over all time,
and accumulate the results. To support this, Biddiscombe
et al. [40] propose a continue executing mode where a filter,
while computing data, can request a re-execution of the up-
stream pipeline with different time steps and then continue
to compute with the new data.

4.3 Contracts

Contracts [41] provide a generalized way for a filter to
report its impact, the required data and operating modes,
before the filter processes data. An impact may include the
regions, variables, and time step a filter expects to work on.
The impact might also include operating restrictions such
as whether the filter supports streaming or requires ghost
cells.

Filters declare their impact by modifying a contract object.
The contract is a data structure containing information about
all the potential meta-information the pipeline executive can
use to manage execution. The contract object is passed up
the pipeline in the same way an update region would be
passed up as depicted in Fig. 3b. As the contract moves up
the pipeline, filters add their impacts to it, forming a union
of the requirements, abilities, and limitations of the pipeline.

4.4 Prioritized Streaming

The discussion of streaming in Section 3.5 provides no
scheme for the order in which pieces are processed. In
fact, since streaming specifically requires a data invariant
algorithm, the order of operation is inconsequential with
respect to correctness once the processing is completed.
However, if one is interested in the intermediate results,
the order is consequential. An interactive application may
show the results of a streaming visualization pipeline as
they become available. Such an application can be improved
greatly by prioritizing the streamed regions to process those

371

that provide the most information first [42]. Possible priority
metrics include the following.

o Regions in close proximity to the viewer in a three di-
mensional rendering should have higher priority. Close
objects are likely to obscure those behind.

o Regions least likely to be culled should have the highest
priority. Only objects within a certain frustum are vis-
ible in a three dimensional rendering, and some filters
may remove data from particular spatial regions.

o Regions with scalar values in an “interesting” range
should be given priority. Rendering parameters may
assign an opacity to scalar values, and higher opacity
indicates a greater interest.

o Regions with more variability in a field may have
higher priority. Homogeneous regions are unlikely to
be interesting.

Prioritized streaming can become even more effective
when the data contains a hierarchy of resolutions [43]. The
highest priority is given to the most coarse representation of
the mesh. This representation provides a general overview
visualization that can be immediately useful. Finer sub-
regions are progressively streamed in with the aforemen-
tioned priorities.

4.5 Query-Driven Visualization

Query-driven visualization enables one to analyze a large
data set by identifying “interesting” data that matches some
specified criteria [44], [45]. The technique is based off the
ability to quickly load small selections of data with arbitrary
specification. This ability provides a much faster iterative
analysis than the classical analysis of loading large domains
and sifting through the data. Performing query-driven visu-
alization in a pipeline requires three technologies: file index-
ing, a query language, and a pipeline metadata mechanism
to pass a query from sink to source.

Visualization queries rely on fast retrieval of data that
matches the query. Queries can be based on combinations of
numerous fields. Thus, the pipeline source must be able to
identify where the pertinent data is located without reading
the entire file. Although tree-based approaches have been
proposed [46], indexing techniques like FastBit [47], [48] are
most effective because they can handle an arbitrary amount
of dimensions.

A user needs a language or interface with which to specify
a query. Stockinger et al. [44] propose compound Boolean
expressions such as all regions where (temperature >
1000K) AND (70kPa < pressure < 90kPa). Others add to
the query capabilities with file-globbing like expressions [49]
and predicate-based languages [50].

Finally, the visualization pipeline must pass the query
from the sink to the source. This is done by expanding either
region metadata (Section 4.1) or contracts (Section 4.3) to
pass and adjust the field ranges in the query [51].

5 PARALLEL EXECUTION

Scientific visualization has a long history of using high
performance parallel computing to handle large-scale data.
Visualization pipelines often encompass parallel computing
capabilities.



372 IEEE TRANSACTIONS ON VISUALIZATIONS AND COMPUTER GRAPHICS, VOL. 19, NO. 3, MARCH 2013

Reader 1 Reader 2

Filter 1 \ Filter 4

Reader 1

W\

Reader 2 Reader 1 Reader 2

Filter 4 Filter 1 \ Filter 4

l Filter 3 l l Filter 3 l l Filter 3 l
Filter 2 Filter 5 Filter 2 Filter 5 Filter 2 Filter 5
Renderer Renderer Renderer
T =ty T=1t T =1ty
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5.1 Basic Parallel Execution Modes

The most straightforward way to implement concurrency in
a visualization pipeline is to modify the execution control to
execute different modules in the pipeline concurrently. There
are three basic modes to concurrent pipeline scheduling:
task, pipeline, and data [52].

5.1.1

Task parallelism identifies independent portions of the
pipeline and executes them concurrently. Independent parts
of the pipeline occur where sources produce data indepen-
dently or where fan out feeds multiple modules.

Fig. 4 demonstrates task parallelism applied to an exam-
ple pipeline. At time ¢, the two readers begin executing con-
currently. Once the first reader completes, at time ¢;, both of
its downstream modules may begin executing concurrently.
The other reader and its downstream modules may continue
executing at this time, or they may sit idle if they have
completed. (Fig. 4 implies that the Reader 2, Filter 4, Filter 5
subpipeline continues executing after ¢;, which may or may
not be the actual case.) After all of its inputs complete, at
time t,, the renderer executes.

Because task parallelism breaks a pipeline into indepen-
dent sub-pipelines to execute concurrently, task parallelism
can be applied to any type of algorithm. However, there are
practical limits on how much concurrency can be achieved
with task parallelism. Visualization pipelines in real working
environments can seldom be broken into more than a hand-
ful of independent sub-pipelines. Load balancing is also an
issue. Concurrently running sub-pipelines are unlikely to
finish simultaneously.

Task Parallelism

5.1.2 Pipeline Parallelism

Pipeline parallelism uses streaming to read data in pieces and
executes different modules of the pipeline concurrently on
different pieces of data. Pipeline parallelism is related to out-
of-core processing in that a pipeline module is processing
only a portion of the data at any one time, but in the
pipeline-parallelism approach multiple pieces are loaded so
that a module can process the next piece while downstream
modules process the proceeding one.

Fig. 5 demonstrates pipeline parallelism applied to an
example pipeline. At time ¢, the reader loads the first piece
of data. At time ¢;, the loaded piece is passed to the filter
where it is processed while the second piece is loaded by
the reader. Processing continues with each module working
on the available piece while the upstream modules work on
the next pieces.

Pipeline parallelism enables all the modules in the
pipeline to be running concurrently. Thus, pipeline paral-
lelism tends to exhibit more concurrency than task paral-
lelism, but the amount of concurrency is still severely limited
by the number of modules in the pipeline, which is rarely
much more than ten in practice. Load balancing is also an
issue as different modules are seldom expected to finish in
the same length of time. More compute intensive algorithms
will stall the rest of the pipeline. Also, because pipeline
parallelism is a form of streaming, it is limited to algorithms
that are separable, result invariant, and mappable, as de-
scribed in Section 3.5.

5.1.3 Data Parallelism

Data parallelism partitions the input data into some set
number of pieces. It then replicates the pipeline for each
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Fig. 6: Concurrent execution with data parallelism. Boxes represent separate processes, each with its own partition of data.

Communication among processes may also occur.

piece and executes them concurrently, as shown in Fig. 6.

Of the three modes of concurrent scheduling, data paral-
lelism is the most widely used. The amount of concurrency
is limited only by the number of pieces the data can be split
into, and for large-scale data that number is very high. Data
parallelism also works well on distributed-memory parallel
computers; data generally only needs to be partitioned once
before processing begins. Data-parallel pipelines also tend to
be well load balanced; identical algorithms running on equal
sized inputs tend to complete in about the same amount of
time.

Data parallelism is easiest to implement with algorithms
that exhibit the separable, result invariant, and mappable
criteria of streaming execution. In this case, the algorithm
can be executed in data parallel mode with little if any
change. However, it is possible to implement non-separable,
non-result-invariant algorithms with data parallel execution.
In this case, the data-parallel pipelines must allow com-
munication among the processes executing a given module
and the parallel executive must ensure that all pipelines get
executed simultaneously lest the communication deadlock.
Common examples of algorithms that have special data-
parallel implementations are streamlines [53] and connected
components [54]. Data-parallel pipelines also require special
rendering for the partitioned data, which is described in the
following section.

Data-parallel pipelines are shown to be very scalable.
They have been successfully ported to current supercomput-
ers [55], [56], [57] and have demonstrated excellent parallel
speedup [58].

5.2 Rendering

Data parallel pipelines, particularly those running on
distributed-memory parallel computers, require special con-
sideration when rendering images, which is often the sink
operation in a visualization pipeline. As in any part of the
data parallel pipeline, the rendering module does not have
complete access to the data. Rather, the data is partitioned
among a number of replicated modules. In the case of
rendering, this module’s processes must work together to
form a single image from these distributed data.

A straightforward approach is to collect the data to a
single process and render them serially [59], [60]. This collec-
tion is sometimes feasible when rendering surfaces because

the surface geometry tends to be significantly smaller than
the volumes from which it is derived. However, geometry
for large-scale data can still exceed a single processor’s
limits, and the approach is generally impractical for volume
rendering techniques that require data for entire volumes.
Thus, collecting data can become intractable.

A better approach is to employ a parallel rendering al-
gorithm. Data-parallel pipelines are most often used with
a class of parallel rendering algorithms called sort last [61].
Sort-last parallel rendering algorithms are characterized by
each process first independently and concurrently rendering
its local data into its own local image and then collectively
reducing them into a single cohesive image.

Although it is possible to use other types of parallel
rendering algorithms with visualization pipelines [62], the
properties of sort-last algorithms make them most ideal
for use in visualization pipelines. Sort-last rendering allows
processes to render local data without concern about the
partitioning (although there are caveats concerning transpar-
ent objects [63]). Such behavior makes the rendering easy to
adapt to whatever partition is created by the data-parallel
pipeline. Also, the parallel overhead for sort-last rendering is
independent of the amount of data being rendered, and sort
last scales well with regard to the number of processes [64].
Thus, sort-last’s parallel scalability matches the parallel scal-
ability of data-parallel pipelines.

5.3 Hybrid Parallel

Until recently, most high performance computers had dis-
tributed nodes with each node containing some small
amount of cores each. These computers could be effec-
tively driven by treating each core as a distinct distributed-
memory process.

However, that trend is changing. Current high perfor-
mance computers now typically have 8-12 cores per node,
and that number is expected to grow dramatically [65], [66],
[67]. When this many cores are contained in a node, it is
often more efficient to use hybrid parallelism that considers
both the distributed memory parallelism among the nodes
and the shared memory parallelism within each node [68].
Recent development shows that pipeline modules with hy-
brid parallelism can out perform their corresponding mod-
ules considering each core as a separate distributed memory
node [69], [70], [71].
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It should be noted that current implementations of hybrid
parallelism are not a feature of the visualization pipeline.
Rather, hybrid parallelism is implemented by creating mod-
ules with algorithms that perform shared memory paral-
lelism. The data-parallel pipeline then provides distributed
memory parallelism on top of that.

6 EMERGING FEATURES

This section describes emerging features of visualization
pipelines that do not fit cleanly in any of the previous
sections.

6.1 Provenance

Throughout this document we have considered the vi-
sualization pipeline as a static construct that transforms
data. However, in real visualization applications, the ex-
ploratory process involves making changes to the visualiza-
tion pipeline (i.e. adding and removing modules or making
parameter changes). It is therefore possible to model explo-
ration as transformations to the visualization pipeline [72].
This provenance of exploratory visualization can be captured
and exploited.

Provenance of pipeline transformations can assist ex-
ploratory visualization in many ways. Provenance allows
users to quickly explore multiple visualization methods
and compare various parameter changes [21]. It also assists
in reproducibility; because provenance records the steps
required to achieve a particular visualization, it can be saved
to automate the same visualization later [73].

Provenance information engenders the rare ability to per-
form analysis of analysis, which allows for powerful sup-
porting abilities. Provenance information can be compared
and combined to provide revisioning information for col-
laborative analysis tasks [74]. Provenance information from
previous analyses can be mined for future exploration. Such
data can be queried for apropos visualization pipelines [75]
or used to automatically assist users in their exploratory
endeavors [76].

6.2 Scheduling on Heterogeneous Systems

Computer architecture is rapidly moving to heterogeneous
architecture. GPU units with general-purpose computing
capabilities are already common, and the use of similar
accelerator units is likely to grow [65], [77].

Heterogeneous architectures introduce significant compli-
cations when managing pipeline execution. The algorithms
in different pipeline modules may need to run on different
types of processors. If an algorithm is capable of running on
different types of processors, it will have different perfor-
mance characteristics on each one, which complicates load
balancing.

Furthermore, heterogeneous architectures typically have
a more complicated memory hierarchy. For example, a
CPU and GPU on the same system usually have mutually
inaccessible memory. Even when memory is shared, there
is typically an affinity to some section of memory, meaning
that data in some parts of memory can be accessed faster
than data in other parts of memory. All this means that the
pipeline execution must also consider data location.

Hyperflow [78] is an emerging technology to address
these issues. Hyperflow manages parallel pipeline execution
on heterogeneous systems. It combines all three modes of
parallel execution (task, pipeline, and data described in
Section 5.1) along with out-of-core streaming (described in
Section 3.5) to dynamically allocate work based on thread
availability and data location.

6.3 In Situ

In situ visualization refers to visualization that is run in
tandem with the simulation that is generating the results
being visualized. There are multiple approaches to in situ
visualization. Some directly share memory space whereas
others share data through high speed message passing.
Nevertheless, all in situ visualization systems share two
properties: the simulation and the visualization are run
concurrently (or equivocally with appropriate time slices)
and the passing of data from simulation to visualization
bypasses the costly step of writing to or reading from a file
on disk.

The concept of in situ visualization is as old as the field
of visualization itself [1]. However, the interest in in situ
visualization has grown significantly in recent years. Studies
show that the cost of dedicated interactive visualization
computers is increasing [79] and that the time spent in
writing data to and reading data from disk storage is
beginning to dominate the time spent in both the simulation
and the visualization [80], [81], [82]. Consequently, in situ
visualization is one of the most important research topics in
large scale visualization today [67], [83].

In situ visualization does not involve visualization
pipelines per se. In principle any visualization architecture
can be coupled with a simulation. However, many cur-
rent projects are using visualization pipelines for in situ
visualization [60], [84], [85], [86], [87], [88] because of the
visualization pipeline’s flexibility and the abundance of
existing implementations.

7 VISUALIZATION PIPELINE ALTERNATIVES

Although visualization pipelines are the most widely used
visualization framework, others exist and are being devel-
oped today. This section contains a small sample of other
visualization systems under current research and develop-
ment.
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Most visualization systems represent fields as a data struc-
ture directly storing the value for the field at each appro-
priate place in the mesh. However, it is also possible to
represent a field functionally. That is, provide a function that
accepts a mesh location as its input argument and returns
the field value for that location as its output. Functional
fields are implemented in the Field Model (FM) library, a
follow-on to the Field Encapsulation Library (FEL) [89].

A field function could be as simple as retrieving values
from a data structure like that previously described, or it can
abstract the data representation in many ways to simplify
advanced visualization tasks. For example, the field function

Functional Field Model
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could abstract the physical location of the data by paging it
from disk as necessary [90].

Field functions also make it simple to define derived fields,
that is fields computed from other fields. Functions for
derived fields can be composed together to create something
very much like the dataflow network of a visualization
pipeline. The function composition, however, shares much
of the behaviors of functional programming such as allow-
ing for a lazy evaluation on a per-field-value basis [91].

The functional field model yields several advantages. It
has a simple lazy evaluation model [91], it simplifies out-of-
core paging [90], and it tends to have low overhead, which
can simplify using it in situ with simulation [92]. However,
unlike the visualization pipeline, the dataflow for composed
fields are fixed in a demand-driven, or pull, execution
model. Also, computation is limited to producing derived
fields; there is no inherent mechanism to, for example,
generate new topology.

7.2 MapReduce

MapReduce [93] is a cloud-based, data-parallel infrastructure
designed to process massive amounts of data quickly. Al-
though it was originally designed for performing distributed
database search capabilities, many researchers and develop-
ers have been successful at applying MapReduce to other
problem domains and for more general-purpose program-
ming [94], [95]. MapReduce garners much popularity due
to its parallel scalability, its ability to run on inexpensive
“share-nothing” parallel computers, and its simplified pro-
gramming model.

As its name implies, the MapReduce framework runs
programs in two phases: a map phase and a reduce phase.
In the map phase, a user-provided function is applied
independently and concurrently to all items in a set of
data. Each instance of the map function returns one or
more (key, value) pairs. In the reduce phase, a user-provided
function accepts all values with the same key and produces
a result from them. Implicit in the framework is a shuffle of
the (key, value) pairs in between the map and reduce phases.

MapReduce’s versatility has enabled it to be applied to
many scientific domains including visualization. It has been
used to both process geometry [96] and render [96], [97].
The MapReduce framework allows visualization algorithms
to be run in parallel in a much finer granularity than
the parallel execution models of a visualization pipeline.
However, the constraints imposed by MapReduce make it
more difficult to design visualization algorithms, and there
is no inherent way to combine algorithms such as can be
done in a visualization pipeline.

7.3 Fine-Grained Data Parallelism

The data parallel execution model of visualization pipelines,
described in Section 5.1.3, is scalable because it affords a
large degree of concurrency. The amount of parallel threads
is limited only by the number of partitions an input mesh
can be split into. In theory, the input data can be split
almost indefinitely, but in practice there are limits to how
many parallel threads can be used for a particular mesh.
Current implementations of parallel visualization pipelines
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operate most efficiently with on the order of 100,000 to
1,000,000 cells per processing thread [29]. With fewer cells
than that, each core tends to be bogged down with execution
overhead, supporting structure, and boundary conditions. It
is partly this reason that hybrid parallel pipelines, described
in Section 5.3, perform better on multi-core nodes.

The problem with hybrid parallelism is that it is not a
mechanism directly supported by the pipeline execution
mechanics. Several projects seek to fill this gap by providing
fine-grained algorithms designed to run on either GPU or
multi-core CPU.

One project, PISTON [98], provides implementations of
fine-grained data-parallel visualization algorithms. PISTON
provides portability among multi- and many-core architec-
tures by using basic parallel operations such as reductions,
prefix sums, sorting, and gathering implemented on top of
Thrust [99], a parallel template library, in such a way that
they can be ported across multiple programming models.

Another project, Dax [100], provides higher level abstrac-
tions for building fine-grained data-parallel visualization
algorithms. Dax identifies common visualization operations,
such as mapping a function to the local neighborhood of a
mesh element or building geometry, and provides basic par-
allel operations with fine-grained concurrency. Algorithms
are built in Dax by providing worklets, serial functions that
operate on a small region of data, and applying these
worklets to the basic operations. The intention is to sim-
plify visualization algorithm development while encourag-
ing good data-parallel programming practices.

A third project, EAVL [101], provides an abstract data
model that can be adapted to a variety of topological
layouts. Operations on mesh elements and sub-elements are
predicated by applying in parallel functors, structures acting
like functions, on the elements of the mesh. These functors
are easy-to-design serial components but can be scheduled
on many concurrent threads.

7.4 Domain Specific Languages

Domain specific languages provide a new or augmented
programming language with extended operations helpful
for a specific domain of problems. Most visualization sys-
tems are built as a library on top of a language rather than
modify the language itself although there are some examples
of domain specific languages that can insert visualization
operations during a computer graphics rendering [102],
[103].

Recently, domain specific languages emerged to build
visualization on new highly threaded architectures. For
example, Scout [104] functionally defines fields and oper-
ations that can be executed on a GPU during visualization.
Liszt [105] provides provides special language constructs for
operations on unstructured grids. These operations are prin-
cipally built to support partial differential equation solving
but can also be used for analysis.

8 CONCLUSION

The visualization community faces many challenges adapt-
ing pipeline structures to future visualization needs, partic-
ularly those associated with the push to exascale computing.
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One primary challenge of exascale computing is the shift to
massively threaded, heterogeneous, accelerator-based archi-
tectures [67]. Although a visualization pipeline can support
algorithms that drive such architectures (see the hybrid
parallelism in Section 5.3), the execution models described
in Section 5.1 are currently not generally scalable to the
fine level of concurrency required. Most likely, independent
design metaphors [98], [100], [101] will assist in algorithm
design. Some of these current projects already have plans
to encapsulate their algorithms in existing visualization
pipeline implementations.

Another potential problem facing visualization pipelines
and visualization applications in general is the memory
usage. Predictions indicate that the cost of computation (in
terms of operations per second) will decrease with respect
to the cost of memory. Hence, we expect the amount of
memory available for a particular problem size to decrease
in future computer systems. Visualization algorithms are
typically geared to provide a short computation on a large
amount of data, which makes them favor “memory fat”
computer nodes. Visualization pipelines often impose an
extra memory overhead. Expect future work on making
visualization pipelines leaner.

Finally, as simulations take advantage of increasing com-
pute resources, they sometimes require new topological
features to capture their complexity. Although the design
of data structures is independent of the design of dataflow
networks, dataflow networks like a visualization pipeline
are difficult to dynamically adjust to data structures as
the connections and operations are in part defined by the
data structure. Consequently, visualization pipeline systems
have been slow to adapt new data structures. Schroeder
et al. [106] provide a generic, iterator-based interface to
topology and field data that can be used within a visual-
ization pipeline, but because its abstract interface hides the
data layout and capabilities, result data cannot be written
back into these structures. Thus, the first non-trivial module
typically must tessellate the geometry into a form the native
data structures can represent.

Regardless, the simplicity, versatility, and power of vi-
sualization pipelines make them the most widely used
framework for visualization systems today. These dataflow
networks are likely to remain the dominant structure in
visualization for years to come. It is therefore important to
understand what they are, how they have evolved, and the
current features they implement.
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