
Techniques for Data-Parallel Searching for Duplicate Elements

Brenton Lessley∗

University of Oregon

Kenneth Moreland†

Sandia Nat’l Lab

Matthew Larsen‡

Lawrence Livermore Nat’l Lab

Hank Childs§

University of Oregon

Abstract

We study effective shared-memory, data-parallel techniques
for searching for duplicate elements. We consider several
data-parallel approaches, and how hash function, machine
architecture, and data set can affect performance. We con-
clude that most choices of algorithm and hash function are
problematic for general usage. However, we demonstrate
that the choice of the Hash-Fight algorithm with the FNV1a
hash function has consistently good performance over all
configurations.

1 Introduction

Searching for duplicate elements comes up in multiple visu-
alization contexts, most notably external facelist calculation.
There are two main approaches for identifying duplicates: (1)
sorting all elements and looking for identical neighbors, and
(2) hashing all elements and looking for collisions. These ap-
proaches were compared previously by Lessley et al. [5] in
their study of external facelist calculation with data-parallel
primitives (DPP). However, subsequent analysis has shown
that the performance of the algorithm can vary unexpectedly
with certain combinations of hash function, architecture, and
data set. With this short paper, we run a study consider-
ing many test configurations, in an effort to better under-
stand anomalous behavior. Using various metrics, we are
able to understand the causes of unusual performance. We
believe the contributions of this paper are two-fold. First,
we contribute a better understanding of platform portable
algorithms for identifying duplicates and their pitfalls, and
specify recommendations for choices that will perform well
over a variety of configurations. Second, we believe the re-
sult is useful for the community in identifying potential per-
formance issues with DPP algorithms. Overall, we find that
the Hash-Fight algorithm with the FNV1a hash function con-
sistently achieves the best performance in identifying dupli-
cates over all tested configurations.

2 Related Work

This work is a follow-on to the previous external facelist cal-
culation study by Lessley et al. [5]. That work introduced two
DPP-based algorithms for calculating the external facelist of
three-dimensional unstructured grids. That said, the current
work does make algorithmic contributions, in that it con-
siders more variants of the algorithms via additional hash
functions. Our study is again conducted within the VTK-m
framework [9], which provides data parallel primitives as ba-
sic building blocks. Further, this study follows several previ-
ous studies in exploring the limits of portable performance

∗e-mail: blessley@cs.uoregon.edu
†e-mail: kmorel@sandia.gov
‡e-mail: larsen30@llnl.gov
§e-mail: hank@cs.uoregon.edu

for visualization algorithms in a DPP setting [8, 4, 3, 12, 7, 6],
with the main difference being that we are exploring an algo-
rithm of a very different nature — our algorithm is effectively
a large search problem, where many of the others focused on
iterating over cells in a mesh.

3 Experiment Overview

To better understand the behavior of external facelist calcula-
tion with respect to algorithm design choices, particularly for
that of hash functions, we conducted experiments that varied
three factors:

• Algorithm (7 options)
• Hardware architecture (3 options)
• Data set (34 options)

We did run the cross-product of tests (714 = 7 × 3 × 34), but
our results section presents the relevant subset that capture
the underlying behavior.

3.1 Algorithm

We studied three types of algorithms, which we refer to
as SortyById, Sort, and Hash-Fight. Sort and Hash-Fight
each need to be coupled with a hashing function. We con-
sidered three different hashing functions: XOR, FNV1a,
and Morton. In total, we considered seven algorithms:
Sort+FNV1a, Sort+XOR, Sort+Morton, Hash-Fight+FNV1a,
Hash-Fight+XOR, Hash-Fight+Morton, and SortByID.

3.1.1 Algorithms

SortById: The idea behind this approach is to use sorting to
identify duplicate faces. First, faces are placed in an array
and sorted. Each face is identified by its indices. The sort-
ing operation requires a way of comparing two faces (i.e., a
“less-than” test); we order the vertices within a face, and then
compare the vertices with the lowest index, proceeding to the
next indices in cases of ties. The array can then be searched
for duplicates in consecutive entries. Faces that repeat in con-
secutive entries are internal, and the rest are external.

SortById is likely not optimal, in that it requires storage
for each index in the face (e.g., three locations for each point
in a triangular face of a tetrahedron), resulting in a penalty
for sorting extra memory. This motivates the next approach,
which is to use hashing functions to reduce the amount of
memory for each face in the sort.

Sort: We denote the algorithm that modifies SortById to
sort hash values rather than indices. For each face, the three
vertex indices are hashed, and the resulting integer value is
used to represent the face. However, this creates additional
work. The presence of collisions forces us to add a step to
the algorithm that verifies whether matching hash values ac-
tually belong to the same face. In this study, we explore the
tradeoff between sorting multiple values per face versus re-
solving collisions. Further, the specific choice of hash func-
tion may affect performance, and we explore this issue as
well.



Hash-Fight: Traditionally, hash collisions are handled via
a chaining or open-addressing approach. While these ap-
proaches are straight-forward to implement in a serial set-
ting, they do not directly translate to a parallel setting. For
example, if multiple threads on a GPU map to the same
hash entry at the same time, then the behavior may be non-
deterministic, unless atomics are employed.

In Lessley et al. [5], hash collisions are addressed in a paral-
lel setting via a data-parallel hashing scheme that uses mut-
liple iterations. In this scheme, which we denote as Hash-
Fight, no care is taken to detect collisions or prevent race
conditions via atomics. Instead, every face is simultaneously
written to the hash table, possibly overwriting previously-
hashed faces. The final hash table will then contain the win-
ners of this “last one in” approach. However, our next step is
to check, for each face, whether it was actually placed in the
hash table. If so, the face is included for calculations during
that iteration. If not, then the face is saved for future itera-
tions. All faces are eventually processed, with the number of
iterations equal to the maximum number of faces hashed to
a single index.

3.1.2 Hash Function

The following hash functions are considered in our study,
each returning a hash value in the form of a 32-bit unsigned
integer.
XOR: The XOR hashing function is a very simple bitwise
exclusive-or operation on all the indices of a face. The XOR
hash is very fast to compute but makes little effort to avoid
collisions.
FNV1a: FNV1a hashing [2] starts with an offset value
(2166136261 for this study) and then iteratively multiplies the
current hash by a prime number (16777619 for this study) and
performs an exclusive-or with the vertex index. The addition
of the offset and prime number pseudo-randomize the hash
values, which helps reduce collisions. However, FNV1a takes
longer to compute because of its additional calculations.
Morton: The Morton z-order function maps a multi-
dimensional point coordinate to a single Morton code value.
It does this by interleaving and combining the binary rep-
resentations of the coordinate values, while preserving the
spatial locality of the points [10]. In this study, we compute
a separate Morton code for each of the three vertex indices of
a triangular cell face, and then add the three Morton codes
together to form a hash value.

3.2 Hardware Architecture

We ran our tests on the following three architectures:

• Haswell: Dual Intel Xeon Haswell E5-2698 v3, each
with 16 cores running at 2.30 GHz and 2 SMT hardware
threads and a total of 512 GB of DDR4 memory.

• Knights Landing: An Intel Knights Landing Self Host-
ing Xeon Phi CPU with 72 cores, running in quadrant
cluster mode and flat memory node. Each core has 4
threads and runs at a base clock frequency of 1.5 GHz.
This processor also maintains 16 KB of on-package MC-
DRAM memory and 96 GB of DDR4 memory.

• Tesla: An NVIDIA Tesla P100 Accelerator with 3,584
processor cores, 16 GB memory, and 732 GB/sec mem-
ory bandwidth. Each core has a base frequency of 1,328
MHz, and a boost clock frequency of 1480 MHz.

3.3 Data set

For all of our experiments, we used variants of an unstruc-
tured tetrahedral mesh derived by tetrahedralizing a uniform

SortByID

Sort+XOR
 

 
Sort+FNV1a

 
Sort+Morton

Hash-Fight+XOR

Hash-Fight+FNV1a

Hash-Fight+Morton

0 200 400 600

Number of Input Cells (Millions)

0
20

40
60

T
im

e 
(s

ec
o

n
d

s)

Figure 1: Runtime comparison of all algorithm types and all
hash functions on Intel’s Haswell architecture with regularly-
indexed data sets. 10 trials were conducted per algorithm
for each data set, and each trial is represented by a dot. The
trendlines plot the average times of these trials.

grid. We considered 17 different data set sizes ranging from
4 million to 667 million cells, which translates to a range of 16
million to 2.6 billion faces. Additionally, we considered two
types of mesh connectivity indexing schemes:

• Regular indexing: mesh connectivity was left unaltered.
Mesh coordinates that are spatially close were generally
located nearby in memory.

• Randomized indexing: mesh connectivity was random-
ized, i.e., mesh coordinates were scattered randomly in
memory.

We considered randomized indexing to study the behavior
of the different algorithms and hashing functions with differ-
ent types of memory access patterns. We viewed these two
patterns as ends of a spectrum (coherent access versus inco-
herent access), and we believe real world data sets will fall
within these two extremes. Between the 17 data set sizes and
two indexing schemes, there were 34 total data sets used in
the study.

To obtain our randomized indexing, we randomized the
location of the vertices and cells in the regular data sets and
adjusted the cell indices to match the new locations of the
vertices. The randomized topology has the following two ef-
fects. First, indices are no longer near one another. For exam-
ple, a tetrahedral cell in the regular topology might have in-
dices 14, 21, 16 and 25, while, with the randomized topology,
the same cell might have indices 512, 1, 73, and 1024. Second,
accessing the vertices of a cell will exhibit poor memory ac-
cess patterns since each point vertex is likely on a different
cache line.

4 Results

Our study contains three phases, each of which assesses the
impact of different factors on performance: hash function, ar-
chitecture, and data set regularity. In this section, we present
and analyze the results of these phases.

4.1 Phase 1: Hash Functions

This phase examines the choice of hash function, and con-
siders the performance over our 7 combinations of algo-
rithm type and hash function. We also vary the data set
size, specifically looking at all 17 regularly-indexed data sets.
The only architecture considered in this phase is the Intel



XOR regular
XOR random

FNV1a regular
FNV1a random

Morton regular
Morton random

0 200 400 600

Number of Input Cells (Millions)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

H
as

h
 C

o
lli

si
o

n
s 

(B
ill

io
n

s)

Figure 2: A comparison of the number of collisions pro-
duced by the 3 hash functions considered in this study, over
both regular and random indexed data sets. The Morton and
FNV1a functions have little variation in collisions between
data set type and thus have overlapping plots.

Operation SortBy
Id

Sort
XOR

Sort
FNV1a

Sort
Morton

prepInputFaces 0.88 0.86 0.86 0.87
hashFaces 2.05 1.03 1.04 1.13
hashSortReduce 25.37 9.41 23.59 10.82
findInternalFaces 0.17 5.72 4.89 1.89
prepOutputFaces 0.56 0.29 0.46 0.41
Total Time 29.03 17.31 30.84 15.12

Table 1: Runtimes (sec) for each of the primary data-parallel
operations of the Sort algorithms. Each time is the average of
the 10 trials conducted on the 4003 grid data set with approx-
imately 318 million input cells.

Haswell CPU, although we vary the architecture in subse-
quent phases.

We first analyze the performance of the Hash-Fight algo-
rithm. From Figure 1, we observe that Hash-Fight+FNV1a is
consistently the fastest algorithm across the entire range of
data set sizes. Hash-Fight+Morton is a close second, up until
large data set sizes. When the data set size jumps from 530
million cells to 670 million cells, its execution time more than
doubles. This jump in execution time is partially attributed
to an increase in the number of hash-fight iterations, from 18
to 24. This increase in iterations is the result of the number
of hash collisions tripling from 619 million to 1.9 billion, as
seen in Figure 2 (Morton regular plot). We believe that the
large increase in hash collisions occurred because the spatial
locality of the Morton z-order curve deteriorates as the cell
count significantly increases, due to the additive property of
the Morton hash function. This increase in collisions was also
seen with Sort+Morton.

Additionally, Hash-Fight coupled with the XOR hash func-
tion tends to perform poorly compared to the couplings with
FNV1a and Morton. From Figure 2 (XOR regular plot), Hash-
Fight+XOR consistently yields the largest number of hash
collisions, by a wide margin, among the Hash-Fight algo-
rithms. Overall, the trends for collisions in Figure 2 closely
match the trends for Hash-Fight execution times in Figure 1.

We now consider the performance of the Sort algorithm.
Although Hash-Fight generally performs better with FNV1a
and worse with XOR, the opposite outcome tends to occur
with Sort.

From Figure 1, we observe that Sort+XOR begins to sig-

SortByID

Sort+XOR

Sort+FNV1a

Sort+Morton
Hash-Fight+XOR

Hash-Fight+FNV1a
Hash-Fight+Morton

0 100 200

Number of Input Cells (Millions)

0
50

10
0

15
0

T
im

e 
(s

ec
o

n
d

s)

Figure 3: Runtime comparison of all algorithms and all hash-
ing functions on Intel’s Knights Landing architecture with
regularly indexed data sets. 10 trials were conducted per al-
gorithm for each data set, and each trial is represented by a
dot. The trendlines plot the average times of these trials.

nificantly outperform Sort+FNV1a as the number of input
cells increases. Although the XOR hash function produces
many collisions, which increases the time to find internal
faces, it also results in a markedly faster sort time (see the
hashSortReduce row in Table 1). We discovered that the XOR
hash function happens to create hash values that are already
close to being in sorted order for these data set structures.
The parallel sort algorithm, which comes from the TBB li-
brary [11], is a parallel version of quicksort, and this algo-
rithm runs much faster on data that is pre-sorted or close to
being sorted. The benefits from the faster sorting outweigh
the extra time needed to resolve collisions.

Finally, the performance of SortById confirms our hypoth-
esis from Section 3.1.1 that the cost of sorting multiple values
per face (3 points per triangular face) is larger than the cost
of resolving collisions from hashing the face. As Table 1 indi-
cates, SortById consumes most of its total runtime ordering
the 3 face points (hashFaces operation) and then sorting and
reducing the faces (hashSortReduce operation).

4.2 Phase 2: Architectures

In this phase, we conduct the same set of experiments from
Phase 1 on two additional architectures—Intel Knights Land-
ing (KNL) CPU and Nvidia Tesla P100 GPU—and compare
the results to that of the Intel Haswell CPU experiments from
Phase 1. Figures 3 and 4 present the results of the KNL
and Tesla experiments, respectively. Note that, due to ma-
chine memory restrictions, only the 11 datasets up to 213 mil-
lion cells (3503 grid) are considered for KNL, and only the 5
datasets up to 40 million cells (2003 grid) are considered for
Tesla.

Figures 3 and 4 reveal that the Sort and Hash-Fight al-
gorithm types almost always run the fastest when cou-
pled with the FNV1a or Morton hash functions on both the
KNL and Tesla. Additionally, Hash-Fight+FNV1a and Hash-
Fight+Morton are consistently the highest-performing algo-
rithms for both architectures. From Phase 1, we discovered
that the performance of an algorithm deteriorated for larger
numbers of input cells with the Morton function and Haswell
architecture. The analysis revealed that this lower perfor-
mance was due to an increase in hash collisions. On the KNL
and Tesla, this increase in collisions still occurs, but does not
negatively affect the performance as it did on Haswell, at
least for the size of data sets that fit within these architectures’



SortByID

Sort+XOR

Sort+FNV1a
Sort+Morton

Hash-Fight+XOR

Hash-Fight+FNV1a
Hash-Fight+Morton

10 20 30 40

Number of Input Cells (Millions)

0
0.

5
1

T
im

e 
(s

ec
o

n
d

s)

Figure 4: Runtime comparison of all algorithms and all hash-
ing functions on NVIDIA’s Tesla P100 GPU with regularly
indexed data sets. 10 trials were conducted per algorithm
for each data set, and each trial is represented by a dot. The
trendlines plot the average times of these trials.

memory. This finding may also be due to architecturally-
specific traits in the memory hierarchies (e.g., NUMA, cache
infrastructure, etc.); we will investigate this further in future
work.

Similar to the findings of Phase 1 on Haswell, the Sort
algorithm type performs very well on KNL when coupled
with the XOR function. However, Sort+XOR is the worst-
performing algorithm, along with SortById, on the Tesla ar-
chitecture. This reversal in performance of Sort+XOR on the
Tesla can be attributed to the sub-routine that finds all in-
ternal faces. From Table 2, we observe that XOR, FNV1a, and
Morton all take approximately the same amount of time (0.15
seconds) to sort and reduce the hash values, but differ greatly
in the time needed to find internal faces, with XOR requiring
almost a whole second longer to complete. This is because
XOR yielded a substantially larger number of hash collisions,
which generated more neighbor searches to resolve collisions
and find the internal faces. This matches the finding from
Phase 1. However, unlike in Phase 1, the XOR algorithm did
not yield a significantly faster sort time to compensate for the
increase in time caused by the added collisions. This is be-
cause the GPU’s parallel sort algorithm, which comes from
the Thrust library [1], is based on radix sorting, which is both
faster in general and much less sensitive to initial ordering
than quicksort.

Contrarily, Sort+FNV1a and Sort+Morton perform very
well on the Tesla because the majority of the work in-
volves sorting operations, which are very suitable for mas-
sive thread and data-parallelism. Using the CUDA Thrust
radix sort, the runtime needed to sort the larger arrays of
unique hash values for Sort+FNV1a and Sort+Morton was
significantly faster than that of Intel TBB quicksort, which is
used in our Haswell and KNL experiments. Replacing the
Thrust radix sort with a known-to-be slower Thrust merge
sort revealed the same sorting pattern from Phase 1, in which
Sort+FNV1A takes longer to perform the hash value sort-
ing than Sort+XOR and Sort+Morton. This indicates that the
choice of the sort algorithm matters a lot, with the radix sort
being faster in general.

4.3 Phase 3: Irregular Data Sets

In this phase of the study, we evaluate the performance of the
algorithms when using data sets with randomized, irregular
topologies. Figures 5, 6, and 7 compare algorithm runtimes

Operation Sort
XOR

Sort
FNV1a

Sort
Morton

prepInputFaces 0.02 0.02 0.02
hashFaces 0.01 0.01 0.01
hashSortReduce 0.13 0.15 0.15
findInternalFaces 1.09 0.13 0.11
prepOutputFaces 0.03 0.02 0.01
Total Time 1.28 0.33 0.30

Table 2: Runtimes (sec) for each of the primary data-parallel
operations of the Sort algoritms on an Nvidia Tesla P100
GPU. Each time is the average of the 10 trials conducted on
the 2003 grid data set with approximately 40 million input
cells.

Algorithm Mesh
SortByID regular 42.7s
SortByID random 68.3s

Sort+XOR regular 25.1s
Sort+XOR random 47.8s

Sort+FNV1a regular 43.0s
Sort+FNV1a random 46.0s

Sort+Morton regular 21.8s
Sort+Morton random 35.8s

Hash-Fight+XOR regular 43.0s
Hash-Fight+XOR random 88.4s

Hash-Fight+FNV1a regular 16.3s
Hash-Fight+FNV1a random 24.4s

Hash-Fight+Morton regular 16.6s
Hash-Fight+Morton random 28.9s

Time (seconds)

Figure 5: A comparison of the performance between regular
indexing and randomized indices on Haswell with data sets
of 453 million tetrahedral cells (4503 grid).

of regular and randomized topologies on the Haswell, KNL,
and Tesla architectures, respectively.

The XOR and FVN1a hash functions are both based on
creating an index-based hash and, for CPU architectures,
SortById, Sort+XOR, and Hash-Fight+XOR pay significant
penalties with the randomized topology. For SortById and
Sort+XOR, the initial positions of the keys are much closer to
their sorted positions with the regular topologies than with
the randomized versions. Thus, the sorting algorithm has to
perform more work, leading to increased randomized topol-
ogy runtimes. On the GPU, the VTK-m thrust back-end uses
an optimized radix sort when keys are single 32-bit values
and a merge sort for all other value types. Consequently,
Sort+XOR with a randomized topology pays far less of a
penalty as compared to the CPU version, while SortById ac-
tually pays a higher penalty. Conversely, the hashing prop-
erties of FNV1a distribute keys evenly with both regular and
randomized topologies, leading to better performance on the
KNL architecture using the randomized topology.

As seen in Figure 2 (XOR random plot), XOR has the
largest number of collisions since it is a poor hash function,
and the number of collisions increases linearly with the size
of the data set. FNV1a and Morton perform much better as
the data set size increases, as the increase in the number of
duplicates is less than linear. With Morton, the number of
collisions increased significantly for the largest data set. For
all three hash functions, there is no significant difference in
the number of collisions between the regular and random
meshes.



Algorithm Mesh
SortByID regular 26.5s
SortByID random 48.0s

Sort+XOR regular 11.3s
Sort+XOR random 25.4s

Sort+FNV1a regular 26.2s
Sort+FNV1a random 23.9s

Sort+Morton regular 13.4s
Sort+Morton random 19.9s

Hash-Fight+XOR regular 16.6s
Hash-Fight+XOR random 25.6s

Hash-Fight+FNV1a regular 5.7s
Hash-Fight+FNV1a random 7.2s

Hash-Fight+Morton regular 6.1s
Hash-Fight+Morton random 8.2s

Time (seconds)

Figure 6: A comparison of the performance between regular
indexing and randomized indices on KNL with data sets of
134 million tetrahedral cells (3003 grid).

Algorithm Mesh
SortByID regular 0.75s
SortByID random 1.88s

Sort+XOR regular 0.73s
Sort+XOR random 0.97s

Sort+FNV1a regular 0.22s
Sort+FNV1a random 0.24s

Sort+Morton regular 0.22s
Sort+Morton random 0.28s

Hash-Fight+XOR regular 0.39s
Hash-Fight+XOR random 0.91s

Hash-Fight+FNV1a regular 0.18s
Hash-Fight+FNV1a random 0.26s

Hash-Fight+Morton regular 0.20s
Hash-Fight+Morton random 0.33s

Time (seconds)

Figure 7: A comparison of the performance between regular
indexing and randomized indices on Tesla with data sets of
26 million tetrahedral cells (1753 grid).

5 Conclusion

We summarize our findings and best practices by phase.
From Phase 1, we conclude the following:

• Use the Hash-Fight+FNV1a algorithm for consistently-
optimal performance for regularly-indexed data sets.

• Avoid the Morton hash function for large data set sizes,
as it does not demonstrate robustness to hash collisions.

From Phase 2, we conclude the following:

• Use the Hash-Fight+FNV1a algorithm for optimal
portable performance across varying architectures.

• Avoid the use of Sort+XOR on a GPU architecture; in-
stead, use either Sort+FNV1a or Sort+Morton, in com-
bination with the CUDA Thrust radix sort.

From Phase 3, we conclude the following:

• Both Sort and Hash-Fight perform best with the FNV1a
hash function, which is robust to both regular and ran-
domized mesh topologies across multiple architectures.

• Radix sort performs best overall, while quicksort per-
forms poorly with heavily shuffled input. Further, the

best-performing hash functions produce heavily shuf-
fled input.

Overall, we believe these findings inform best practices for
searching for duplicate elements within data-parallel prim-
itives. The Hash-Fight+FNV1a algorithm consistently per-
formed as a top choice in all configurations; all other algo-
rithms suffered slowdowns in at least some configurations.
The fact that the Hash-Fight configurations often beat the
more traditional sorting-based algorithm is particularly in-
teresting considering that it intentionally invokes write after
write hazards. Although writing to the same or nearby mem-
ory locations from multiple threads can degrade cache per-
formance, Hash-Fight still performs efficiently. In terms of
future work, we are interested in expanding our analyses of
the Haswell and KNL CPU-based performance, particularly
in regard to the behavior of hash collisions and caching.

References

[1] N. Bell and J. Hoberock. GPU Computing Gems, Jade Edition,
chap. Thrust: A Productivity-Oriented Library for CUDA, pp.
359–371. Morgan Kaufmann, October 2011.

[2] G. Fowler, L. C. Noll, K.-P. Vo, D. Eastlake, and T. Hansen. The
fnv non-cryptographic hash algorithm. Technical report, Net-
work Working Group, 2017. https://tools.ietf.org/html/

draft-eastlake-fnv-13.
[3] M. Larsen, S. Labasan, P. Navrátil, J. Meredith, and H. Childs.

Volume Rendering Via Data-Parallel Primitives. In Proceedings
of EuroGraphics Symposium on Parallel Graphics and Visualization
(EGPGV), pp. 53–62. Cagliari, Italy, May 2015.

[4] M. Larsen, J. Meredith, P. Navrátil, and H. Childs. Ray-Tracing
Within a Data Parallel Framework. In Proceedings of the IEEE
Pacific Visualization Symposium, pp. 279–286. Hangzhou, China,
Apr. 2015.

[5] B. Lessley, R. Binyahib, R. Maynard, and H. Childs. Ex-
ternal Facelist Calculation with Data-Parallel Primitives. In
Proceedings of EuroGraphics Symposium on Parallel Graphics and
Visualization (EGPGV), pp. 10–20. Groningen, The Netherlands,
June 2016.

[6] S. Li, N. Marsaglia, V. Chen, C. Sewell, J. Clyne, and H. Childs.
Achieving Portable Performance For Wavelet Compression Us-
ing Data Parallel Primitives. In Eurographics Symposium on Par-
allel Graphics and Visualization. The Eurographics Association,
2017.

[7] L.-t. Lo, C. Sewell, and J. P. Ahrens. Piston: A portable cross-
platform framework for data-parallel visualization operators.
In EGPGV, pp. 11–20, 2012.

[8] R. Maynard, K. Moreland, U. Atyachit, B. Geveci, and K.-L. Ma.
Optimizing threshold for extreme scale analysis. In IS&T/SPIE
Electronic Imaging, pp. 86540Y–86540Y. International Society for
Optics and Photonics, 2013.

[9] K. Moreland, C. Sewell, W. Usher, L. Lo, J. Meredith, D. Pug-
mire, J. Kress, H. Schroots, K.-L. Ma, H. Childs, M. Larsen, C.-
M. Chen, R. Maynard, and B. Geveci. VTK-m: Accelerating
the Visualization Toolkit for Massively Threaded Architectures.
IEEE Computer Graphics and Applications (CG&A), 36(3):48–58,
May/June 2016.

[10] G. Morton. A computer oriented geodetic data base and a new
technique in file sequencing. Technical Report Ottawa, Ontario,
Canada, 1966.

[11] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism. O’Reilly, July 2007.

[12] H. A. Schroots and K.-L. Ma. Volume Rendering with Data
Parallel Visualization Frameworks for Emerging High Perfor-
mance Computing Architectures. In SIGGRAPH Asia 2015 Vi-
sualization in High Performance Computing, SA ’15, pp. 3:1–3:4.
ACM, 2015.


