
Time Dependent Processing in a Parallel Pipeline Architecture

John Biddiscombe, Berk Geveci, Ken Martin, Kenneth Moreland, and David Thompson

Abstract— Pipeline architectures provide a versatile and efficient mechanism for constructing visualizations, and they have been
implemented in numerous libraries and applications over the past two decades. In addition to allowing developers and users to freely
combine algorithms, visualization pipelines have proven to work well when streaming data and scale well on parallel distributed-
memory computers. However, current pipeline visualization frameworks have a critical flaw: they are unable to manage time varying
data. As data flows through the pipeline, each algorithm has access to only a single snapshot in time of the data. This prevents
the implementation of algorithms that do any temporal processing such as particle tracing; plotting over time; or interpolation, fitting,
or smoothing of time series data. As data acquisition technology improves, as simulation time-integration techniques become more
complex, and as simulations save less frequently and regularly, the ability to analyze the time-behavior of data becomes more
important.
This paper describes a modification to the traditional pipeline architecture that allows it to accommodate temporal algorithms. Fur-
thermore, the architecture allows temporal algorithms to be used in conjunction with algorithms expecting a single time snapshot, thus
simplifying software design and allowing adoption into existing pipeline frameworks. Our architecture also continues to work well in
parallel distributed-memory environments. We demonstrate our architecture by modifying the popular VTK framework and exposing
the functionality to the ParaView application. We use this framework to apply time-dependent algorithms on large data with a parallel
cluster computer and thereby exercise a functionality that previously did not exist.

Index Terms—data-parallel visualization pipeline, time-varying data.

1 INTRODUCTION

In order to develop a comprehensive understanding of the phenom-
ena present in a dataset, scientists frequently use a variety of differ-
ent visualization techniques which may involve a sequence of several
post-processing operations or visualization algorithms. Pipeline ar-
chitectures are well suited to this type of work flow and we review
existing implementations in the next section. However, existing visu-
alization pipelines do not accommodate visualization algorithms that
perform temporal processing of time-varying data. Although they are
able to perform simple tasks such as animation, existing pipelines typ-
ically make only a single time snapshot of a dataset available to each
algorithm.

One reason pipelines do not accommodate temporal processing is
that there is not a canonical representation for time-varying data, or
indeed a consistent set of representations. The following list illustrates
some of the issues raised by different treatments of time:

• Data acquired from experiment/measurement may be collected
from sensors at different sampling rates. Sometimes sensors fail
to report, or generate spurious values.

• Simulations advance time differently. Some treat time as any
other spatial dimension. Some produce uniformly distributed
time series, while others do not. Some solutions do not have a
unique temporal interpolant and those that do may have an inter-
polant that is nonlinear so that poor or misleading visualizations
result when a linear approximation is rendered.

• hp-adaptive [23] and AMR techniques define meshes which
change topology over time, leading to representations which may
not be directly interpolated or have well defined solutions at in-
termediate time steps.

• John Biddiscombe is with the Swiss National Supercomputing Centre,
E-mail: biddisco@cscs.ch.

• Berk Geveci and Ken Martin are with Kitware, Inc., E-mail:
{berk.geveci,ken.martin}@kitware.com.

• Kenneth Moreland and David Thompson are with Sandia National
Laboratories, E-mail: {kmorel,dcthomp}@sandia.gov.

Manuscript received 31 March 2007; accepted 1 August 2007; posted online 2
November 2007.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

• In large simulations, limitations in hard disk bandwidth restrict
the writing of state to disk (for later visualization and analysis)
to less frequent and possibly irregular intervals which can lead
to the same misleading and unappealing visualizations as large
time step integrators.

Beyond representational problems for time-varying data, many vi-
sualization algorithms such as thresholding, isocontouring, cutting,
clipping, etc. do not require information about the time-behavior of
a dataset. Requiring implementations of these algorithms to be aware
of time introduces an undesirable overhead. Different visualization al-
gorithms may require a value to be present for all times while others
can deal with missing or uncertain data. As we consider requirements
for incorporating temporal processing into pipeline architectures, we
must keep these caveats in mind.

The next section reviews existing pipeline architectures. After that,
we present algorithms that define the requirements for temporal pro-
cessing, consider several alternate pipeline designs, select one design
and discuss its implementation and performance.

2 RELATED WORK

The process of visualization is often modeled as a pipeline that trans-
forms raw data through various stages that eventually result in a
human-observable image [6, 11]. Thus, it is no great surprise that so
many systems reflect this pipeline model by applying the pipes-and-
filters architectural pattern [4] that allows a user to connect multiple
independent components together [5].

Pipeline architectures are straightforward to implement, simple to
use, and powerful in their expressiveness. Individual algorithms are
encapsulated in components called “filters” that accept inputs and pro-
vide outputs. Filters can accept any number of prescribed inputs and
outputs. Components that provide outputs but take no inputs are usu-
ally called “sources,” and components that accept inputs but do not
provide outputs are called “sinks.” The output of one filter can be
attached to the input of another filter.

Pipelines can be data driven where processing and data flows down-
stream from a modified filter or source or they can be demand driven
where a request starts at the end of the pipeline (by the render system,
writer, or specific user request) and flows upstream. Demand driven
pipelines are far more powerful in that an iterative upstream and down-
stream process can query and negotiate requests while incorporating
input from all filters in the pipeline. This architecture can be used to
perform subset queries, memory constrained streaming, scalar subset



queries, spatial subset queries, proper ghost or partition cell requests
all with each filter in the pipeline properly incorporating its require-
ments and how it impacts the request.

Temporal data has been used in pipeline architectures such as VTK
[22], OpenDX [1, 18], SciRun [20], and AVS [17, 25] by visualizing
one time step at a time, independent from other time steps. But such
an approach does not allow complex time dependent operations such
as temporal interpolation, caching, and the computation of pathlines.
Intelligent fetching, caching, and rendering of temporal data has been
addressed by systems that directly render the data, such as volume
rendering or direct isosurfacing [14,19] but again these lack the ability
to add any complex temporal operations into a user defined pipeline.

Pipeline systems such as Visit have extended the pipeline execution
model of VTK by the use of contracts which allow the flow of data to
be optimized by modules based upon their data requirements [7]. This
is similar to the flow of information within the VTK 5 pipeline archi-
tecture [3, 15], which provides a mechanism allowing for the arbitrary
addition of information keys by modules into the data flow, which in
turn enables modules to react to and change their data requests in re-
sponse to meta-information about the data.

Another framework, designed for the visualization of unsteady flow
data (and also built on top of VTK) is Vista FlowLib [21], which uses a
parallelization framework Viracocha [10] to handle the passage of data
between modules on a distributed system. Data requests are handled
by an additional layer of logic on top of the pipeline, which makes
it possible to compute multiple time steps in parallel by launching
multiple pipeline processes. VIRACOCHA differs from a traditional
pipeline model by using CORBA to request resources from a central-
ized controller, it also has the novel ability to send the algorithm to the
data, rather than the data to the algorithm. Although it uses a pipeline
model to execute individual algorithms, the connections between them
are managed by a separate system completely.

The work described in this paper complements those packages us-
ing VTK by incorporating a mechanism for handling time based data,
permitting the creation of new a class of temporal-parallel visualiza-
tion algorithms. In particular, the ParaView application [12], which
is a data-parallel visualization application implemented on top of the
VTK library, has been extended to support our new features.

3 PIPELINE-TIME REQUIREMENTS

Algorithms are generally classified by either the type of operation they
perform or by the type of data upon which they operate. In this section,
we present representative time-dependent data visualization and post
processing tasks categorized by the structure of the time input that they
require and by the way that the algorithms are driven (or iterated). By
classifying tasks in this way, we show that a number of broad classes
of temporal operations can be grouped together – and that once the
pipeline-time requirements for each category have been met – the im-
plementation of each of the presented methods is in principle possible.
Note that the categorization in Table 1 is not strict, but rather, serves
as a guideline for how an implementation of the given task would be
broken down. Certain of the algorithms could be placed in one or more
groups since they are defined in the broadest terms.

The algorithms of group 1 from Table 1, are characterized by the
fact that they produce output continuously in response to input from
either a GUI or another task. A single request for output (such as a
frame rendered) requires an algorithm to request multiple (generally
contiguous) time slices of data as input upon which it then operates
to produce the requested output. The process is then repeated for the
next frame with the output being usually part of a sequence making up
an animation, or part of another process which eventually results (by
virtue of further post-processing) in an animation. The group 1 tasks
are further defined by noting that the time steps required will in gen-
eral be a small number – examples such as interpolation (1b) (includ-
ing polynomial Nth order), particle tracing (1e) or smoothing (1c) will
generally be satisfied by a subset of the time steps from the original
data and not the dataset in its entirety – this allows the implementation
to request all the required data in one go. Note that mode shape anima-
tion (1d) differs slightly from the other tasks because time represents

Table 1. Tasks grouped by time requirements and implementation.

Iterative tasks using contiguous chunks (two or more steps) of time
1a Animation (using linear or nonlinear time) of data with non-

linear, non-uniform or missing time steps. Including interpolation
(1b) of values.

1b Linear (2 steps) and polynomial interpolation (N steps) of data
over time.

1c Moving average (or other smoothing) of data over time.
1d Animation of mode shapes (vibrational displacements).
1e Particle tracing/advection (pathlines/streaklines) in unsteady vec-

tor fields.

Tasks requiring (subsets of) data between times t0 and t1
2a Plot fields (and compute derived fields) over time.
2b Space-time height-field plots.
2c Integrate over a cutting surface and over time.
2d Extract time window of data values for elements between times.
2e Compute envelopes (convex hull) over time.

Tasks requiring one step progressively
3a Motion trails/pathlines (e.g. see the path of a bouncing ball).
3b Display of sensor data as it is received.

Tasks requiring random or semi-random access to time
4a Data-mining, searching, descriptive statistics and correlations

over space and/or time.
4b Retrieve non-contiguous ranges of time-varying data.
4c Comparative visualization of data using time shifting (and/or

scaling).
4d Comparative visualization of measurement and simulation data.

Miscellaneous additional requirements
5a Caching of data to avoid wasted or unnecessary IO.
5b No dependence on time, or overhead, for algorithms that are ig-

norant of it.

a parameter which is used to interpolate between datasets which rep-
resent displacements. However, the implementation requires only that
data for particular modes (which can be represented as time steps) be
available for an interpolation to take place.

Group 2 differs from group 1 in that a single request for an out-
put will (in general) be enough to satisfy the plotting/viewing require-
ments. A graph of some value (either derived or original data) ex-
tracted over times t0 to t1 is usually plotted in a single pass, rather than
updated on a frame by frame basis. Clearly there are times, such as
when plotting sensor acquired data in real time, when this rule is bro-
ken (c.f. group 3 item b), but the tasks of group 2 are usually executed
once to produce a single numerical or graphical result. We note that if
these operations are to be performed as part of a continuously updating
process (such as the change of a convex hull over a windowed region
of time), then they can be treated as a group 2 task wrapped inside
a group 1 layer. Whilst plotting of a value from one or more probed
locations (2a) usually requires a small set of data points, space-time
plots (2b) and integration over surfaces (2c) may require time data
from larger regions of space – this is generalized as item 2d since it
may be a requirement of a great many custom visualization/analysis
methods. These algorithms also differ from group 1 because they may
operate on the whole range of times present in the dataset (i.e. t0 and t1
cover all available times) – this places a restriction on the implemen-
tation that not all data can necessarily be requested in a single pass
if memory allocation is likely to exceed that available – this implies
that multiple data requests may need to be issued for each output data
value.

The example of motion trails in group 3 represents a type of visual-
ization which is possible using a conventional pipeline since only one
time step of data is actually required at any time. If it is assumed that
a pipeline is already capable of looping over time steps, then all that
is required is for a filter to ’listen’ to, or ’watch’ data passing through
and capture positions (or other desired values) which can be used to



build up a trajectory on the fly. However, when time steps are irregular
or acquired out of order, an implementation may need access to addi-
tional information about the time values associated with each step of
data to produce an acceptable result. This places the requirement that
time information must be present and flow through the pipeline even
when not specifically requested by a filter.

Group 4, featuring random access to time steps, encompasses algo-
rithms which include searching, data mining, topology-tracking [24],
and statistical operations (4a), all of which may require an arbitrary
number of time steps (generalized as 4b) in arbitrary order. Addition-
ally, comparative visualization (4c) of the same data at two different
times requires the ability to handle quite different times on different
branches of a pipeline – whilst comparing measurement data and sim-
ulation data (4d) may involve displaying the nearest available time step
from one or other datasets. The examples of group 4 demonstrate that
we require the ability to perform operations on time values themselves
within pipeline requests, so that a request for time tx may be modified
during processing and result in a request for {ta, tb, tc, etc.} where the
relationship between the original and final times may not be obvious.

The final category, group 5, refers to miscellaneous requirements
that arise from general observations of time-dependent data. We do
not wish existing algorithms which do not support time (5b) to be de-
pendent on new time related features or to be encumbered by them.
Caching of time steps (5a) will be essential for iterative tasks that re-
use the same time values on consecutive passes. Additionally, within
branching pipelines where the same data may be used, but the order of
operations may be different, there should be caching of data to prevent
retrievals from one branch invalidating data in another.

We can summarize this section by observing that a pipeline which
is capable of passing only a single time step from filter to filter will not
meet our needs and we must therefore extend the pipeline to handle the
following

• Data requests for multiple time steps must be possible in a single
pass.

• Time requests need not be sequential or contiguous.

• The capability of filters to impose their own requirements for
time in addition to those directly requested from downstream
must exist, this implies the ability to augment time requests,
which may be to add, remove or change values as they pass
through the pipeline.

• A mechanism that permits a single request for data to spawn mul-
tiple further requests must exist.

• Information about time must be available to filters – but it must
not be required for operation if it is not needed.

• Existing sources/filters which have not been designed to support
multiple time requests should still operate within the new frame-
work. Additionally, components that have no concept of time
should continue to work well with those that do.

In the next section we discuss architectures that can meet these re-
quirements by passing data for multiple time steps between filters in
the pipeline.

4 PIPELINE ARCHITECTURE

Modern implementations of visualization pipelines require many
pieces of “meta” information to be communicated through the
pipeline. For example, when streaming data or distributing data across
parallel machines, it becomes necessary to add extent, piece, and ghost
information to the update requests [2]. Recent work has proven it ben-
eficial to extend this mechanism to also allow general metadata to be
passed up and down the pipeline [3, 7]. Within the VTK framework
this metadata is stored in “information” objects, which hold data in
key/value pairs where keys are arbitrary tokens with symbolic names
helping to identify the role of the data they hold [15]. The controller

Executive
A

Algorithm
A

Output 
port i

Input
port jInformation

Executive
B

Information

Algorithm
B

Other 
Outputs

Other 
Inputs

Information

Fig. 1. Connections in a pipeline using executives to manage informa-
tion passing between the algorithm modules

responsible for sending/receiving information and data between algo-
rithmic modules broadly follows the strategy design pattern [9], with
the pipeline split into two units: an executive object and an algorithm
object. The executive unit controls the operation of the pipeline and
maintains the state of the filter. The algorithm object encapsulates the
code that transforms input data into output data. Pipeline objects are
connected as illustrated in Figure 1 and the executives are described
more fully in section 4.2.

4.1 Design Alternatives and Selection
Within the context of a parallel processing/visualization framework,
several possible pipeline designs were considered as candidates for
temporal support

• Allow each time step to be a single piece of data so that parallel
execution could take place on different time steps on separate
processes. In principle, simultaneous requests for data could be
made to different processes allowing multiple time steps to be
retrieved on request.

• Add a TEMPORALALGORITHM base class which would instruct
the executive to loop the upstream portion of the pipeline N times
in order to fetch N time steps.

• Add support for a TEMPORALDATASET collection and modify
the executive to loop the upstream pipeline, gathering the results
into the collection before passing them on to the temporal algo-
rithm. In addition to adding a temporal collection data type, add
support for multiple time requests by enhancing the request type
itself.

The first solution is straightforward and elegant, however it suffers
from the serious flaw that if each time step of the data is too large
to fit into memory, the system will fail to work. Existing pipelines
allow datasets to be broken into pieces and this functionality must be
maintained if large data is to be processed in parallel.

The second solution was proven to be workable, but suffers from the
drawback that it is not possible to fulfill the requirement of supplying
multiple time steps simultaneously. Only algorithms operating within
group 2 of Table 1 could be implemented with this strategy reliably.
Whilst this design has not been selected for implementation, the basic
idea of allowing an algorithm to loop the executive has been used and
is described in section 4.5.

The TEMPORALDATASET solution allows multiple time steps to
exist inside a container collection object and thus allows multiple steps
to be simultaneously requested from a source. To support paralleliza-
tion, a temporal dataset may consist of N pieces of data split across
processes, however the datasets within each time step are split, rather
than the time steps being separated as pieces. This solves the problem
of the size of each step exceeding memory requirements and allows
for arbitrary parallel expansion. Information about pieces is passed up
and down the pipeline as before, but time based information is added.

4.2 The Role of Executives
Separating each functional unit into executive and algorithm provides
features we utilize to support time requests. A careful look at Figure 1



shows that the algorithm objects do not directly communicate with
each other, this allows two key operations:

• The executives can insert additional time related metadata into
the information stream. This data is used to provide the control
mechanism that satisfies our time requests without affecting the
algorithms themselves.

• All traffic whether it be data or metadata, passing to or from
an algorithm, is in fact passed from executive to executive via
information objects before entering the algorithm. This allows
an executive to change the data that is produced by one algorithm
before passing it on to another. The executive uses this feature
to collect data from multiple time steps before passing it on to a
filter requiring temporal data.

4.3 Temporal Pipeline Extensions
We have enhanced the capabilities of the executives to recognize and
act upon new information keys which have been introduced to support
temporal data. The following key/value pairs have been defined in our
pipeline.

TIME RANGE A 2-vector containing the minimum and maximum
times at which data produced by a source (or filter) are defined.
This range may be queried by downstream filters of user interface
components to limit the range of allowable operations.

TIME STEPS A vector containing all the possible discrete time
steps of data that are defined in the output produced by a source.
A source capable of delivering data for any time (i.e. continuous
time) supplies only the above TIME RANGE key and does not
need to provide any TIME STEPS. Typical data readers will ex-
pose those time steps that they are capable of delivering in this
key, which will usually be those generated during a simulation
and stored on disk. There is no requirement that the steps are at
regular intervals and during pipeline requests if a source is not
capable of delivering a particular time, the requested time can be
snapped to the nearest value present.

UPDATE TIME STEPS A vector containing the list of times re-
quired by a filter before it attempts to update itself. The majority
of filters do not operate on any specific time value and do not set
this key, however a filter which specifically requires N time steps
will set this key with the values it requires. The values them-
selves will usually be a subset of the TIME STEPS exported by
a filter further upstream. Where an upstream source is providing
continuous time in the form of a TIME RANGE key, the update
request may contain any values within the range.

DATA TIME STEPS A vector containing the actual time steps
that were generated by a source. Note that this differs from
TIME STEPS in that the former represents all steps that could
be produced, whereas the latter is those that were actually pro-
duced during a pass of the algorithm. The DATA TIME STEPS
is attached to the data itself, rather than the information about the
input or output connection port of the algorithm.

REQUIRES TIME DOWNSTREAM There is no value associated
with this key, it is a flag which is set by one executive to inform
another executive upstream that specific time requests have been
made.

CONTINUE EXECUTING There is no value associated with this
key. It is used internally within a pipeline component to signal
that it needs to repeat execution.

In addition to these keys, we have added the TEMPORALDATASET
data type which stores multiple instances of other data sets, each de-
fined at a different time. The TEMPORALDATASET type can be gen-
erated directly by a source if it supports this capability, but most will
not.

Data source
(time aware)

Simple filter(s) 
(no special time 
requirements)

Temporal 
DataSetCache

TemporalFilter
(requires multiple time 

steps, e.g.. Particle tracer)

TemporalShiftScale
(modifies time values)

Display/GUI
Renderer

Fig. 2. In cases where a pipeline branches, different times may be
required on different paths. In this case, the TEMPORALDATASETCACHE
filter acts as a buffer separating non-temporal and temporal portions of
the pipeline.

4.4 Basic Temporal Pipeline Operation
In its simplest operation, a pipeline can update its output in one pass:
Upstream components process their inputs and feed the result to their
outputs. However, when we introduce time to the pipeline, we require
multiple passes to communicate information about time. The follow-
ing keys (listed in the order in which they are performed) are used to
designate the passes we require to update the pipeline.

REQUEST DATA OBJECT This request is used by the executive
to generate the correct data type for a filter to use when generat-
ing its output. By default each filter declares itself as a producer
of a particular kind of data (structured/unstructured/etc). How-
ever, when a filter requiring temporal data requests data from a
simple filter operating on a stream of time dependent data the
executive can replace the data object generated by the simple fil-
ter after each pass with a TEMPORALDATASET collection before
giving it to the consumer. This pass plays a crucial role in cases
where the pipeline branches between temporal and non-temporal
portions (see Figure 2 and section 4.6).

REQUEST INFORMATION In this pass, sources report the
TIME RANGE and any discrete TIME STEPS for which they
can produce data. By default, filters pass this information from
up to downstream, but they can also alter the values for the down-
stream components if their operation performs some change to
the time semantics.

REQUEST UPDATE EXTENT In this pass, the user-provided UP-
DATE TIME STEPS is passed upstream from sinks toward
sources. Again, filters pass this information by default, but can
modify them if they change the time semantics or require further
information to complete their request.

REQUEST DATA This final pass is where filters are actually exe-
cuted and generate their data. When a filter begins executing,
its output information will hold the UPDATE TIME STEPS that
are required. A filter that requested temporal data will have time
steps present as a temporal input and can access them directly.

These pipeline passes dovetail well with parallel pipeline exe-
cution. The REQUEST INFORMATION pass can also be used
to report ways in which data can be distributed and the RE-
QUEST UPDATE EXTENT pass can be used to propagate piece re-
quests [16]. These passes also mirror other pipeline systems that opti-
mize the data processing in the pipeline [3, 7].

It is often desirable to directly connect a filter that requests a
temporal data set input to an algorithm that does not directly pro-
duce this data type. Our pipeline implementation supports this
connection. In this case, the downstream executive places RE-
QUIRES TIME DOWNSTREAM in the upstream executive’s infor-
mation object. When the upstream filter receives the request, its ex-
ecutive will loop the upstream portion of the pipeline over each time



value in UPDATE TIME STEPS. The resulting data is collected in a
temporal data set and passed during REQUEST DATA OBJECT in-
stead of the original simple data. This achieves a primary goal of
allowing non-temporal filters to co-exist with temporal ones. Since
UPDATE TIME STEPS is a vector key capable of holding any num-
ber of time step values, in any order, and algorithms that operate with
time can be connected to algorithms not supporting time, we are able
to support all the tasks in group 1 and group 4 of Table 1. Whilst we
have not listed any algorithms that run time backwards (such as find-
ing the position of a particle at time t in the past the ability to request
or modify any time values as they pass through the pipeline means
that algorithms that run time backwards are just as straightforward to
implement as those that run forwards.

The looping behavior is similar to how some current systems han-
dle multi-block data [15]. However, is worth noting that iteration over
time co-exists with looping over blocks of a multi-block dataset – with
one subtle difference. When looping over time, it is sufficient to place
a new time value on the output of the filter, trigger an update (which
will in turn update anything upstream) and collect the results after N
passes. When looping over blocks, it is necessary to replace the in-
put of each filter with each successive block prior to the update. We
combine both these loops in our executive by nesting block looping
inside of time looping. In this way we are capable of implementing
multi-block temporal algorithms in parallel. Figure 3 summarizes the
overall flow of data and information within our parallel visualization
architecture.

4.5 Iterative Temporal Pipeline Operation
Our pipeline also supports the ability for an algorithm to loop itself
over multiple time steps rather than request the data for all time steps
at once. This is required for the implementation of tasks/algorithms
from group 2 of Table 1 and is particularly useful for algorithms that
require many time steps to complete their operation but require only
a small window of data for any particular calculation. In this situa-
tion, requesting all of the data is unnecessary and prohibitive for large
data. An algorithm loops itself by passing CONTINUE EXECUTING
to its own executive as it finishes the REQUEST DATA process.
This signals the executive to re-update itself and gives the algorithm
a chance to continue with data for a new time step. Portions of
data are specified by placing a specified piece or extent in the RE-
QUEST UPDATE EXTENT in the usual manner.

4.6 Branching Pipeline Considerations
Figure 2 shows an example of a visualization pipeline where one path
has no need or knowledge of time, whereas another path has explicitly
requested multiple time steps. In this situation we introduce a TEMPO-
RALDATASETCACHE object which can hold several steps (or pieces
of steps when operating in parallel) in memory and supply them on
request rather than forcing the upstream pipeline to re-execute. When
the simple filter requires updating, it requests data from the cache,
which is controlled by its own executive. The executive triggers the
4 passes mentioned previously and passes the generated data onto the
simple filter. When the TemporalFilter updates itself, the cache’s ex-
ecutive detects that multiple time steps are required and triggers the
4 passes (which may be redundant if the data is already cached) and
collects the data after each iteration. The executive passes a TEMPO-
RALDATASET to the temporal filter, but a simple one to the simple
filter.

We also introduce a TEMPORALSHIFTSCALE object which manip-
ulates time but does not modify data. This filter can be used to arbi-
trarily adjust the time values between some desired range, effectively
’normalizing’ the time between different paths such that the GUI can
iterate from T1 to T2, but the paths can each ’see’ their own time val-
ues. In this way (when combined with a cache) data may be visualized
concurrently at different times, or data from two sources with different
time ranges can be displayed together. Note that if the cache were not
present, the fetching of data from the source at different times would
set a ’modified’ state in the other branch and cause unnecessary up-
dates – this would be particularly serious problem if multiple branches

requested the same or similar time steps, but in different orders, the
cache can be set to hold enough time step (or time step pieces) to
satisfy all branches without causing re-execution for a particular step
value.

5 ENABLED TECHNOLOGIES

Many visualization algorithms are difficult or impossible to establish
within a pipeline that does not support temporal requests. In this sec-
tion we present our implementations of 6 visualization methods cover-
ing groups 1-4 of Table 1. By covering each of the groups introduced
earlier, we show that all of the visualization types introduced earlier
are possible in our framework.

5.1 Temporal Interpolation
Of the data that contains a temporal component to it, the vast majority
that we and our collaborators visualize is defined at discrete moments
in time. This discrete nature of the data is simply due to the nature
of data acquisition devices, the iteration of simulations, and the con-
straints of digital storage. Occasionally we wish to perform operations
on the data as if they were defined over a continuous time range, al-
lowing a consumer of the data to make requests for time steps which
do not exist in the original, perhaps regenerating missing data values
or extracting regular sequences (of higher or lower resolution) from
irregular data and vice versa.

We can achieve the conversion from discrete time to continuous
time by interpolating the data between two adjacent time steps. Appli-
cation of this interpolation needs to be explicit: It is an approximation
and makes assumptions about the data that may not always be valid.
We can do this by providing a TEMPORALINTERPOLATOR filter.

The TEMPORALINTERPOLATOR filter participates in three up-
date passes of the pipeline. In REQUEST INFORMATION, the fil-
ter passes the TIME RANGE information unchanged, but hides the
TIME STEPS information from the downstream components. In
essence, this reports that data exists in a continuous time range.

In REQUEST UPDATE EXTENT, TEMPORALINTERPOLATOR
changes the UPDATE TIME STEPS to the list of discrete values re-
ported by the upstream TIME STEPS that are required to interpolate
datasets matching the downstream request. (In the case where the in-
put has no TIME STEPS or a requested time step coincides with an
existing value in TIME STEPS, the requested time step is passed up-
stream, and TEMPORALINTERPOLATOR does nothing).

In REQUEST DATA, the filter performs a linear interpolation of
the fields in the data of the two time steps requested of the upstream
component. The TEMPORALINTERPOLATOR filter verifies that the
topology is the same in both time steps; the results are invalid oth-
erwise. In the case of multi-block or hierarchical data, each level is
traversed and interpolation occurs between equivalent blocks at each
time.

Although we do not yet support it, it is straightforward to ex-
pand the operation of TEMPORALINTERPOLATOR to non-linear in-
terpolation. It simply needs to request more time steps in RE-
QUEST UPDATE EXTENT and perform a polynomial interpolation
in REQUEST DATA. Our implementation supports interpolation of
any data type including multi-block and hierarchical datasets provid-
ing the topology of the data within each block does not change be-
tween time steps and the hierarchy of blocks is invariant. Interpolation
of AMR-like datasets would require the provision of some specialized
interpolant (or re-gridding algorithm) to define the structure of the data
at intermediate times.

5.2 Animating Mode Shapes
We usually think of temporal data as being a sequence of data values
over time, however, it is possible to characterize how data changes over
time without storing a time-sequence of values. Such is the case for
data from mode shape simulations, where the harmonic frequencies
and vibrational modes of an object are computed by assuming each
vertex v has a deflection

dv(t) = Av sin(ωt +φ) .



Data Piece
Data Piece 
(possibly 

multi-block)

Data Piece

Information
Piece/Extent

User Interface

Piece 0
Step T+m∆t

Renderer 0

Compositor

MPI

Information
Time + Piece

Process N
Piece N

Optional Parallel RenderSource Time

Redistribution 
Sorting or Load 

Balancing

Process 0
Piece 0

M Time Steps 
N pieces each

Piece 0
Step T+m∆tPiece 0

Step T+m∆t

Piece N
Step N+m∆tPiece N

Step T+m∆tPiece N
Step T+m∆t

Algorithm
Copy 0

Algorithm
Copy 1

Algorithm
Copy N

MPI if 
necessary

Algorithm

Temporal Algorithm

Executive 
controls 
Looping

Renderer 1

MPI if 
necessary

Executive replaces M collected data 
time steps with one TemporalDataSet

Parallel 
Algorithm

Renderer N

Fig. 3. A symbolic representation of data and information flow within a parallel pipeline architecture. Data requests originate from the application,
which, if capable of parallel rendering or data processing, triggers update requests in parallel data pipelines. These requests propagate upstream
as information, holding piece numbers (corresponding to MPI process Ids) and extents of data requested. When these requests reach temporal
filters, the executives initiate looping and collecting of data, with pieces of multiple time steps held in each TEMPORALDATASET. If a source of data
is itself capable of producing temporal data (i.e. multiple steps simultaneously), then the executive does not need to loop and simply passes a
collection downstream directly. The splitting of data within each time step across processes allows temporal processing of very large datasets to
take place even when the memory requirements of a single node do not permit the loading of a single complete time step.

Fig. 4. Animation of one mode shape, which shows a bar’s motion from
one extreme of a vibration to the other and back.

Fig. 5. Side-by-side comparison of wave breaking data at two times
separated by one wave period.

Substituting this assumed solution into a governing differential equa-
tion of the form [K]d +[M]d̈ = [0] yields an eigenvalue problem of the
form

(
[K]−ω2 [M]

)
Asin(ωt +φ) = 0 where [K] and [M] are “stiff-

ness” and “mass” matrices from the differential equation [13]. This
yields a set of resonant frequencies ω j and peak deflections Av, j.
Rather than record a series of displacements d j,v at times t j, a series
of peak displacements Av, j are stored for each frequency ω j. A mode
shape is the deflection over time associated with a single resonant fre-
quency: dv, j(t) = Av, j sin

(
ω jt +φ

)
.

Given a data source capable of supplying mode shape data, it is
only necessary to modify it to provide a TIME RANGE from 0 to 1
and arrange that when the reader receives a request for data at time t, it
displaces each vertex in the dataset by dv, j, as shown in Figure 4. Prior
to implementing our pipeline, it was necessary to set up a sequence of
keyframes to produce a mode shape animation – with the new pipeline,
a single click of a ’play’ button (in the ParaView GUI) delivers the
data.

5.3 Temporal Comparative Visualization
The analysis of periodic data can be enhanced by comparing results
from one period with the equivalent results from subsequent or previ-

ous periods, this allows subtle changes that may not be visible directly
to be detected.

To create a visualization of the same data at two different times,
we make use of a branching pipeline such as shown in Figure 2.
Along one branch, we display the original data, but along another
we apply a TEMPORALSHIFTSCALE filter with, (in this example)
a shift equal to the period of the phenomena of interest and a
unity scale factor. The filter intercepts the time passed during RE-
QUEST UPDATE EXTENT and replaces it with the modified value
(which may be positively or negatively offset). The GUI makes a
single request for time, but the time shift results in two distinct and
different datasets being displayed. The visualization can be enhanced
by providing additional filters to perform subtraction of one dataset
from another to display a quantitative difference between the two time
snapshots. Figure 5 shows an example of a wave breaking simulation
where two time values are displayed side by side.

In the case of comparative visualization of measured versus simu-
lated data where the time steps or time resolutions of the datasets are
not identical, we have provided a TEMPORALSNAPTOTIMESTEP fil-
ter similar to TEMPORALSHIFTSCALE which forces the pipeline to
request a time which is guaranteed to exist upstream. This enables one
branch of a pipeline to operate on known time steps, whilst the other
will adapt itself to the nearest or next available step (either above or
below according to user selection) on the other branch.

5.4 Plotting over Time

A basic but important query of data is plotting values over time. That
is, given a point, cell, or location in space, extract the value of one or
more fields over time. Our temporal pipeline extensions allow us to
embed this functionality within a filter.

Because it provides a single result for data that ranges over time,
the EXTRACTOVERTIME filter reports no time support to down-
stream components even though it expects time support from up-
stream components. Thus, it removes any TIME RANGES or
TIME STEPS information from its output and ignores any values in
UPDATE TIME STEPS attached to the output.

A naı̈ve implementation of EXTRACTOVERTIME might simply re-
quest all time steps at once and then extract the appropriate data. How-
ever, this could easily overrun memory if either the mesh or the time



Fig. 6. Motion trails: Many particles with short trails added to every
Nth(left), a smaller sub set of particles with much longer trails (right)

range is large. Instead, the filter iteratively processes one value at a
time.

EXTRACTOVERTIME iteratively processes time steps by working
in conjunction with the executive. Initially, EXTRACTOVERTIME re-
quests the first time step. As it exits the REQUEST DATA portion
of the update request, it sends a CONTINUE EXECUTING infor-
mation key to its executive. This signals the executive to repeat the
update for this filter and those upstream in the pipeline. On the sec-
ond iteration, EXTRACTOVERTIME requests the next time step and
processes it accordingly. The iteration continues until the last time
step is reached, at which time EXTRACTOVERTIME clears the CON-
TINUE EXECUTING key from its executive, and processing contin-
ues downstream.

Our current implementation of EXTRACTOVERTIME has one major
drawback. In general, EXTRACTOVERTIME requests a large portion
of data at each time step but passes only a small portion of that data
downstream. If the input to EXTRACTOVERTIME happens to be one
of the structured data types and the extraction is of a single point or
cell, then EXTRACTOVERTIME mitigates this problem by requesting a
very small extent of data from the upstream components. In the future,
we will be looking at ways to cull upstream data through extents for
other types of data. We plan to use design patterns already in the
literature [3, 7] – which propagate metadata about a request upstream
and use it to cull data further up the pipeline – but also expect to define
new techniques specific to requesting a small set of data over a large
range of time.

5.5 Motion Trails

Motion trails could be implemented by fetching N time steps of data
and building a list of visited positions for each point/particle, and then
repeating this process as time is incremented. This would be unneces-
sarily expensive since in the majority of cases the underlying data is
going to be animated anyway and the trails are to be added as a visual
aid. If particles are animated on one branch of a pipeline, time infor-
mation will be flowing along it and all we need do is add a second data
path where the the DATA TIME STEPS information key (generated
in response to the UPDATE TIME STEPS request from downstream)
is monitored. We then accumulate newer positions and allow older
ones to be dropped according to how long we wish our trails to be.
Being aware of time step values, we can tolerate instances where the
user temporarily halts animation or scrolls back and forth through time
erratically. In Figure 6 we show examples of the output of our filter
with long or short trails enabled for subsets of the data.

5.6 Particle Tracing

Tracking particles through unsteady flows is computationally expen-
sive and practically difficult when the number of cells becomes large.
Parallelization is desirable to solve both problems. Currently there are
no off the shelf solutions to parallel particle tracing that can be plugged
into a general purpose visualization tool and used on arbitrarily large
vector field data. Our implementation of the particle tracer is similar

Fig. 7. Particles flowing through a turbulent boundary layer. Radius
and opacity are proportional to vortex identification measure λ 2. Color
represents pressure.

to that described in [8] with data broken into pieces and distributed
on a generic cluster by the existing parallel framework built into the
pipeline. The central path of Figure 2 shows the pipeline used for the
generation of data (with the addition of a writer which saves particle
data to disk for later generation of animations). The Particle tracer re-
quests 2 time steps per iteration, fed to it by the TEMPORALDATASET-
CACHE, which is set to hold just 2 values. The particle tracer accepts a
primary input containing the vector field dataset and secondary inputs
which represent the seed locations. Since the seed points are also con-
nected to their own pipelines, they may be animated using key frames
linked to the primary time loop, or generated from analysis of the in-
put data to find optimum positions for seed point placement. Particle
injection may happen on a single processor (the default), however if
the seed points are generated from some operation on the primary in-
put (such as a slice or a region selection), then the seeds will be gen-
erated on the processor already holding the piece of data of interest.
Thus seeds can be injected on the processor already owning the block
in question. By default, particles are tracked using Runge-Kutta 2nd

order integration of the vector field; other integrators (such as Runge-
Kutta 4th order) may be plugged in. Adaptive time integrators are not
supported in the initial implementation, but could be added without
significant modification to the code. When leaving a processor, parti-
cles are sent via MPI to the other processors where they are picked up
and continued. Potentially more efficient parallelization by could be
achieved by duplicating data on all processors and integrating particles
in parallel without the need for MPI communication, but we wish the
algorithm to run on arbitrarily large datasets which may be not fit into
memory in a single piece, particularly problematic as 2 time steps are
required in memory for processing at a time.

No special preprocessing or optimization is made to the initial data
other than to enable or disable the caching of cell index information
depending upon whether the mesh is static or dynamic over time. Dy-
namic meshes are handled by the particle tracer but there is a perfor-
mance penalty associated with the need to re-evaluate parametric cell
coordinates for each particle at each time step.

Figure 7 shows an image generated from particle data produced
by our TEMPORALSTREAMTRACER module. The example shows a
snapshot from a sequence where 400,000 particles were injected over
1000 time steps using 32 CPUs. The dataset consists of 10 million hex-
ahedral cells stored in multi-block form with 58 blocks - consuming a
total memory (mesh plus transient data) of 700MB per step (0.7TB in
total). The performance of our implementation is highly dependent on



the seeding strategy of particles. In the example shown in Figure 7 par-
ticles were injected into the inflow of the boundary layer, causing the
processors holding blocks of data around the inflow to become fully
loaded whilst others in the unoccupied voids had no work to do. The
processing time for 400,000 particles using this seeding strategy was
around 15 hours. Using a randomized seeding pattern for particle in-
jection to evenly balance the processor load improved the processing
time to just 3 hours for 400,000 particles on 32 CPUs and 6 hours for
16 CPUs.

The implementation is however extremely flexible, handling any
3D cell type available in the library, catering for dynamic meshes, and
optionally interpolating any scalars present in the data for each particle
generated. Particles passing from one domain to another where the
meshes do not align perfectly (rotating turbine domains for example)
cause problems as particles can be lost in the gaps between meshes.
Future improvements to the implementation should improve both the
tolerance for dynamic meshes and the computation time required.

The limit to the size of data which can be in principal be managed is
determined by resources available. The current implementation scales
linearly with increasing CPU count, providing the number of particles
is large and the computation time significantly exceeds the IO time.
Since every process must send particles that have left the domain to
neighboring processes after each time step the overall speed is deter-
mined by the slowest process. Best results are achieved when large
numbers of particles are seeded randomly or evenly throughout the
data as opposed to when they are clumped in a single domain.

6 CONCLUSION

This paper has presented the design and implementation of a paral-
lel visualization pipeline architecture for temporal data. The design
requirements were obtained from a careful consideration of the prob-
lems that existing temporal support presented and the types of algo-
rithms that need to be implemented. After several alternative archi-
tectures were developed, one was selected and implemented. Whereas
previous architectures limit filters to dealing with datasets for a sin-
gle time step at once, this new architecture allows an arbitrary number
of time steps to be requested – including streaming pieces of datasets
from multiple time steps at once so that the pipeline can continue to
accommodate data parallelism. The new architecture does not require
changes to filters that are unaware of the new temporal features. Fur-
thermore, filters such as the TEMPORALDATASETCACHE were im-
plemented to aid in its adoption by providing applications with a way
to combine existing non-temporal pipelines with temporal processing.
We demonstrate our design by implementing a number of different
time dependent visualizations, including the processing of large time-
dependent data. By extending a widely used visualization framework
with these new capabilities we have placed a powerful tool in the hands
of researchers and scientists, enabling the straightforward implemen-
tation of new time-dependent algorithms on large datasets that was
not previously possible. Although other visualization systems provide
some temporal processing capabilities, we are not aware of any that in-
clude user-configurable and extensible pipelines that enable the range
of temporal processing functionality presented here.

ACKNOWLEDGEMENTS

Thanks to Jörg Ziefle, ETH Zürich; Theophane Foggia, Swiss Na-
tional Supercomputing Centre; David Graham, Plymouth University,
UK, for their assistance and test data. K. Moreland and D. Thomp-
son were supported by the United States Department of Energy, Office
of Defense Programs. Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under contract DE-AC04-94-AL85000.

REFERENCES

[1] G. Abram and L. Treinish. An extended data-flow architecture for data
analysis and visualization. SIGGRAPH Comput. Graph., 29(2):17–21,
1995.

[2] J. Ahrens, K. Brislawn, K. Martin, B. Geveci, C. C. Law, and M. Papka.
Large scale data visualization using parallel data streaming. IEEE Com-
puter Graphics and Applications, 21(4):34–41, 2001.

[3] J. P. Ahrens, N. Desai, P. S. McCormick, K. Martin, and J. Woodring.
A modular, extensible visualization system architecture for culled, prior-
itized data streaming. In R. F. Erbacher, J. C. Roberts, M. T. Grohn, and
K. Borner, editors, Visualization and Data Analysis 2007, volume 6495,
pages 64950I–1 – 64950I–12. SPIE, 2007.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-Oriented Software Architecture, Volume 1: A System of Patterns.
Wiley, October 1996. ISBN 0-471-95869-7.

[5] G. Cameron. Modular visualization environments: Past, present, and
future. Computer Graphics, 29(2):3–4, 1994.

[6] E. H. Chi. A taxonomy of visualization techniques using the data state
reference model. In IEEE Symposium on Information Visualization, 2000,
pages 69–75, October 2000.

[7] H. Childs, E. S. Brugger, K. S. Bonnell, J. S. Meredith, M. Miller, B. J.
Whitlock, and N. Max. A contract-based system for large data visualiza-
tion. In Proceedings of IEEE Visualization 2005, pages 190–198, 2005.

[8] D. Ellsworth, B. Green, and P. Moran. Interactive terascale particle visu-
alization. In VIS ’04: Proceedings of the conference on Visualization ’04,
pages 353–360. IEEE Computer Society, 2004.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.
ISBN 0-201-63361-2.

[10] A. Gerndt, B. Hentschel, M. Wolter, T. Kuhlen, and C. Bischof.
Viracocha: An efficient parallelization framework for large-scale CFD
post-processing in virtual environments. In Proceedings of the 2004
ACM/IEEE conference on Supercomputing, 2004.

[11] R. B. Haber and D. A. McNabb. Visualization idioms: A conceptual
model for scientific visualization systems. In Visualization in Scientific
Computing, pages 74–93, 1990.

[12] A. Henderson. ParaView Guide, A Parallel Visualization Application.
Kitware Inc., 2005.

[13] D. V. Hutton. Applied Mechanical Vibrations. McGraw-Hill, 1981.
[14] R. Kaeler, S. Prohaska, A. Hutanu, and H. Hege. Visualization of time-

dependent remote adaptive mesh refinement data. In Proceedings IEEE
Visualization conference 2005. VIS2005, pages 175–182. IEEE Computer
Society, 2005.

[15] B. King. VTK 5 pipeline architecture. Kitware Source Quarterly Newslet-
ter 1, Kitware, Inc., July 2006.

[16] Kitware. The VTK User’s Guide. Kitware, Inc., 2006.
[17] M. Krogh and C. Hansen. Visualization on Massively Parallel Computers

using CM/AVS. In AVS Users Conference, Orlando, Fl., May 1993.
[18] B. Lucas, G. D. Abram, N. S. Collins, D. A. Epstein, D. L. Gresh, and

K. P. McAuliffe. An architecture for a scientific visualization system. In
VIS ’92: Proceedings of the 3rd conference on Visualization ’92, pages
107–114, Los Alamitos, CA, USA, 1992. IEEE Computer Society.

[19] K. Ma. Visualizing time varying volume data. Computing in Science and
Engineering, pages 34–42, March 2003.

[20] M. Miller, C. D. Hansen, and C. R. Johnson. The SCIRun problem solv-
ing environment: Implementation within a distributed environment. In
Ninth SIAM Conference on Parallel Processing for Scientific Computing,
1999.

[21] M. Schirski, A. Gerndt, T. van Reimersdahl, T. Kuhlen, P. Adomeit,
O. Lang, S. Pischinger, and C. Bischof. Vista flowlib - framework for
interactive visualization and exploration of unsteady flows in virtual en-
vironments. In EGVE ’03: Proceedings of the workshop on virtual envi-
ronments 2003, pages 77–85, New York, NY, USA, 2003. ACM Press.

[22] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit, An
Object Oriented Approach to 3D Graphics. Kitware Inc., fourth edition,
2004.

[23] B. Szabo and I. Babuska. Finite Element Analysis. John Wiley & Sons,
1991.

[24] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Topological
methods for 2d time-dependent vector fields based on stream lines and
path lines. IEEE Transactions on Visualization and Computer Graphics,
11(4):383–394, 2005.

[25] C. Upson, J. Thomas Faulhaber, D. Kamins, D. H. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam. The application visualization
system: A computational environment for scientific visualization. IEEE
Comput. Graph. Appl., 9(4):30–42, 1989.


	Introduction
	Related Work
	Pipeline-Time Requirements
	Pipeline Architecture
	Design Alternatives and Selection
	The Role of Executives
	Temporal Pipeline Extensions
	Basic Temporal Pipeline Operation
	Iterative Temporal Pipeline Operation
	Branching Pipeline Considerations

	Enabled Technologies
	Temporal Interpolation
	Animating Mode Shapes
	Temporal Comparative Visualization
	Plotting over Time
	Motion Trails
	Particle Tracing

	Conclusion

