GPU-based Image Compression for Efficient Compositing
in Distributed Rendering Applications

Kenneth Moreland®
Oak Ridge National Laboratory

Riley Lipinksi*

University of St. Thomas

ABSTRACT

Visualizations of large-scale data sets are often created on graphics
clusters that distribute the rendering task amongst many processes.
When using real-time GPU-based graphics algorithms, the most
time-consuming aspect of distributed rendering is typically the com-
positing phase — combining all partial images from each rendering
process into the final visualization. Compositing requires image data
to be copied off the GPU and sent over a network to other processes.
While compression has been utilized in existing distributed render-
ing compositors to reduce the data being sent over the network, this
compression tends to occur after the raw images are transferred
from the GPU to main memory. In this paper, we present work that
leverages OpenGL / CUDA interoperability to compress raw images
on the GPU prior to transferring the data to main memory. This
approach can significantly reduce the device-to-host data transfer
time, thus enabling more efficient compositing of images generated
by distributed rendering applications.

Index Terms: Computing methodologies—Computer graphics—
Image compression; Computing methodologies—Parallel comput-
ing methodologies—Parallel algorithms—Massively parallel algo-
rithms

1 INTRODUCTION

Data sets produced by simulations and collected from digital instru-
ments and sensors are often too large to analyze on a single computer.
Instead, researchers tend to leverage remote High-Performance Com-
puting (HPC) centers where work can be distributed amongst many
nodes of a computational resource. One common analysis task that
researchers leverage to gain an understanding of the underlying data
is three-dimensional (3D) visualization [31,33].

Creating large-scale visualizations depends on distributed render-
ing applications that are capable of splitting geometric data between
multiple GPUs (usually on multiple nodes of a graphics cluster).
Multiple approaches to distributing rendering on parallel nodes ex-
ist [18], but the most fitting for large-scale HPC use an image com-
positing technique [37]. In this approach, partial images are rendered
independently on each process in the distributed rendering task. The
partial images are then composited into the final visualization (ex-
ample shown in Fig. 1). When using real-time graphics algorithms,
this compositing phase is typically the bottleneck in distributed ren-
dering applications for two reasons: 1) rendered partial images must
be copied from GPU memory to main memory, and 2) images now
in main memory of each rendering process must be sent between
rendering processes via network interconnect. This overhead can sig-
nificantly increase overall job time and inhibit the ability to achieve

*e-mail: 1ipi8497 @stthomas.edu
Te-mail: morelandkd @ornl.gov
*e-mail: papka@anl.gov

Se-mail: tmarrinan @stthomas.edu

Thomas Marrinan®
University of St. Thomas
Argonne National Laboratory

Michael E. Papka*
Argonne National Laboratory
Northern lllinois University

H Rank 0
[Rank 1
[Rank 2
M Rank 3
M Rank 4
[Rank 5
[JRank 6
[JRank 7
[Rank 8
[0 Rank 9
[l Rank 10
W Rank 11
[JRank 12
[JRank 13
[JRank 14
[JRank 15

Figure 1: Composited rendering of a nuclear power station using 16
processes. Each process has drawn its portion of the model using a
unique color.

interactive frame rates when streaming for real-time viewing and
interaction [7,21].

While a few different distributed image compositors exist, IceT
[19,21] serves as an industry standard and has been integrated into
widely used distributed rendering applications such as ParaView [25]
and Vislt [35]. Prior to our work, IceT did leverage a form of
compression for sending image data between rendering processes,
but it still required copying uncompressed color and depth data from
each rendering process’s GPU to main memory. Our work aimed
to implement image compression on the GPU, which yielded two
benefits: 1) faster compression by leveraging the parallel architecture
of GPUs, and 2) smaller data transfer size between a GPU and its
host’s main memory.

After covering prior related work on distributed rendering and
compositing, this paper describes the GPU implementation of IceT’s
Active Pixel image compression format — a form of run-length en-
coding that accounts for image depth in addition to color. Next, it
covers updates made to the IceT library to support modern OpenGL
applications and GPU-based image compression. After describing
implementation details, a series of performance measurements are
provided in order to demonstrate the impact of GPU-based image
compression on compositing in distributed rendering applications.
Finally, the paper will conclude with limitations and of this work
and future improvements to be made.

2 RELATED WORK

As we aimed to integrate GPU-based image compression into a
distributed rendering compositor, we investigated prior work done
on distributed rendering and on image compression using GPUs.

2.1 Distributed Rendering and Compositing

Compositing images in distributed rendering applications occurs in
one of two ways — two-dimensional (2D) image space compositing
(i.e. stitching sub-images together) or three-dimensional (3D) image

space compositing (i.e. blending overlapping pixels). In the former
method, the output image is partitioned into 2D regions. Geometry
is sent to the processor responsible for that region of image space
and rendered locally. These regions are then stitched together for the
final image. In the latter method, the geometry is partitioned among
processors, and each processors renders a full image with its portion
of the geometry. These full images of partial geometry are blended
together using a per-pixel operation that either blends colors or uses
depth information to find the “front” color.

The image stitching approach is a natural fit for tiled displays,
which partition the screen space with hardware [10]. Several render-
ing systems such as WireGL [12], CGLX [4], and ClusterGL [23]
take advantage of this fact by intercepting OpenGL calls and stream-
ing them to the appropriate nodes. Although these systems scale
well with the size of the display, they suffer from potential load
balancing problems with respect to the geometry.For example, if a
model is only visible on two tiles, then only the two nodes responsi-
ble for rendering those tiles would receive the draw commands for
that model.

To improve the load balancing of screen partitions, Samanta et
al. [30] dynamically repartition the screen space. Areas of the screen
with more geometry are partitioned into smaller regions so that each
region takes roughly the same amount of time to render. These screen
partitions then need to be read back, redistributed, and re-stitched to
the physical display. The idea is periodically rediscovered by other
rendering systems [5,27]. Although this stitching approach only
needs to handle color data, there is one major drawback — geometric
models can cross sub-image boundaries and therefore need to be
loaded on multiple rendering nodes.

In contrast, the image compositing approach where a stack of
images, each generated by a different process, are blended together
pixel-by-pixel has a high initial overhead — including reading back
render buffers, transferring pixel data, and blending pixels — but
scales very well with respect to the size of data. The approach is
shown to work well at the largest scales [3,21]. Much of the work
on image compositing focuses on the reduction network for the
images [15, 16,20, 24,26, 40], but there have been multiple other
optimizations including amortizing costs across multiple renderings
[14], interlacing images for better load balancing [32], improved
gathering [9], and of course compression [1,22,39], which is the
focus of this paper.

Some rendering systems are designed for multiple modes of
parallel rendering. Chromium [13] extends the functionality of
WireGL [12] to customize the streaming behavior of OpenGL calls,
insert new behavior in the rendering system, and provide “out of
band” communication to blend image pixels. More recently, Equal-
izer [6,7] serves as a full fledged distributed rendering framework
that incorporates dynamic load balancing of geometry and supports
advanced rendering techniques such as stereoscopy for CAVE virtual
reality displays. For the image compositing portion of the distributed
rendering task, Equalizer leverages region of interest detection and
basic image compression to reduce the data sent between rendering
processes. This enables distributed rendering applications based on
Equalizer to achieve interactive frame rates.

IceT [21] is an image compositing library that differentiates itself
from other systems in a couple ways. First, when compared to other
pixel blending systems, it reduces the time spent compositing by
leveraging the fact that rendered sub-images often have significant
empty space. This allows IceT to remove pixels in empty regions
from inter-process communication, thus making better use of avail-
able network bandwidth. It also allows IceT to ignore the empty
regions when compositing sub-images together, which reduces the
computation time. Second, unlike Equalizer, it decouples itself
from the rendering. This makes it more flexible so that it can work
with a variety of rendering interfaces (including, but not limited to
OpenGL).

2.2 GPU-based Image Compression

The primary purpose of most image compression algorithms is to
reduce the image’s data size while maintaining image quality. There
are two types of image compression — lossless and lossy. Lossless
compressed images can be fully recovered to their original uncom-
pressed state, whereas lossy compressed images cannot. In either
case, compression speed is often left as a secondary goal at best.
Thus many compression algorithms are not well suited for real-time
distributed rendering and compositing.

One form of lossless image compression that is computationally
efficient is run-length encoding (RLE) [28]. RLE images group
sequences of adjacent pixels with the same color by simply speci-
fying the number of pixels in a run and the color for that run. RLE
compression works particularly well when there are large swaths
of uniform color in an image. Rutter [29] created a parallel imple-
mentation of RLE compression that could be computed on a GPU.
Although the computational complexity is increased from the serial
version, the overall computation time is significantly reduced due to
the massive parallelism provided by GPUs.

Another lossless compression scheme is Huffman coding [11].
Huffman coding works with any generic data type and is used in
common image formats such as JPEG and PNG. A binary tree is
created based on the frequency that each symbol occurs in a data set.
Symbols that occur more frequently are at a higher level in the tree
whereas symbols that occur more rarely are at a lower level in the tree.
Variable-length keys are then created for each symbol, corresponding
to their location in the tree. The final compressed data contains
both the tree and the sequence of keys that match the input data.
Huffman coding works particularly well when there are patterns
that repeat frequently (whether sequentially or not). Yamamoto et
al. [38] demonstrate a method for efficiently parallelizing Huffman
coding for execution on a GPU. Results from their work show that
the parallel compression algorithm is computationally efficient —
compute time on the order of a few milliseconds per GB of input
data and about 100x faster than serial execution on the CPU.

Since GPUs are designed for computer graphics, texture-based
compression schemes, such as DXT1, are also well suited for par-
allel encoding. DXT]1 is a lossy compression scheme that always
results in an 8:1 compression ratio for raw color images. For the
DXT1 compression scheme, 4 x 4 blocks of pixels are indepen-
dently compressed, thus making the compression algorithm embar-
rassingly parallel and well suited for computing on a GPU [2, 8].
Each block contains four colors — two colors are explicitly defined
using RGB565 format (i.e. 5 bits for red, 6 bits for green, and 5
bits for blue), while the other two are implicitly defined as linear
interpolations between the first two. Each of the 16 pixels in the
4 x 4 block then uses 2 bits to index which of the four possible col-
ors is closest to its original uncompressed color. One other benefit
of texture compression formats such as DXT1 is that they do not
need to be decompressed prior to rendering since they are natively
supported by most graphics interfaces.

2.3 Compression for Distributed Rendering
Compositing

Unlike most situations where compression is used, the main concern
in a distributed rendering application is speed as opposed to data
size. As Makhinya et al. write in their paper about fast compositing
for cluster-parallel rendering, ... data reduction can be achieved
using image compression. However, this must meet demanding
requirements, as its overhead has to be strictly smaller than any
transmission gainings, which can be difficult to achieve.” [17]. Since
our work focused on performing image compression on the GPU, we
ensured that compression compute time + device-to-host memory
transfer time of compressed images was strictly less than device-to-
host memory transfer time of the raw images.

3 ACTIVE PIXEL ENCODING

Rendering pipelines leverage a framebuffer for converting three-
dimensional geometry to a two-dimensional grid of pixels. This
framebuffer contains both a color and a depth value for each pixel.
Color is most often represented using four unsigned 1-byte values
that represent the red, green, blue, and alpha (RGBA) intensity
for a given pixel, where alpha is the opacity. Depth is most often
represented using a single 4-byte floating point value [—1.0,1.0],
where —1.0 is near the virtual camera and 1.0 is far away from the
virtual camera.

IceT leverages Active Pixel encoding to compress RGBA and
depth information for compositing. Active Pixel encoding is a spe-
cialization of RLE that creates runs of active pixels (pixels that
contain rendered geometry), and inactive pixels (pixels that do not
contain rendered geometry and therefore simply store a background
color value).

To determine whether or not a pixel is an active pixel, the depth
value can be checked. If the depth value for a given pixel is 1.0,
that means no geometry in the view volume projects to that pixel,
and therefore it is inactive. If the depth value for a given pixel is
anything other than 1.0, that means rendered geometry does project
to that pixel, and therefore it is active.

Each run in the Active Pixel format is defined as follows: number
of inactive pixels (32-bit integer), number of active pixels (32-bit
integer), list of RGBA and depth values for each active pixel. The
IceT API also has application developers define the desired back-
ground color so that when decompressing a final composited image,
the remaining inactive pixels can be appropriately colored. Prior to
our work, Active Pixel encoding was performed on the CPU, which
required raw RGBA and depth buffers to be copied oft of the GPU
when using hardware accelerated rendering.

3.1 CPU-based Compression

Active Pixel encoding was selected for use with IceT because it
exhibits the following properties: 1) Fast encoding — each pixel
only needs to be visited once (i.e. run time &'(n)); 2) Free decoding
— compositing can be done directly on encoded images (i.e. no
decoding necessary until display of final result); 3) Faster Blending
— pixels in inactive pixel regions are easily skipped; 4) Effective
compression — often a significant number of inactive pixels resulting
in good data size reduction; 5) Good worst case behavior —no image
will even add more than 8 bytes to the uncompressed data size (i.e.
image with no inactive pixels will add two 4-byte integers for the
inactive/active run counts) [19].

An RGBA depth image can be encoded in the Active Pixel format
by using a single loop to iterate over each pixel. For each pixel, its
depth value is checked to determine whether it is inactive or active.
Only active pixels need to copy their RGBA and depth values into
the compressed image buffer. Additionally, a counter is employed
to keep track of how many consecutive pixels are inactive / active.
These run lengths are also copied into the compressed image buffer.

3.2 GPU-based Compression

While Active Pixel encoding on the CPU is quite fast, copying raw
uncompressed RGBA and depth information from GPU memory to
main memory can be relatively time consuming. Therefore, when
using hardware accelerated rendering, it becomes advantageous to
perform compression on the GPU prior to copying data to main
memory. A secondary benefit is that the massively parallel architec-
ture on a GPU can lead to even faster computation for Active Pixel
encoding.

For our work, we selected Thrust [34] (a C++ template library for
CUDA) as a General-Purpose computing on Graphics Processing
Units (GPGPU) library. This choice was made since Thrust includes
a number of parallel algorithms that are useful for RLE-based com-
pression, such as inclusive / exclusive scan (new list that contains

the running total of all elements in an input list) and reduce-by-key
(summing or counting elements in an input list grouped by a com-
mon key). In order to access image data already on the GPU, we
leverage OpenGL / CUDA interoperability. This enables Thrust-
based algorithms to read directly from OpenGL textures without
any need for uploading data from main memory or copying textures
to a separate GPU buffer. While our implementation uses OpenGL
and Thrust, we note that the algorithms are not language or library
dependent and could be ported for use with other rendering and
GPGPU APIs (e.g. Vulkan-based rendering and compute [36]).

Parallel encoding of a raw RGBA and depth image into the Active
Pixel format is split into five steps (where each step leverages the
massive parallelism available on a GPU):

1. For each pixel, determine whether or not it is active and de-
termine whether the pixel starts a new run of active/inactive
pixels. Results output to two integer buffers (where ‘no’ =0
and ‘yes’ =1).

2. Perform an inclusive scan on the new run buffer (output from
Step 1). This will output a buffer whose values are such that
pixels in the same run will have the same value, and thus serves
as arun ID.

3. Perform a reduce-by-key with the run ID buffer (output from
step 2) as the keys and a constant value 1 for performing the
sum operation. This will essentially count the number of pixels
in each run and thus outputs a buffer that contains run lengths.

4. Perform an exclusive scan on the is active buffer (output from
Step 1). This will output a buffer whose values represent its
active index (how many active pixels exist before each pixel).

5. Write the compressed image. For each pixel, if it is active,
determine the correct offset in the encoded image buffer (using
Equation 1) and copy RGBA and depth values to that location.
Additionally, if the pixel starts a new run, copy run lengths
for the current active run and the preceding inactive run at the
location just before the offset for the RGBA and depth values
for this pixel in the encoded image. Finally, if the pixel is
the final pixel in the image, it should output the total size of
the compressed image and, if the final pixel is inactive, copy
inactive run length along with an active run of length O at the
end of the encoded image. For Equation 1, note that p, will be
the same as p; for active pixels. When computing offset for a
final pixel that is inactive, rp, will be the ID of the active run
that precedes pj.

-1
ApOffset(ap, ,rp,) =8+ (a,,l + rpzz + 1) (1)

where:
ap, = number of active pixels prior to pixel py,
7p, = ID of run that pixel p, belongs to

Pseudocode for our parallel Active Pixel encoding is shown in
Algorithm 1. While the parallel implementation reduces run-time, it
is worth noting that it is more complex than the serial implementation
(requires iterating over the pixels more than once). It also has a larger
memory footprint since intermediate results must be stored prior to
writing the final compressed image. Since the new run and is active
buffers only store Os and 1s, they can be arrays of 1-byte integers.
The run ID, run length, and active index buffers all need to be
arrays of 4-byte integers. Therefore, there is an additional memory
footprint of 1.75x raw image size for storing the intermediate results.

However, in our implementation, Thrust enables data transfor-
mation on-the-fly during their inclusive/exclusive scan and reduce-
by-key algorithms. Therefore determining whether or not a pixel is
active or starts a new run does not need to be precomputed. This
reduces the memory footprint to 1.5x raw image size. Open source
code for parallel image compression using Thrust is available at
https://github.com/tmarrinan/pari-compression.

Algorithm 1 Parallel Active Pixel Encoding

Input: width, height, color, depth

Output: ap_image, ap_size

1: new_run,is_active < PIXELPROPERTIES(width,

height, depth)

: run_id < INCLUSIVESCAN(new_run)

. run_len < REDUCEBYKEY(run_id, 1)

: active_idx + EXCLUSIVESCAN(is_active)

: ap_image,ap_size < COMPRESSIMAGE(width,
height, color, depth, is_active, new_run,
run_id, run_len, active_idx)

[V I NS]

1: procedure PIXELPROPERTIES
input: width, height, depth
output: is_active, new_run
is_active|0] < (depth|0] # max_depth)
new_run[0] < 1
parfor i < 1, (widthx height) do
is_activeli] < (depthli] # max_depth)
p-active < (depth[i — 1] # max_depth)
new_runli] < (is-activeli] # p_active)
end parfor

Al

1: procedure COMPRESSIMAGE
input: width, height, color, depth, is_active, new_run,
run_id, run_len, active_idx
output: ap_image, ap_size

2: parfor i < 0, (width « height) do

3: if is_active[i] then

4: pos < ApOffset(active_idx[i], run_id[i])

5: Memcpy (ap-image + pos, color|i],4)

6: Memcpy (ap-image + pos +4,depthli],4)
7: if new_run[i] = 1 then

8: inactive < 0

9: if run_id[i] > 1 then
10 inactive < run_len[run_id[i] — 2|
11: active < run_len[run_id[i] — 1]
12: Memcpy (ap_image + pos — 8, inactive,4)
13: Memcpy (ap-image + pos — 4, active,4)

14: end parfor
15: i < (widthx height) — 1

16: active_run < run_id[i] + is_active[i] — 1

17: pos < ApOffset(active_idxli],active_run)
18: ap_size < pos+8

19: if not is_active[i] then

20: inactive < run_len[run_id[i] — 1]

21: active <0

22: Memcpy (ap-image + pos, inactive,4)
23: Memcpy (ap_image + pos + 4, active,4)

4 |ICET INTEGRATION

Prior to our work, IceT provided an interface for compositing partial
images rendered by legacy OpenGL applications. IceT also pro-
vided a generic compositing interface that was rendering framework
agnostic. Since IceT’s OpenGL interface only supported legacy

applications, those using modern OpenGL (OpenGL 3.0+ using
GLSL shaders) were relegated to using the more complex generic
compositing interface.

In order to perform compression on the GPU, images need to
be rendered to a texture rather than onscreen. Therefore, we have
updated IceT in two ways: 1) creating a modern OpenGL interface
that supports a programmable rendering pipeline, outputting both
color and depth to textures on the GPU, and 2) using Thrust to
compress image data stored in OpenGL textures on the GPU prior
to device-to-host memory transfer.

4.1 lIceT for Modern OpenGL Applications

The first release of IceT occurred in 2001 when OpenGL was primar-
ily a fixed-function pipeline [22]. Consequently, the initial design
assumed rendering would occur on a GPU and the compositing work
would happen on the CPU. This meant that before compositing could
start, pixels needed to be transferred from the GPU to main memory.
IceT works to minimize the region of pixels transferred, but raw
pixels are transferred nonetheless.

A generic interface for IceT that does not rely on OpenGL (or
any other rendering system) has long existed. However, in this case
as well, image data was transferred to IceT through memory buffers
on the CPU. Thus, the generic interface did not get around the issue
of transferring raw pixels.

Since IceT’s inception, graphics hardware has changed dramat-
ically. The ability to compile software to run directly on the GPU
makes it possible to move some of the IceT functionality there. To
make this possible, we first update IceT to use a more modern ver-
sion of OpenGL. The reason for this is twofold. First, OpenGL
1.1 provides no convenient mechanism to access framebuffers in
GPU programming environments like CUDA. Second, it is unrea-
sonable to expect applications to be using such an outdated version
of OpenGL. Our new rendering interface layer is built on top of
OpenGL 3.0, which is the first version to contain the GLSL capabili-
ties needed for our implementation but is new enough to be forward
compatible with more recent versions of OpenGL.

Our OpenGL 3 layer to IceT first creates textures to hold the color
and depth values of rendered images, and then builds a framebuffer
object (FBO) with these textures. The FBO identifier is made avail-
able to the distributed rendering application so that it can render its
image to this framebuffer. Once the rendering function completes,
the textures of the framebuffer can be copied to main memory or
used for further image processing on the GPU.

4.2 OpenGL / CUDA Interop

Graphics data can be accessed directly by general purpose GPU
code through the use of OpenGL / CUDA interoperability. One com-
plication that occurs though is that the OpenGL depth texture cannot
be accessed directly by CUDA because of number format incom-
patibility (internally stored as 24-bit unsigned integer, but accessed
as 32-bit float). Instead, the data has to be first copied to a single
component floating-point texture. This is done by implementing an
additional rendering pass. A single fullscreen quad is drawn that
uses an OpenGL GLSL shader to read pixel values from the original
24-bit unsigned integer depth texture and output pixel values to the
32-bit float texture. Although this essentially adds a memory copy,
it is all done on the GPU and therefore occurs very fast.

Once rendered images are stored in the appropriate format, com-
pression can be performed on the GPU. A texture cannot be accessed
simultaneously by OpenGL and CUDA. Therefore it is important
to unbind the framebuffer with the color and depth textures prior to
mapping them in the CUDA code. Similarly it is important to unmap
the textures in the CUDA code after performing the compression but
prior to transferring control back to the rendering system.

Since IceT supports compositing for tiled displays, the rendered
image may need to be compressed into multiple lower resolution

https://github.com/tmarrinan/pari-compression

Figure 2: Model of over 1600 neurons reconstructed from an electron
microscopy scan of a mouse brain.

images — one per tile. Therefore, we implemented a slight modi-
fication to the Active Pixel encoding as described in Sect. 3. The
modification takes into account two factors specific to IceT: 1) di-
mensions of the rendered image and compressed image used for
compositing may have different resolutions, and 2) due to region of
interest detection, certain areas of the image are ignored (i.e. treated
as inactive regardless of pixel depth values). The region of interest
in the rendered texture and Active Pixel compressed image will be of
the same dimensions, but the location (pixel row and column offset)
may be different. Equation 2 shows how to calculate which pixel in
the rendered image corresponds to a given pixel in the Active Pixel
encoded image. The render_viewport is the offset into rendered im-
age for bottom-left corner of where the region of interest is located.
The target viewport is the offset into Active Pixel encoded image for
bottom-left corner of where the region of interest should be stored.

render, = target, — target_viewporty + render_viewporty

rendery = target, — target viewporty + render viewport, (2)

In addition to performing the compression computation on the
GPU, we also use pinned memory — memory that cannot be paged
out (i.e. will always be located in physical memory). This is a tech-
nique that enables higher bandwidth data transfer between a GPU
and its host. The combination of direct access to rendered image
data, performing Active Pixel encoding using a parallel algorithm,
reducing the amount of data needing to be transferred from the GPU
to main memory, and using pinned memory for fast data transfer
leads to a significant reduction in time for image data compression
and memory transfer.

5 PERFORMANCE MEASUREMENTS

In order to evaluate the impact that performing Active Pixel en-
coding on the GPU has on distributed rendering applications, we
measured both compute and memory transfer times as well as overall
frame rate. We compared three of IceT’s compositing methods: 1)
generic compositing interface, 2) OpenGL 3 compositing interface,
and 3) OpenGL 3 compositing interface with GPU compression.
When using the generic compositing interface, the entire rendered
framebuffer is provided to IceT and Active Pixel encoding occurs on
the CPU. When using the OpenGL 3 compositing interface, region

Figure 3: Point cloud of approximately 55.3 million GPS coordinates
collected by OpenStreetMap.

of interest detection is leveraged to reduce raw data memory transfer
size, but Active Pixel encoding still occurs on the CPU. When using
the OpenGL 3 compositing interface with GPU compression, Active
Pixel encoding occurs on the GPU (taking into account the region of
interest) and compressed image data is transferred to main memory.

It is also worth noting that rendering with IceT’s generic inter-
face can be configured to use region of interest detection. However,
we wanted to be able to measure the relative benefit of GPU-based
compression compared to that of region of interest detection. Ad-
ditionally, we feel that the burden of configuring region of interest
detection using the generic compositing interface is non-negligible
and therefore application developers may not implement it in their
distributed rendering applications.

We used three different data sets in our experiments — a simple
model of a nuclear power station, reconstructed neurons from an
electron microscopy scan of a mouse brain, and latitude/longitude
coordinates collected from GPS devices by OpenStreetMap (shown
in Figs. 1, 2, and 3 respectively). The nuclear power station is stored
as 34 separate OBJ files and contains 9,096 triangles in total. The
neuron data set is stored as 1632 separate OBJ files and contains
just over 91 million triangles in total. The GPS data set contains
approximately 2.77 billion latitude/longitude coordinates, of which
2% were preprocessed for use with our experiments. The resulting
~55.3 million latitude/longitude coordinates were mapped onto a
globe in 3D and rendered using an imposter sphere point cloud
visualization with both size and color mapped to density.

For each data set and compositing method, we performed strong
scaling tests at three different resolutions — HD (1920 x 1080), 4K
(3840 x 2160), and 8K (7680 x 4320). For the nuclear power station
and neuron data sets, OBJ files were distributed amongst rendering
processes. For the GPS data set, points were distributed based on
latitude/longitude with an equal number of points per process. The
nuclear power station data set was rendered using 2, 4, 8, 16, and 32
processes. The neuron and GPS data sets were rendered using 6, 12,
24, 48, 96, and 192 processes.

The nuclear power station data set intentionally has a low polygon
count, which leads to quick render times even with a small number
of processes. This results in compositing as the main bottleneck
in the distributed rendering pipeline. The neuron and GPS data
sets are intentionally larger-scale. When using a small number of
processes, data is either too large to fit in GPU memory or leads to

non-interactive render times. However, when using a large number
of processes, data easily fits in GPU memory and can be rendered
quickly. Therefore, as more processes are used, these distributed ren-
dering applications move from having rendering as their bottleneck
to having compositing as their bottleneck.

All tests were run on Argonne National Laboratory’s Cooley sys-
tem — a 126-node cluster with an NVIDIA Tesla K80 dual GPU
in each node and a 56 Gbps FDR InfiniBand interconnect. Each
test used two processes per node (with each using a separate GPU).
Visualizations of each data set positioned the models to fill the cen-
ter of the screen. The models were rotated 360° over 180 frames.
Our main goal was to speed up the overall distributed rendering

Frame Rates for Nuclear Power Station

. /ﬁ

—&— OGL3 GPU (HD)

E 32 o-woo-wemh ~ - OGL3 GPU (4K)
8 1w pmo==8 ———h=——a—==8 <3+ OGL3 GPU (8K)
g s wo=ooBT SO Aveeereens A —e—0GL3 CPU (HD)
é 4 TII i -=gnnnns T ~ = 0GL3 CPU (4K)
E 2 Aveeeetttt A «+ s+« OGL3 CPU (8K)

. ~=8- Generic (HD)

- @~ Generic (4K)

0) 4 8 16 22 -+ Generic (8K)

Number of Rendering Processes

Frame Rates for Reconstructed Neurons

128
64
///\ —e— OGL3 GPU (HD)
32 e ~ @~ OGL3 GPU (4K)
_.-a- oo dm——-
16 4 - § -+sk-+ OGL3 GPU (8K)

8- OGL3 CPU (HD)

~ @~ OGL3 CPU (4K)
-+ k- OGL3 CPU (8K)
Generic (HD)

Frames per Second
©

Generic (4K)

6 12 24 48 9 192 Generic (8K)

Number of Rendering Processes

Frame Rates for GPS Point Cloud

32
16 " —e—0GL3 GPU (HD)
- e |
2 = — @~ OGL3 GPU (4K)
g 8 = 'Y
& il T A <+ OGL3 GPU (8K)
= 227 et
g 4 ¥ A, Aoveosses A —8— OGL3 CPU (HD)
TR
8 Wi ~ @~ OGL3 CPU (4K)
£ 2 At
= A -+ k- OGL3 CPU (8K)
1 Generic (HD)
Generic (4K)
0 -« Generic (8K)
6 12 24 48 9% 192 eneric

Number of Rendering Processes

pipeline. Therefore the primary dependent variable we were inter-
ested in observing was frame rate, measured in average frames per
second (FPS). Secondarily, we also were interested in observing
compression compute time and device-to-host data transfer time.

5.1 Frame Rate Comparison

The main goal of our work was to improve distributed rendering time,
thus leading to higher frame rates. Results from rendering the nu-
clear power station, reconstructed neurons, and GPS point cloud data
sets are visualized in the left column of Fig. 4. The two composit-
ing techniques using the new OpenGL 3 compositing interface for
IceT were able to achieve substantially higher frame rates than the

Average Speedup for Nuclear Power Station

2.00

175

150

1.25 .
1.00 - K
0.75 8K
0.50

0.25 l I

0.00

OGL3 CPU OGL3 GPU

Frame Rate Speedup
(Compared to OGL3 CPU)

N

Generic

Average Speedup for Reconstructed Neurons

2.00
a2 175
_g o
Ly}
3;’6 1.50
w»n O
o o 125
t Tl HD
I o
qE) % 1.00 W 4K
Qo
S E 075 m 8K
w o
e
0.50
0.25 .
0.00 .
Generic OGL3 CPU OGL3 GPU
Average Speedup for GPS Point Cloud
2.00
a2 175
_g o
Ly}
§6 1.50
wn O
o o 125
g8 HD
I o
qE) g 1.00 W 4K
Qo
S E 075 m 8K
w o
1=
0.50
S | |
0.00

Generic OGL3 CPU OGL3 GPU

Figure 4: Frame rate results for nuclear power station, reconstructed neurons, and GPS point cloud data sets rendered at HD, 4K, and 8K using
the three compositing techniques. Left column shows strong scaling results when measuring overall frames per second. Right column shows
relative frame rate speed (with the regular OpenGL 3 compositing interface as the reference).

generic compositing interface, which falls in line with prior experi-
ments showing that region of interest detection can greatly improve
compositing efficiency. Additionally, the OpenGL 3 compositing
interface with GPU-based compression resulted in achieving even
higher frame rates than when performing the compression on the
CPU. Results also show that the OpenGL 3 compositing interface
with GPU-based compression scales better as the improved frame
rates become more pronouced at higher process counts.

We observe that the frame rate for each data set plateaus (or even
decreases) at some point. Adding processes benefits the distributed
rendering pipeline by reducing the amount of geometry each process
is responsible for rendering and shrinking the region of interest each
process uses during compositing. However, extra processes also add
more communication for the compositing step. As with any strong
scaling setup, at some point the benefits of reduced computation are
outweighed by increased overheads.

Our three data sets show three different behaviors. The nuclear
power station receives almost no boost to rendering performance as
the number of processes increase since there is so little geometry to
begin with. Distributed rendering frame rates increase nonetheless
for both compositing methods that use the OpenGL 3 interface due
to the fact that the region of interest for each rendering process
is shrinking. The reconstructed neurons also receives little to no
boost in rendering performance as the number of processes increase.
While this data set is larger, it is already being split into 6 parts at the
smallest tested scale. We were however able to split the data amongst
a higher number of processes and therefore observe the point when
adding more rendering processes became detrimental to the overall
performance of the application. The GPS point cloud applications
shows nice scaling as the number of rendering processes increase.
Even the generic compositing interface (which does not use region
of interest detection) sees an increase in frame rate as the application
uses more rendering processes. However, this application also sees
diminishing returns after a certain point, with frame rates typically
only slightly increasing between the largest two runs.

In addition to looking at raw frame rates, we compared average
frame rates across all scales to the regular OpenGL 3 compositing
interface for each data set / resolution combination. This metric
gave us an average distributed rendering speedup achieved by each
compositing technique when compared to the prior state-of-the-art
of using region of interest detection, but copying raw pixels off
the GPU and performing compression on the CPU. Results for the
nuclear power station, reconstructed neurons, and GPS point cloud
data sets are visualized in the right column of Fig. 4. Beyond the fact
the using GPU-based compression led to a speed up of 1.1x-1.9x for
the whole distributed rendering process, it is worth noting that the

benefits typically became more pronounced as resolution increased.
This is likely due to the fact that for our test applications rendering
time is primarily impacted by geometry, not resolution. However,
compositing time is primarily impacted by resolution, not geometry.
Therefore, as image resolution increases, a larger portion of the
distributed rendering pipeline is spent in the compositing phase, thus
making the GPU-based compression approach more impactful.

5.2 Data Transfer and Compression Time Comparison

In order further investigate the impact that compositing technique
has on distributed rendering applications, we compared GPU to main
memory image transfer time and computation time for performing
the Active Pixel compression. Table 1 shows results for the nuclear
power station, reconstructed neurons, and GPS point cloud data sets
when run using a small number of rendering processes (2, 6, and 6
respectively) and a large number of rendering processes (32, 192,
and 192 respectively).

Results show that region of interest detection can lead to a sub-
stantial decrease in both memory transfer time and compression
computation time. When comparing the regular OpenGL 3 com-
positing interface to the generic compositing interface across all data
sets and resolutions, the regular OpenGL 3 compositing interface led
to a 5.8x-18.8x reduction in memory transfer time at small scale and
a 19.1x-109.0x reduction in memory transfer time at large scale. It
also led to a 1.6x-4.6x reduction in compression computation time at
small scale and a 6.1x-24.3x reduction in compression computation
time at large scale.

We note that the gains of using the regular OpenGL 3 compositing
interface over the generic compositing interface are more substantial
at large scale. This is due to the fact that the regular OpenGL 3
compositing interface uses region of interest detection whereas the
generic compositing interface always uses the entire rendered image.
As more rendering processes are used, each process is responsible
for rendering less geometry, and therefore the region of interest is
likely to shrink. The smaller the region of interest, the less data there
is to transfer and the fewer pixels there are to compress.

Results also show that performing compression on the GPU can
lead to a substantial decrease in both memory transfer time and
compression computation time. When comparing the OpenGL 3
compositing interface with GPU-based compression to the regular
OpenGL 3 compositing interface across all data sets and resolutions,
using GPU-based compression led to a 18.1x-205.6x reduction in
memory transfer time at small scale and a 10.2x-688.2x reduction
in memory transfer time at large scale. It also led to a 1.9x-6.4x
reduction in compression computation time at small scale and a
0.4x-2.7x reduction in compression computation time at large scale.

Table 1: Timing results for performing GPU to main memory image transfer and computation for image compression. Results from smallest scale

runs shown in blue. Results from largest scale runs shown in red.

Nuclear Power Station Reconstructed Neurons GPS Point Cloud
Mem. Transfer Compression Mem. Transfer Compression Mem. Transfer Compression
(milliseconds) (milliseconds) (milliseconds) (milliseconds) (milliseconds) (milliseconds)
HD (1920 x 1080)
Generic 39518 + 41.536 | 6.790 @ 5.922 | 38.228 : 41.631 | 6.080 '@ 5.920 | 36.539 ' 43.184 | 6.172 ' 5.877
OGL3 CPU 6.819 | 0.488 4.344 0259 | 2.535 ; 0.689 1.388 | 0.280 | 4.140 , 2.256 | 2.584 | 0.964
OGL3 GPU 0.358 © 0.048 1.072 © 0.495 | 0.066 . 0.029 | 0.712 . 0.642 | 0.044 . 0.027 | 0.689 . 0.719
4K (3840 x 2160)
Generic 152.554 1 158.988 | 26.992 ' 23.724 | 156.545 : 158.900 | 24.224 + 23.562 | 143.465 1 159.966 | 24.118 ' 23.466
OGL3 CPU 22.826 | 1.574 | 17.289 | 1.004 | 8.347 . 2.080 | 5.404 : 1.011 | 15.602 | 7.835 | 9.994 3.811
OGL3 GPU 1.261 . 0.120 27768 . 0.819 | 0.253 . 0.042 | 2.522 . 1.379 | 0.097 . 0.031 1.809 | 1.717
8K (7680 x 4320)
Generic 658.877 1 633.736 | 108.929 ' 95.005 | 591.419 ' 632.637 | 96.580 ' 94.081 | 574.176 ' 632.394 | 96.198 1 93.711
OGL3 CPU 105.717 ; 5.816 | 69.041 | 4.048 | 32.841 | 7.046 |21.055; 3.879 | 61.075 | 29.594 |39.376 : 15.239
OGL3 GPU 5764 . 0410 | 10.818 & 2.114 | 0930 . 0.092 | 8.853 ' 4.292 | 0.297 . 0.043 | 6.248 . 5.669

We note that since both techniques leverage region of interest
detection, the reduction in memory transfer time can be attributed
to the fact that compressed image data is being copied to main
memory instead of raw pixel data. Performing compression on the
GPU was faster in all but four cases — the large scale runs for the
nuclear power station (HD) and the reconstructed neurons (HD, 4K,
and 8K). This is likely because when rendering at lower resolution
and/or using a high number of rendering processes, the region of
interest may become quite small. Therefore, the extra complexity
in the parallel implementation of Active Pixel compression ends
up outweighing the benefits of parallelism. However, the reduced
memory transfer time more than made up this extra computation
time, so doing GPU-based compression still led to higher frame
rates in these four instances.

5.3 Image Compression Ratios

Both region of interest detection and Active Pixel encoding result in
reducing the data size of rendered sub-images. Table 2 shows the
relative data sizes (compared to full frame RGBA-depth) produced
by each technique for all three tested data sets. Compression ratios
are resolution independent since they correspond to the percentage
of a frame that geometry or its bounding box projects to. As ex-
pected, data size reductions for both region of interest detection and
Active Pixel encoding are more pronounced at larger scale since
each rendering process is responsible for drawing less geometry.
The compression ratio can vary greatly between rendering processes
depending on how the geometry is distributed and the selected view-
point, as demonstrated by comparing the min and max compression
ratios for each data set.

While all three data sets tested had good compression ratios
(especially when using a larger number of rendering processes), we
do note that compression is highly application dependent. In the
absolute worst case, geometry would completely fill the rendered
viewport on every rendering process, resulting in no inactive pixels.
Even in such a case, the result would be a negligible degradation in
performance compared to not performing compression at all — the
data size would grow by a mere 8 bytes (two integers specifying
the length of inactive and active runs) and computation time would
only add a maximum of a few milliseconds. This worst case is also
extremely unlikely. Even if geometry projects to every pixel in the
final image, each process will likely have some empty space once
the geometry is distributed.

A more feasible bad case scenario is when the chosen view is
zoomed in on a scene. This could result in most visible geometry
existing on only a few rendering processes. In such a situation,
some rendering processes would compress their sub-image into one
containing only inactive pixels while others would compress their
sub-image into one containing mostly or fully active pixels. This
situation could be avoided by implementing dynamic load balancing
in the application to redistribute geometry based on the view.

Table 2: Relative data size for using raw pixels with region of interest
(ROI) detection and Active Pixel (AP) encoding. Minimum and max-
imum data sizes produced by any rendering process are provided.
Results from smallest scale runs shown in blue. Results from largest
scale runs shown in red.

Min ROI | Max ROI | Min AP | Max AP

Ratio ' Ratio Ratio ' Ratio
Nuclear Power | 30.159% ! 100.000% | 9.439% : 21.809%
Station 0.010% | 42.732% | 0.009% ' 16.508%
Reconstructed | 3.791% | 48.933% | 1382% ! 5306%
Neurons 0.849% ' 26.965% | 0.040% '@ 1.875%
GPS Point 15.452% ' 75.262% | 0.185% ' 2.433%
Cloud 0.308% | 71.010% | 0.002% ' 0.468%

6 DISCUSSION

The work presented in this paper set out with the goal of improv-
ing just two of the many steps in the distributed rendering pipeline
— transferring data from the rendering GPU to main memory and
compressing images prior to sending data over the network between
rendering processes. While our results provide a substantial im-
provement in maximum achievable frame rates, compositing still
bottlenecks real-time rendering applications due to the transfer of
image data between rendering processes. One way of addressing
this would be to investigate alternate image compression formats
that may yield a greater data reduction than Active Pixel encoding.

We would also like to note that our work has a couple of lim-
itations. First, while the parallel algorithms are generic, our im-
plementation is OpenGL and CUDA specific. This means that
GPU-based compression can only be used by applications that use
IceT’s OpenGL 3 compositing interface and can only be enabled
when run on machines that use NVIDIA GPUs. Additionally, the
current implementation only supports framebuffers that use unsigned
byte RGBA color components and a floating point depth component.
While this represents the standard configuration for most rendering
applications, IceT in general does support other color and depth
formats. The second limitation is the fact that to perform compres-
sion on the GPU, additional GPU memory is required. GPU-based
compression requires a copy of the depth texture, buffers for storing
intermediate data when compressing the image, and a buffer for
writing the final Active Pixel compressed image into. While this
additional space is not overly large, it may hinder applications that
require large amounts of GPU memory for storing application data.

Lastly, we also would like to mention that the impact that GPU-
based compression has on overall frame rate is greatly impacted
by rendering performance. Performing compression on the GPU
typically saved a few milliseconds per frame. For applications that
have short render times, a few millisecond difference can have a
large impact on frame rate. But for applications with longer render
time, the overall impact may be less noticeable. For example, if a
distributed rendering application can produce a frame every 25 ms, it
would result in a frame rate of 40.0 FPS. By reducing the frame time
by 10 ms down to 15 ms, the frame rate would now jump to 66.7
FPS (67% taster). However, if a distributed rendering application
takes 250 ms to produce a frame, it would result in a frame rate of
4.0 FPS. Reducing this frame time by 10 ms down to 240 ms, the
frame rate would barely increase to 4.2 FPS (4% faster).

7 CONCLUSION

Our research set out with two main goals — develop a parallel al-
gorithm for performing Active Pixel encoding on the GPU and
integrate GPU-based image compression into the distributed ren-
dering pipeline to improve overall frame rates. We have presented
our parallel Active Pixel encoding algorithm as well as developed
an implementation of that algorithm using CUDA’s Thrust library.
We also integrated GPU-based image compression into the IceT
compositing library. This integration included developing a modern
compositing interface for OpenGL applications, which should make
building distributed rendering applications with IceT more developer-
friendly. All of our work has been integrated into the official IceT
repository (https://gitlab.kitware.com/icet/icet/). The
IceT OpenGL 3 compositing interface can be configured with or
without GPU-based compression so that it can be leveraged whether
hardware and application constraints are met or not.

We also conducted a series of performance evaluations in order
to determine the impact that GPU-based image compression has
on the overall distributed rendering pipeline. Our results confirm
earlier work done showing the benefits of region of interest detection.
They also show that GPU-based compression can lead to further sub-
stantial improvements to achievable frame rates. While performing
Active Pixel encoding in parallel typically was faster than the serial

https://gitlab.kitware.com/icet/icet/

implementation, the main gain was due to reducing the amount of
data being transferred from the GPU to main memory.

In the future, we would like to investigate whether leveraging
the GPU for other compositing steps (e.g. image decompression,
pixel blending, etc.) would make sense. We are also interested in
investigating other compression schemes, including both lossless
(e.g. Huffman coding) and lossy (e.g. DXT1) formats that would
help reduce that data communicated between rendering processes.
Finally, we are interested in creating another compositing interface
for Vulkan-based rendering. This would enable applications to be
developed using a graphics protocol aimed at high performance
rendering to use IceT for compositing without falling back to the
generic interface. It would also allow us to implement GPU-based
image compression using Vulkan compute shaders, which would
remove some of the hardware limitations with the current CUDA
implementation.

ACKNOWLEDGMENTS

‘We would like to thank Mykhailo Ohorodnichuk and TurboSquid for
creating and providing the “3 D Nuclear station Low-poly” model,
Narayanan Kasthuri (Argonne National Laboratory and the Univer-
sity of Chicago) for providing the data for the reconstructed neuron
models, and OpenStreetMap for collecting GPS coordinate data
and making it publicly available. This research was supported in
part by the Argonne Leadership Computing Facility and the Oak
Ridge Leadership Computing Facility, which are U.S. Department
of Energy Office of Science User Facilities operated under contracts
DE-AC02-06CH11357 and DE-ACO05-000R22725 respectively.

REFERENCES

[1] J. Ahrens and J. Painter. Efficient sort-last rendering using compression-
based image compositing. In Second Eurographics Workshop on Par-
allel Graphics and Visualization, September 1998.

[2] I. Castafio. High quality DXT compression using CUDA. Technical
report, NVIDIA, 2007.

[3] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, Prabhat,
G. H. Weber, and E. W. Bethel. Extreme scaling of production visual-
ization software on diverse architectures. /[EEE Computer Graphics
and Applications, 30(3):22-31, May/June 2010. doi: 10.1109/MCG.
2010.51

[4] K.-U. Doerr and F. Kuester. CGLX: A scalable, high-performance

visualization framework for networked display environments. /EEE

Transactions on Visualization and Computer Graphics, 17(3):320-332,

2011. doi: 10.1109/TVCG.2010.59

Y. Dong and C. Peng. Screen partitioning load balancing for parallel

rendering on a multi-GPU multi-display workstation. In Eurographics

Symposium on Parallel Graphics and Visualization, 2019. doi: 10.

2312/pgv.20191111

S. Eilemann, M. Makhinya, and R. Pajarola. Equalizer: A scalable

parallel rendering framework. IEEE Transactions on Visualization &

Computer Graphics, 15(03):436—452, may 2009. doi: 10.1109/TVCG.

2008.104

[7]1 S.Eilemann, D. Steiner, and R. Pajarola. Equalizer 2.0-convergence
of a parallel rendering framework. IEEE Transactions on Visualization
and Computer Graphics, 26(2):1292-1307, 2020. doi: 10.1109/TVCG.
2018.2870822

[8] L. Emerson and T. Marrinan. Real-time compression of dynamically
generated images for offscreen rendering. In 2019 IEEE 9th Symposium
on Large Data Analysis and Visualization (LDAV), pp. 91-92, 2019.
doi: 10.1109/LDAV48142.2019.8944381

[9] A. V.P. Grosset, M. Prasad, C. Christensen, A. Knoll, and C. Hansen.
TOD-Tree: Task-overlapped direct send tree image compositing for
hybrid mpi parallelism and gpus. IEEE Transactions on Visualization
and Computer Graphics, 23(6):1677-1690, June 2017. doi: 10.1109/
TVCG.2016.2542069

[10] M. Hereld, I. R. Judson, and R. L. Stevens. Introduction to building

projection-based tiled display systems. IEEE Computer Graphics and
Applications, 20(4):22-28, July 2000. doi: 10.1109/38.851746

[5

=

[6

=

(11]

[12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

(25]

[26]

[27]

(28]

[29]

D. A. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098-1101, 1952. doi: 10.1109/
JRPROC.1952.273898

G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanra-
han. WireGL: A scalable graphics system for clusters. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 01, p. 129-140. Association for Computing
Machinery, New York, NY, USA, 2001. doi: 10.1145/383259.383272
G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner,
and J. T. Klosowski. Chromium: A stream-processing framework for
interactive rendering on clusters. In Proceedings of the 29th Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’02, p. 693-702. Association for Computing Machinery, New
York, NY, USA, 2002. doi: 10.1145/566570.566639

M. Larsen, K. Moreland, C. Johnson, and H. Childs. Optimizing
multi-image sort-last parallel rendering. In Proceedings of the IEEE
Symposium on Large Data Analysis and Visualization (LDAV), Oct.
2016. doi: 10.1109/LDAV.2016.7874308

C.-F. Lin, S.-K. Liao, Y.-C. Chung, and D.-L. Yang. A rotate-tiling
image compositing method for sort-last parallel volume rendering
systems on distributed memory multicomputers. Journal of Information
Science and Engineering, 20(4):643-664, 2004.

K.-L.Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. Parallel volume
rendering using binary-swap compositing. IEEE Computer Graphics
and Applications, 14(4):59-68, July/August 1994. doi: 10.1109/38.
291532

M. Makhinya, S. Eilemann, and R. Pajarola. Fast compositing for
cluster-parallel rendering. In Proceedings of the 10th Eurographics
Conference on Parallel Graphics and Visualization, EG PGV 10, p.
111-120. Eurographics Association, Goslar, DEU, 2010.

S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification
of parallel rendering. IEEE Computer Graphics and Applications,
14(4):23-32, July 1994.

K. Moreland. IceT users’ guide and reference: Version 2.1. Technical
report, Sandia National Laboratories, 2011.

K. Moreland. Comparing binary-swap algorithms for odd factors of
processes. In Proceedings of the 8th IEEE Symposium on Large Data
Analysis and Visualization (LDAV), Oct. 2018. doi: 10.1109/LDAV.
2018.8739210

K. Moreland, W. Kendall, T. Peterka, and J. Huang. An image composit-
ing solution at scale. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC’11. Association for Computing Machinery, New York, NY, USA,
2011. doi: 10.1145/2063384.2063417

K. Moreland, B. Wylie, and C. Pavlakos. Sort-last parallel rendering
on tile displays. In Proceedings of IEEE 2001 Symposium on Parallel
and Large-Data Visualization and Graphics, pp. 85-92, October 2001.
B. Neal, P. Hunkin, and A. McGregor. Distributed OpenGL rendering
in network bandwidth constrained environments. In Eurographics
Symposium on Parallel Graphics and Visualization, 2011. doi: 10.
2312/EGPGV/EGPGV11/021-029

J. Nonaka, K. Ono, and M. Fujita. 234Compositor: A flexible parallel
image compositing framework for massively parallel visualization
environments. Future Generation Computer Systems, 82:647-655,
2018. doi: 10.1016/j.future.2017.02.011

ParaView. https://www.paraview.org/. Accessed: 2021-04-22.
T. Peterka, D. Goodell, R. Ross, H.-W. Shen, and R. Thakur. A con-
figurable algorithm for parallel image-compositing applications. In
Proceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis (SC "09), November 2009. doi: 10.
1145/1654059.1654064

N. R. Revanth and P. J. Narayanan. Distributed massive model ren-
dering. In Proceedings of the Eighth Indian Conference on Computer
Vision, Graphics and Image Processing, ICVGIP *12. Association for
Computing Machinery, New York, NY, USA, 2012. doi: 10.1145/
2425333.2425375

A. Robinson and C. Cherry. Results of a prototype television bandwidth
compression scheme. Proceedings of the IEEE, 55(3):356-364, 1967.
doi: 10.1109/PROC.1967.5493

R. Rutter. Run-length encoding on graphics hardware. Master’s thesis,

https://www.paraview.org/

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

University of Alaska at Fairbanks, 2011.

R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J. P. Singh. Load
balancing for multi-projector rendering systems. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware
(HWWS °99), pp. 107-116, 1999. doi: 10.1145/311534.311584

L. Stihli, D. Rudi, and M. Raubal. Turbulence ahead - a 3D web-based
aviation weather visualizer. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology, UIST *18, p.
299-311, 2018. doi: 10.1145/3242587.3242624

A. Takeuchi, F. Ino, and K. Hagihara. An improvement on binary-swap
compositing for sort-last parallel rendering. In Proceedings of the 2003
ACM Symposium on Applied Computing, pp. 996-1002, 2003. doi: 10.
1145/952532.952728

R. M. Taylor. Practical scientific visualization examples. SIGGRAPH
Comput. Graph., 34(1):74-79, Feb. 2000. doi: 10.1145/563788.604456
Thrust. https://docs.nvidia.com/cuda/thrust/index.html.
Accessed: 2021-04-22.

Vislt. https://wci.llnl.gov/simulation/computer-codes/
visit. Accessed: 2021-04-22.

Vulkan. https://www.vulkan.org/. Accessed: 2021-04-22.

B. Wylie, C. Pavlakos, V. Lewis, and K. Moreland. Scalable rendering
on PC clusters. IEEE Computer Graphics and Applications, 21(4):62—
70, July/August 2001.

N. Yamamoto, K. Nakano, Y. Ito, D. Takafuji, A. Kasagi, and T. Tabaru.
Huffman coding with gap arrays for gpu acceleration. In 49th Interna-
tional Conference on Parallel Processing - ICPP, ICPP *20. Associa-
tion for Computing Machinery, New York, NY, USA, 2020. doi: 10.
1145/3404397.3404429

D.-L. Yang, J.-C. Yu, and Y.-C. Chung. Efficient compositing methods
for the sort-last-sparse parallel volume rendering system on distributed
memory multicomputers. In 1999 International Conference on Parallel
Processing, pp. 200-207, 1999. doi: 10.1109/ICPP.1999.797405

H. Yu, C. Wang, and K.-L. Ma. Massively parallel volume render-
ing using 2-3 swap image compositing. In Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, November 2008. doi: 10.
1109/SC.2008.5219060

https://docs.nvidia.com/cuda/thrust/index.html
https://wci.llnl.gov/simulation/computer-codes/visit
https://wci.llnl.gov/simulation/computer-codes/visit
https://www.vulkan.org/

	Introduction
	Related Work
	Distributed Rendering and Compositing
	GPU-based Image Compression
	Compression for Distributed Rendering Compositing

	Active Pixel Encoding
	CPU-based Compression
	GPU-based Compression

	IceT Integration
	IceT for Modern OpenGL Applications
	OpenGL / CUDA Interop

	Performance Measurements
	Frame Rate Comparison
	Data Transfer and Compression Time Comparison
	Image Compression Ratios

	Discussion
	Conclusion

