
Large Scale Visualization on the Cray XT3 Using ParaView

Kenneth Moreland, Sandia National Laboratories
David Rogers, Sandia National Laboratories

John Greenfield, Sandia National Laboratories
Berk Geveci, Kitware, Inc.

Patrick Marion, Kitware, Inc.
Alexander Neundorf, Technical University of Kaiserslautern

Kent Eschenberg, Pittsburgh Supercomputing Center

May 8, 2008

ABSTRACT: Post-processing and visualization are key components to under-
standing any simulation. Porting ParaView, a scalable visualization tool, to the
Cray XT3 allows our analysts to leverage the same supercomputer they use for
simulation to perform post-processing. Visualization tools traditionally rely on a
variety of rendering, scripting, and networking resources; the challenge of running
ParaView on the Lightweight Kernel is to provide and use the visualization and
post-processing features in the absence of many OS resources. We have successfully
accomplished this at Sandia National Laboratories and the Pittsburgh Supercom-
puting Center.
KEYWORDS: Cray XT3, parallel visualization, ParaView

1 Introduction

The past decade has seen much research on paral-
lel and large-scale visualization systems. This work
has yielded efficient visualization and rendering algo-
rithms that work well in distributed-memory parallel
environments [2, 9].

As visualization and simulation platforms con-
tinue to grow and change, so to do the challenges and
bottlenecks. Although image rendering was once the
limiting factor in visualization, rendering speed is
now often a secondary concern. In fact, it is now
common to perform interactive visualization on clus-
ters without specialized rendering hardware. The
new focus on visualization is in loading, managing,
and processing data. One consequence of this is the
practice of co-locating a visualization resource with
the supercomputer for faster access to the simulation
output [1, 3].

This approach of a co-located visualization clus-
ter works well, and is used frequently today. How-
ever, the visualization cluster is generally built to a
much smaller scale than the supercomputer. For the
majority of simulations, this dichotomy of computer
sizes is usually acceptable as visualization typically
requires far less computation than the simulation,
but “hero” sized simulations that push the super-
computer to its computational limits may produce
output that exceeds the reasonable capabilities of a
visualization cluster. Specialized visualization clus-
ters may be unavailable for other reasons as well;
budget constraints may not allow for a visualization
cluster. Also, building these visualization clusters
from commodity hardware and software may become
problematic as they get ever larger.

For these reasons, it is sometimes useful to uti-
lize the supercomputer for visualization and post-
processing. It thus becomes necessary to run visual-

1



ization software such as ParaView [7] on supercom-
puters such as the Cray XT3. Doing so introduces
many challenges with cross compilation and with re-
moving dependencies on features stripped from the
lightweight kernel. This paper describes the ap-
proach and implementation of porting and running
ParaView on the Cray XT3 supercomputer.

2 Approach

ParaView is designed to allow a user to interactively
control a remote visualization server [3]. This is
achieved by running a serial client application on
the user’s desktop and a parallel MPI server on a
remote visualization cluster. The client connects to
the root process of the server as shown in Figure 1.
The user manipulates the visualization via the GUI
or through scripting on the client. The client trans-
parently sends commands to the server and retrieves
results from the server via the socket.

0

Scripting

GUI

Client Server
Socket

Figure 1: Typical remote parallel interaction within
ParaView. The client controls the server by making
a socket connection to process 0 of the server.

Implementing this approach directly on a Cray
XT3 is problematic as the Catamount operating sys-
tem does not support sockets and has no socket li-
brary. The port of the VisIt application, which has
a similar architecture to ParaView, gets around this
problem by implementing a subset of the socket li-
brary through Portals, a low level communication
layer on the Cray XT3 [8]. We chose not imple-
ment this approach because it is not feasible for Red
Storm, Sandia National Laboratories’ Cray XT3.
The Red Storm maintainers are loath to allow an ap-
plication performing socket-like communication for
fear of the potential network traffic overhead in-
volved. Furthermore, for security reasons we pre-
fer to limit the communications going into or com-

ing out of the compute nodes on Red Storm. Ulti-
mately, the ability to interactively control a visual-
ization server on Red Storm, or most any other large
Cray XT3, is of dubious value anyway as scheduling
queues would require users to wait hours or days for
the server job to start.

Rather than force sockets on the Catamount op-
erating system, we instead removed the necessity of
sockets from ParaView. When running on the Cray
XT3, ParaView uses a special parallel batch mode.
This mode is roughly equivalent to the parallel server
with the exception of making a socket connection
to a client. Instead, the scripting capability of the
client is brought over to the parallel server as shown
in Figure 2. Process 0 runs the script interpreter,
and a script issues commands to the parallel job in
the same way that a client would.

0
Scripting

Scripted “Server”

Figure 2: Parallel visualization scripting within Par-
aView. Process 0 runs the script interpreter in lieu
of getting commands from a client.

Scripts, by their nature, are typically more diffi-
cult to use than a GUI. State files can be used to
make script building easier. A user simply needs to
load in a representative data set into an interactive
ParaView visualization off of the supercomputer, es-
tablish a visualization, and save a state file. The
same state file is easily loaded by a ParaView script
running in parallel batch mode.

3 Implementation

Even after removing ParaView’s dependence on
sockets and several other client-specific features,
such as GUI controls, there are still several prag-
matic issues when compiling for the Cray XT3. This
section addresses these issues.

2



3.1 Python

ParaView uses Python for its scripting needs.
Python was chosen because of its popularity
amongst many of the analysts running simulations.
Fortunately, Python was already ported to the Cray
XT3 in an earlier project [4]. The porting of Python
to the Cray XT3 lightweight kernel, involved over-
coming three difficulties: the lack of dynamic library
support, issues with cross compiling and problems
with system environment variable settings.

Python is designed to load libraries and modules
dynamically, but the lightweight kernel does not al-
low this. This problem was solved by compiling
the libraries and modules statically and replacing
Python’s dynamic loader with a simple static loader.
Cross-compiling was enabled by providing wrapper
functions to the build system to return information
for the destination machine rather than the build
machine. Finally, the system environment variables
which are not set correctly on the Cray XT3 were
undefined in the Python configuration files so that
the correct Python defaults would be used instead.

Since this initial work, we have simplified the pro-
cess of compiling Python by using the CMake con-
figuration tool [6]. We started by converting the
Python build system to CMake including all config-
ure checks. Once the build was converted to CMake,
providing the mechanism for static builds, selecting
the desired Python libraries to include in the link,
and cross compiling was greatly simplified. More
details on the cross-compiling capabilities of CMake
are given in Section 3.3.

The process of compiling the Python interpreter
for use in ParaView on the Cray XT3 is as follows.
Rather than build a Python executable, only a static
Python library with the necessary modules is built.
During the build of ParaView, more Python mod-
ules specific for ParaView scripting are built. The
ParaView build system automatically creates header
that defines a function to register all of the custom
modules with the python interpreter. This gener-
ated header and function is used in any source file
where the Python interpreter is created and initial-
ized.

3.2 OpenGL

ParaView requires the OpenGL library for its im-
age rendering. OpenGL is often implemented with
special graphics hardware, but a special software-
only implementation called Mesa 3D is also avail-

able. Mesa 3D has the added ability to render im-
ages without an X Window System, which Cata-
mount clearly does not have.

The Mesa 3D build system comes with its own
cross-compilation support. Our port to Catamount
involved simply providing correct compilers and
compile flags. We have contributed back the configu-
ration for Catamount builds to the Mesa 3D project,
and the configuration is now part of the distribution
since the 7.0.2 release.

3.3 Cross Compiling ParaView

ParaView uses the CMake configuration tool [6]
to simplify porting ParaView across multiple plat-
forms. CMake simplifies many of the configuration
tasks of the ParaView build and automates the build
process, which includes code and document gener-
ation in addition to compiling source code. Most
of the time, CMake’s system introspection requires
very little effort on the user’s part. However, when
performing cross-compilation, which is necessary for
compiling for the Catamount compute nodes, the
user must help point CMake to the correct compil-
ers, libraries, and configurations.

CMake simplifies cross compilation with
“toolchain files.” A toolchain file is a simple
CMake script file that provides information about
the target system that cannot be determined auto-
matically: the executable/library type, the location
of the appropriate compilers, the location of libraries
that are appropriate for the target system, and
how CMake should behave when performing system
inspection. Once the toolchain file establishes the
target environment, the CMake configuration files
for ParaView will provide information about the
target build system rather than the build platform.

Even with the configuration provided by a
toolchain file, some system inspection cannot be eas-
ily performed while cross compiling. (This is true
for any cross-compiling system.) In particular, many
builds, ParaView included, require information from
“try run” queries in which CMake attempts to com-
pile, run, and inspect the output of simple programs.
It is generally not feasible to run programs from a
cross-compiler during the build process, so this type
of system inspection will fail. Rather than try this
type of inspection during cross compilation, CMake
will create user-editable variables to specify the sys-
tem configuration. The ParaView source comes with
configuration files that provide values appropriate
for Catamount.

3



In addition to system inspection, the ParaView
build also creates several intermediate programs that
the build then runs to automatically generate docu-
mentation or more code. One example is the gener-
ation of “wrapper” classes that enable class creation
and method invocation from within Python scripts.
Clearly these intermediate programs cannot be run
if they are compiled with a cross-compiler.

To get around this issue, we simply build two ver-
sions of ParaView: a “native” build and a “Cata-
mount” build. The native build is built first and
without a cross-compiler. It builds executables that
can run on the computer performing the build. The
Catamount build uses the cross-compiler, but also
uses the intermediate programs generated by the na-
tive build rather than its own.

Projects usually require ParaView to be installed
on platforms in addition to the Cray XT3, and of-
ten the platform used for cross compiling is one of
the additionally required installs. In this case, build-
ing both the “native” and “Catamount” versions of
ParaView is not an extra requirement. When the
“native” build of ParaView is not really required,
there is a special make target, pvHostTools, that
builds only the intermediate programs required for
the cross compilation. Using this target dramati-
cally reduces the time required to compile.

4 Usage

At the Pittsburgh Supercomputing Center, Par-
aView is being considered for those users who may
wish to take a look at large datasets before deciding
to transfer the data to other locations. Facilities at
the Pittsburgh Supercomputing Center such as the
Bigben Cray XT3 are utilized by institutions around
the country. However, these same institutions do not
have direct access to visualization resource at the
Pittsburgh Supercomputing Center. Because send-
ing large quantities of data across the country can
be time consuming, it can be more efficient to run
a visualization directly on Bigben where the data
already resides. The visualization results are com-
paratively small and can be analyzed to determine if
further analysis is needed or if transferring the data
is justified.

As an example, consider the recent studies of
star formation by Alexei Kritsuk of the University
of California, San Diego [5]. Kritsuk is studying
the hydrodynamic turbulence in molecular clouds
to better understand star formation. To this

Table 1: Scaling tests of a simple visualization script.
processes 3 4 8 16 128 256 512
nodes 3 4 4 4 128 128 256
sec/frame 172 136 85 65 5.8 5.8 2.8
startup (sec) 175 187 145 115 79 46 201

end, he is using the Enzo cosmological simulation
code (http://lca.ucsd.edu/software/enzo/) perform-
ing density calculations on a grid of 20483 points.
Each timestep, containing 32 GB of data, is stored
in 4,096 files.

One effective visualization of the density is a sim-
ple cut through the data at one timestep. We pre-
pared a ParaView batch script that made cuts at
2,048 Z-planes and stored each in a file. The files
were later combined into a high quality MPEG-2
video of less than 43 MB. Figure 3 shows a frame
from the animation.

Figure 3: One frame of a video showing density
within a molecular cloud.

Using 256 processes on 128 nodes the XT3 re-
quires three and a half hours to complete this script.
By changing the number cuts we can separate the
startup time (mostly the time to read the files) from
the time to calculate and write one cut. The startup
time is 46 seconds and the time per frame is 5.8 sec-
onds.

To get an understanding to how well the system
will scale, we instrumented the same script using dif-
ferent combinations of nodes and processes. These
results are summarized in Table 1. The runs us-
ing less than 128 nodes were run on a smaller Linux
cluster because the problem size was too large for an

4

http://lca.ucsd.edu/software/enzo/


equivalent number of nodes on the XT3. Despite the
heterogeneity of the tests, the results show a remark-
ably consistent scaling. A plot of the time it takes
to generate a frame of the animation with respect
to the number of processes being used is shown in
Figure 4. For the most part, the system scales well.
There is some variance in the measurements that
are probably caused mostly by an inconsistent pro-
cess to node ratio. Resource limitations in memory,
network, or file bandwidth could account for the re-
duced efficiency when allocating more processes per
node.

1

10

100

1000

1 10 100 1000

Processes

Ti
m

e 
pe

r F
ra

m
e 

(s
ec

)

Measured Values
Ideal Scaling

Figure 4: Time to generate a frame of the visualiza-
tion animation with respect to the number of pro-
cesses.

A plot of the time it takes to initialize the ani-
mation with respect to the job size is shown in Fig-
ure 5. The startup time does not scale as well as
the per-frame time. This is most likely due to the
fact that the startup will included most of the serial
processing of the job, which, by Amdahl’s law, lim-
its scaling. The startup also includes to time to load
the data off of the disk, which we do not expect to
scale as well as computation. There is an anomaly
in the measurement for 256 processes. We are not
sure what is causing this.

We have not yet repeated these tests for a suffi-
cient number of cases to consider this more than a
preliminary result. For example, the current distri-
bution of the 4,096 files across the XT3’s file system
may be far from optimum and may explain the un-
expected drop in efficiency for reading the files using
512 processes.

Acknowledgments

A special thanks to Alexei Kritsuk for access to his
data and all around support of our work.

10

100

1000

1 10 100 1000

Processes

S
ta

rtu
p 

Ti
m

e 
(s

ec
)

Measured Values
Ideal Scaling

Figure 5: Time to startup the visualization (includ-
ing reading data off of disk).

This work was done in part at Sandia National
Laboratories. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Mar-
tin Company, for the United States Department of
Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

References

[1] Sean Ahern. Petascale visual data analysis in
a production computing environment. In Jour-
nal of Physics: Conference Series (Proceedings
of SciDAC 2007), volume 78, June 2007.

[2] James Ahrens, Kristi Brislawn, Ken Martin,
Berk Geveci, C. Charles Law, and Michael E.
Papka. Large-scale data visualization using par-
allel data streaming. IEEE Computer Graph-
ics and Applications, 21(4):34–41, July/August
2001.

[3] Andy Cedilnik, Berk Geveci, Kenneth Moreland,
James Ahrens, and Jean Farve. Remote large
data visualization in the ParaView framework.
In Eurographics Parallel Graphics and Visualiza-
tion 2006, pages 163–170, May 2006.

[4] John Greenfield and Daniel Sands. Python based
applications on red storm: Porting a python
based application to the lightweight kernel. In
Cray User’s Group 2007, May 2007.

[5] Alexei G. Kritsuk, Paolo Padoan, Rick Wagner,
and Michael L. Norman. Scaling laws and inter-
mittency in highly compressible turbulence. In
AIP Conference Proceedings 932, 2007.

5



[6] Ken Martin and Bill Hoffman. Mastering
CMake. Kitware, Inc., fourth edition, 2007.
ISBN-13: 978-1-930934-20-7.

[7] Amy Henderson Squillacote. The ParaView
Guide. Kitware, Inc., ParaView 3 edition, 2007.
ISBN-13: 978-1-930934-21-4.

[8] Kevin Thomas. Porting of VisIt parallel visual-
ization tool to the Cray XT3 system. In Cray
User’s Group 2007, May 2007.

[9] Brian Wylie, Constantine Pavlakos, Vasily
Lewis, and Kenneth Moreland. Scalable ren-
dering on PC clusters. IEEE Computer Graph-
ics and Applications, 21(4):62–70, July/August
2001.

About the Authors

Kenneth Moreland
Sandia National Laboratories
P.O. Box 5800 MS 1323
Albuquerque, NM 87185-1323, USA
kmorel@sandia.gov

Kenneth Moreland received his Ph.D. in Com-
puter Science in 2004 from the University of New
Mexico in 2004 and is currently a Senior Member
of Technical Staff at Sandia National Laboratories.
His research interests include large-scale parallel vi-
sualization systems and algorithms.

David Rogers
Sandia National Laboratories
P.O. Box 5800 MS 1323
Albuquerque, NM 87185-1323, USA
dhrogers@sandia.gov

David Rogers is a manager at Sandia National
Laboratories. Having just acquired his position, he
is still in the process of his brain scrubbing and is
still growing out a pointy hairdo.

John Greenfield
Sandia National Laboratories
P.O. Box 5800 MS 0822
Albuquerque, NM 87185-0822, USA
jagreen@sandia.gov

John Greenfield, Ph.D. is a post-processing
and visualization support software engineer for
ASAP under contract to Sandia National Labora-
tories in Albuquerque.

Berk Geveci
Kitware, Inc.
28 Corporate Dr.
Clifton Park, New York 12065, USA
berk.geveci@kitware.com

Berk Geveci received his Ph.D. in Mechanical
Engineering in 2000 and is currently a project lead
at Kitware Inc. His research interests include large
scale parallel computing, computational dynamics,
finite elements and visualization algorithms.

Patrick Marion
Kitware, Inc.
28 Corporate Dr.
Clifton Park, New York 12065, USA
pat.marion@kitware.com

Patrick Marion is a research engineer at Kit-
ware. He received his B.S. in Computer Science from
Rensselaer Polytechnic Institute in 2008. His re-
search interests include visualization and rigid body
physical simulation.

Alexander Neundorf
Technical University of Kaiserslautern
Department for Real-Time Systems
67663 Kaiserslautern, Germany
neundorf@kde.org

Alexander Neundorf is currently a graduate
student at the Technical University of Kaiserslautern
with his focus on adaptive real-time systems. In
2007 he worked at Kitware where he added cross-
compilation support to CMake. He is also maintain-
ing the CMake-based build system of KDE.

Kent Eschenberg
Pittsburgh Supercomputing Center
300 S. Craig St.
Pittsburgh, PA 15213, USA
eschenbe@psc.edu

Kent Eschenberg received his Ph.D. in Acous-
tics from Penn State University in 1989 and is a
scientific visualization specialist at the Pittsburgh
Supercomputing Center.

6

mailto:kmorel@sandia.gov
mailto:dhrogers@sandia.gov
mailto:jagreen@sandia.gov
mailto:berk.geveci@kitware.com
mailto:pat.marion@kitware.com
mailto:neundorf@kde.org
mailto:eschenbe@psc.edu

	Introduction
	Approach
	Implementation
	Python
	OpenGL
	Cross Compiling ParaView

	Usage

