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Abstract

In computer graphics, color calculations for volumes can be significantly more com-

putationally intensive than that for surfaces. Consequently, until now no interactive

volume rendering system performs these calculations for even linearly interpolated

luminance and opacity without resorting to rough approximations or a finite set of

precomputed values.

In this dissertation, I describe an unstructured grid volume renderer. The ren-

derer is interactive, yet it can produce artifact free images that traditionally would

take minutes to render. I employ a projective technique that takes advantage of the
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expanded programmability of the latest 3D graphics hardware. I analyze also an

optical model commonly used for scientific volume rendering and derive new approx-

imations that are exceptionally accurate but computationally feasible in real time. I

demonstrate a system that can accurately produce a volume rendering of an unstruc-

tured grid with any piecewise linear transfer function. Furthermore, my algorithm is

capable of rendering over 300 thousand tetrahedra per second yet is not limited by

pre-integration techniques.
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Chapter 1

Introduction

Even though we call them three-dimensional graphics cards, commodity graphics

hardware directly supports only zero-, one-, and two-dimensional primitives (points,

lines, and polygons). The reason is simple. An opaque solid object is visually

indistinguishable from just its surface when viewed from the outside. However, a

photorealistic scene may involve any number of translucent volumetric objects such

Figure 1.1: A photorealistic scene with translucent volumes (clouds). The image is
courtesy of Mark Harris [37].
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Chapter 1. Introduction

(a) Surface Rendering (b) Volume Rendering

Figure 1.2: Visualization of a rotational x-ray scan of a human foot. The dataset is
courtesy of Philips Research, Hamburg Germany.

as clouds, dust, steam, fog, or jiggly food products [38]. We describe the synthesis

of such elements as volume rendering. Figure 1.1 shows an example usage of

translucent objects in a photorealistic scene.

In addition, direct volume visualization has become a popular technique for

visualizing volumetric data from sources such as scientific simulations, analytic func-

tions, and medical scanners such as MRI, CT, and ultrasound. All these data com-

prise samples, voxels, or cells distributed in a three dimensional volume. Visualizing

these types of data can be problematic. A human being is capable of perceiving only

the two dimensional projection of an object on the retina in the back of his eye, and

the majority of objects a person sees in day to day life is opaque. Opaque surfaces,

therefore, drive many visualization techniques, but the consequence is that interest-

ing features of volumetric data could be lost if embedded in the middle, hidden by

outer surfaces such as those demonstrated in Figure 1.2.

Unfortunately, equations describing all but the simplest and approximate optical

2



Chapter 1. Introduction

models are difficult to solve in real time. Many volume-rendering applications use

drastic simplifications such as constant light emission or absorption (or both) through

discrete segments. A scarce few use linear interpolation of both. Meanwhile, many

organizations, including Sandia National Laboratories, have a continuing interest in

unstructured meshes, volumetric models that can, and often do, vary wildly in cell

size, shape, and connectivity. Although most of these models have linear cells, cells

that vary linearly in both position and parameter, there is also a growing interest

in models with nonlinear cells, cells with nonlinear parametric functions defining

their shape and parameters [42]. Currently no interactive direct volume visualization

systems can render such elements correctly.

This dissertation seeks to improve the current state of the art of volume rendering.

In it, I demonstrate how to render a model consisting of linear cells (or, equivalently,

a first order (linear) approximation). My method for volume rendering will be fast

enough for interactive applications, whereas other systems may take minutes for a

single rendered image. My method performs calculations close to those defined by the

volumetric model I use, whereas others make brash approximations. Furthermore,

unlike other systems, my method does not require any preprocessing, which will allow

for fast changes in volume rendering parameters such as the transfer function.

1.1 Volume Rendering Overview

In this section, we review the fundamental concepts of volume rendering. First, we

discuss how we can represent a volume. In scientific visualization, as in many other

fields of visualization, volumes are most often represented as a mesh (sometimes

known also as a grid). A mesh is a collection of volumetric elements called cells.

The cells themselves are defined over a set of points called vertices. Geometry

and topology define a mesh. The geometry describes the layout of vertices in space.

3



Chapter 1. Introduction

1

(a) Uniform Mesh

1

(b) Rectilinear Mesh

1

(c) Structured Mesh

1

(d) Unstructured
Mesh

Figure 1.3: Various mesh types used to represent volumes. For clarity, I show 2D
meshes here, but the differences among mesh types hold for any number of dimen-
sions.

The topology (sometimes referred to also as the connectivity) connects vertices to

form cells.

Figure 1.3 shows four different classifications of meshes. A uniform mesh has

both the topology and geometry fixed such that the vertices are in an orthographic

grid and the cells are the axes aligned boxes formed by the vertices. In three dimen-

sions, these cells are voxels. A rectilinear mesh is the same as a uniform mesh

except that geometry is relaxed such that the spacing of the vertices may change. A

general structured mesh has the same topology of a regular grid, but the geom-

4



Chapter 1. Introduction

etry is free to place the vertices anywhere in space so long as the topology remains

consistent. An unstructured mesh is nonrestrictive. It is free to have any type of

geometry or topology.

To synthesize an image of a volume, a rendering system first has to determine

which cells in the volume contribute to which parts of the image. There are two

general approaches. The first approach is ray casting, where the rendering system

casts rays from the viewpoint through each pixel of the image into the volume. The

second approach is cell projection, where the rendering system projects each cell

onto the viewing plane.

Once it has determined the location of each part of the volume in the viewing

plane, the rendering system must compute the intensity of light emitted by the

volume. I discuss this computation in detail in Chapter 2.

1.2 Proposed Graphics Hardware Extension

Commodity graphics hardware supports blending operations that enable translu-

cent polygons. Thus, a näıve approach to rendering translucent volumes might be

simply to render the faces that make up the model of the volume as translucent poly-

gons. However, the difference between rendering a translucent solid object versus the

translucent surfaces of an object is subtle but important. Getting it wrong can lead

to significant artifacts as shown in Figure 1.4.

Figure 1.5 demonstrates in two dimensions why face rendering is different from

solid rendering. We can easily extrude the triangles to 3D prisms for an equally

valid demonstration in three dimensions. When rendering only faces, as shown in

Figure 1.5(a), each ray of light passing through the triangle crosses exactly two

faces of the triangle. The result is that the contribution of the triangle is consistent

5



Chapter 1. Introduction

(a) Hollow cells with translucent faces. (b) Solid, translucent cells.

Figure 1.4: Different renderings of two hexahedron cells. The image on the left is
generated by rendering the faces as translucent polygons. The image on the right is
a true rendering of a solid volume.

throughout its projection on the viewing plane.

In contrast, when rendering solids, as shown in Figure 1.5(b), light must pass

through more of the solid at its thickest parts. Therefore, the contribution of the

triangle is much greater where it is thick and negligible where the corners taper off.

The result is a nonlinear change in color across the viewing plane. I shall discuss the

light transport through volumes in detail in Chapter 2.

Given the interest in volumetric rendering, can we modify the popular graphics

pipeline to render such objects? Surprisingly, yes. For roughly a decade, applications

have used texture hardware to render rectilinear volumes [6, 12, 106] while others

have used polygon rendering hardware to speed up the rendering of unstructured

tetrahedra [86]. More recently, King, Wittenbrink, and Wolters [45] proposed (but

never implemented) a graphics pipeline architecture capable of rendering translucent

tetrahedra. A year later, both Wylie [110] and Weiler [98, 100], each with their re-

spective colleagues, used commodity graphics hardware with programmable shaders

to render tetrahedra directly in the pipeline.

Figure 1.6 shows a simplified diagram of the standard graphics pipeline. Al-

6
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(a) Light transport through a hollow triangle with translucent edges.

(b) Light transport through a solid, translucent triangle.

Figure 1.5: Demonstration of light transport through faces versus light transport
through solids. The material properties are homogeneous throughout the faces or
solid. The attenuation and emission of light is constant through the faces but varies
based on the thickness of the solid.
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Figure 1.6: The standard graphics pipeline.
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most all commodity 3D graphics hardware today implements this pipeline.1 At the

left, vertices of primitives (points, lines, and polygons) enter the pipeline. Each

vertex has associated with it several properties such as position, material, and texture

coordinates. The first unit of the pipeline transforms, lights, and clips each vertex

independently. The second unit assembles the transformed vertices into primitives

and rasterizes them. That is, it projects the primitives onto the viewing plane

and samples them. We call the samples generated fragments. Fragments are like

vertices in that they carry along information such as color and texture coordinates.

The next unit independently applies the final color to each fragment. The final unit

blends the results into the appropriate pixel of the frame buffer, a rectangular

array storing color, depth, and other information of an image.

As can be seen, we can split operations into two major categories: geomet-

ric processing, which determines which primitives are intersected by each viewing

ray, and fragment processing, which assembles material properties of intersected

primitives along a ray to determine the final color of a pixel. Until recently, this

pipeline was fixed. Fortunately, the latest releases of graphics cards have flexible

programmable units for both geometric and fragment processing [59, 61, 66, 77].

The tasks of volume rendering can also be divided into geometric and fragment

processing. Previous work [45, 98, 110] has shown that the geometric processing for

2D primitives needs to be tweaked little to support 3D primitives. The fragment

processing of 2D and 3D primitives also can be similar, but the computation for 3D

primitives is significantly greater. The color computation of a ray segment through

a 3D cell must take into account color and opacity changes throughout the segment

and integrate all these values. Consequently, most implementations perform a rough

approximation rather than perform the actual integration.

1The only exceptions are graphics boards for specialized rendering such as volume ren-
dering rectilinear grids [14, 53, 67, 73, 78].

8



Chapter 1. Introduction

1.3 Thesis Contribution

This dissertation contributes to the speed and accuracy with which we can perform

the geometric and fragment processing for volume rendering. I demonstrate a tech-

nique that is fast enough to perform in real time yet accurate. Furthermore, we can

use the technique directly on graphics hardware.

I organize the rest of this dissertation as follows. In Chapter 2, I present the

model used to describe light transport through a volume and derive equations that

compute colors of viewing rays. In Chapter 3, I briefly describe other volume ren-

dering systems and describe how they solve the various problems associated with

volume rendering. I then follow by introducing improvements to hardware based cell

projection in Chapter 4 and improvements to volume ray integration in Chapter 5.

Finally, I present results of the implementation in Chapter 6 and draw conclusions

in Chapter 7.

9



Chapter 2

The Volume Rendering Integral

Before rendering a translucent volume, we need to understand how such a volume

transports light. To this end, we will build an optical model. The optical model

describes the light transport within the volume and allows us to define the behavior

of light passing through the volume.

Many researchers began building optical models in the early 1980’s to synthesize

photorealistic images with volumetric elements such as clouds [4, 40, 62]. By 1988,

others were building models to perform volume rendering for scientific visualization

[20, 83]. Williams and Max [104] later refined the approach for use with various

interpolation functions and cell shapes.

In this chapter, I discuss the volume rendering integral. The volume rendering

integral is an equation that computes the color of light that passes through a volume.

I first derive the volume rendering integral using a model and derivation similar to

that of Max [63]. I then discuss properties of this equation that are important for

practical applications. Finally, I present several closed forms that other researchers

have developed.

10
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1

Figure 2.1: An example of an illuminated volume.

2.1 Derivation of the Volume Rendering Integral

Consider a translucent volumetric cloud such as the one depicted in Figure 2.1.

What contributes to the color of the cloud? Some light originating from behind the

cloud may pass right through it, although the cloud will most likely attenuate the

light. Light may originate from within the cloud itself if the cloud contains glowing

material. The cloud may diffusely reflect light of other sources from within. The

diffuse reflection can disperse the light through the volume causing a scattering

effect.

We start by modeling the volume as a space filled with minute particles. Each

particle is opaque and occludes light waves, but is itself too small to see individually.

In addition to occluding light, each particle emits light also. The emitted light may

be an energy generated by the particle itself, such as from a glowing ember, or light

diffusely reflected from a different particle or another light source. We treat either

case the same, thereby abstracting away the diffuse emission calculation.

Let us pause a moment to consider the ramifications of the previous statement.

11



Chapter 2. The Volume Rendering Integral

By neglecting to consider the effects of diffuse lighting, we potentially miss important

lighting effects. We are not taking into account shadowing, the attenuation of light

between a particle and a light source. We are neglecting multiple scattering, the

illumination of a particle by light rays reflected off other particles, also. We use the

approximation to make the calculation more tractable by considering only light that

passes directly between a particle and the viewpoint. Because the approximation al-

lows volume rendering to occur at interactive rates and the shadowing and scattering

effects do not necessarily make scientific visualization clearer [71], this approximation

has been used extensively in volume visualization since Sabella introduced it in 1988

[83].

Furthermore, although the model we describe does not calculate shadowing or

scattering directly, it still allows us to do such calculations. Recall that the model

allows each particle to give off any amount of light energy. If we compute the total

light energy generated by the particles and reflected off the particles in a secondary

calculation, we can plug the result into the particle emission parameter of this model.

This approach of using two or more simplified models to generate multiple lighting

effects has already proved to be an effective approach to performing shadowing and

scattering with opaque surfaces [10, 18, 41, 85]. In fact, many recent approaches to

global volume illumination [19, 37, 48, 51, 112, 113] perform a two-step approach of

first computing particle colors and then integrating ray segments.

By considering only local lighting effects, we can simplify our analysis of volumet-

ric lighting computations by taking into account only a single long cylinder centered

on the viewing ray that passes through the volume as shown in Figure 2.2(a). The

cylinder is thin enough to assume that volume properties do not change across its

breadth, but they may (and probably will) change across its length. At the back end

of the cylinder, background light comes in, and at the front end of the cylinder, light

exits and travels to the user’s eye. The light intensity coming from the front end of

12
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∆s

I0

(a) A cylindrical cutout of the volume

∆s

I0

(b) A disk
of length
∆s.

Figure 2.2: Particle model of volumetric rendering.

the cylinder will determine the color value of one pixel.

Let the cross sectional area of the cylinder be E. Now consider a thin slab of

this cylinder whose base is also of area E and whose length is ∆s. As shown in Fig-

ure 2.2(b), as light rays pass through this disk, particles obstruct some rays whereas

other rays pass straight through. Still other light rays originate from particles in the

disk. Let A be the cross sectional area of each particle, ρ be the density of particles

per unit volume, and L be the light emission of the particles per projected area in

the direction of the ray. Both ρ and L may vary over the volume. Each disk has

volume E∆s, and therefore contains N = ρE∆s particles.

As ∆s approaches zero, the overlap of particles becomes zero. At this point, the

area of the cylinder obscured by particles is AN = AρE∆s. The fraction of light

occluded when flowing through the disk (i.e. the fraction of cross sectional area

with particles in it) is AN/E = Aρ∆s. Let us define the attenuation coefficient

τ = Aρ, which expresses the expected amount of incoming light that is extinguished

per unit length (given negligible particle overlap).

In addition to absorbing light, the particles emit light with intensity L per pro-
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jected area. L expresses the luminance (per wavelength) of the volume. The light

emission of each particle is, therefore, LA, and the overall light emission within the

disk is LAN = LAρE∆s. The light emitted from the disk goes through the base of

area E, so the light emitted per unit area is LAρ∆s = Lτ∆s.

Given these parameters of the volume density, we can express the behavior of the

intensity of a ray of light through the volume as

dI

ds
= L(s)τ(s)− I(s)τ(s) (2.1)

That is, the change in intensity of the light ray, I(s), as it passes through the volume is

equal to the light emitted from the cross section at s minus the amount the incoming

light is attenuated. We can solve this differential equation as follows. First, we bring

the I(s)τ(s) term over to the right hand side.

dI

ds
+ I(s)τ(s) = L(s)τ(s)

Then we multiply both sides by exp
(∫ s

0
τ(t)dt

)
.

dI

ds
e

R s
0 τ(t)dt + I(s)τ(s)e

R s
0 τ(t)dt= L(s)τ(s)e

R s
0 τ(t)dt

d

ds
(I(s)) e

R s
0 τ(t)dt + I(s)

d

ds

(
e

R s
0 τ(t)dt

)
= L(s)τ(s)e

R s
0 τ(t)dt

d

ds

(
I(s)e

R s
0 τ(t)dt

)
= L(s)τ(s)e

R s
0 τ(t)dt

Finally, we integrate everything from s = 0 at the back end of the volume to s = D

at the eye,

I(D)e
R D
0 τ(t)dt − I0 =

∫ D

0

L(s)τ(s)e−
R D

s τ(t)dtds

and do one last rearrangement of terms.

I(D) = I0e
−

R D
0 τ(t)dt +

∫ D

0

L(s)τ(s)e−
R D

s τ(t)dtds (2.2)
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We call this equation the volume rendering integral. An examination verifies

that Equation 2.2 appeals to our intuitive sense of what happens to light as it passes

through a translucent volume. The first term calculates the amount of incoming light,

I0, that reaches the end of the volume. We see that the incoming light attenuates

exponentially with length D, just as we observe from objects at various distances on

a foggy day. The second term adds the amount of light emitted at each point along

the ray, taking into account the amount of attenuation from each point to the end

of the ray.

2.2 Properties of the Volume Rendering Integral

Before continuing, I shall address several details of the volume rendering integral.

2.2.1 Per Wavelength Calculation

I give the volume rendering integral (Equation 2.2 derived in Section 2.1 on page 14)

as a scalar function. That is, I define the input luminance and attenuation variables

as single scalar values, as is the output light intensity. Although such a calculation

is correct for a monochromatic image, most images will benefit from full color.

Visible light actually comprises a continuous spectrum of light waves with varying

wavelengths [1]. Each wavelength stimulates the receptors in the human eye differ-

ently. A cloud attains its color by having different responses to each wavelength of

light. It is therefore often practical to define the luminance and attenuation proper-

ties of a volume on a per wavelength basis.

Given volume properties defined on a per wavelength basis, how does this affect

the volume rendering integral? As light travels through or bounces off a material,
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it is generally true that the wavelength of a given ray of light does not change and

that one ray of light has no effect on other rays of light. Thus, the produced light

intensity of a particular wavelength, Iλ, depends only on volumetric properties for

that particular wavelength, Lλ and τλ. Therefore, technically we should express the

volume rendering integral as

Iλ(D) = Iλ0e
−

R D
0 τλ(t)dt +

∫ D

0

Lλ(s)τλ(s)e
−

R D
s τλ(t)dtds (2.3)

However, because we have defined everything on a per wavelength basis, and because

all calculations are wavelength independent, the λ subscript is redundant, and I drop

it from further equations.

Given this “new” per wavelength form of the volume rendering integral, a ques-

tion arises: For how many wavelengths should we compute the volume rendering

integral? It is impractical and unnecessary to perform the calculation for the con-

tinuous spectra of visible light. Furthermore, because speed is paramount, the fewer

wavelengths we have to compute the better.

The answer is three. Any color space needs only three parameters to represent

any color perceptible by humans. The color photoreceptors of the human eye come

in only three flavors, and we perceive color by the amount each receptor type is

stimulated [26]. Therefore, we can combine light comprised of only three different

wavelengths with different intensities to reproduce any color discernible with the

human eye. The wavelengths for red, green, and blue light are a good choice [27].

This is the RGB color space.

In addition to representing colors in RGB color space, I shall perform calculations

only on red, green, and blue wavelengths. Although we can represent every color with

only red, green, and blue wavelengths, a volume may have material properties that

we do not capture on only these wavelengths. This can introduce inaccuracies. For

example, although equal parts of red and green light are perceived as yellow, a ray of
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yellow light passing through a volume may behave differently than equal parts of red

and green. Although there has been a bit of exploration in capturing these effects

[3, 35], the effects are of limited value and most research (including this dissertation)

ignores them.

2.2.2 Glow Parameter

When deriving the volume rendering integral in Section 2.1, I parameterized the

emission of light within the volume as the luminance, L(s), which has units per area

of visible surface. The actual intensity of light, therefore, varies with respect to the

density of particles. Other literature (such as [104]) instead defines the emission of

light within the volume with a glow parameter, g(s), that varies the light inten-

sity independent of the particle density. We can express the relationship between

luminance and glow as

g(s) = L(s)τ(s) (2.4)

Modifying the volume rendering integral (Equation 2.2) to use the glow term is a

simple matter of substitution.

I(D) = I0e
−

R D
0 τ(t)dt +

∫ D

0

g(s)e−
R D

s τ(t)dtds (2.5)

Equations 2.2 and 2.5 are equivalent and the choice between them is mostly a

matter of preference. In this dissertation, I usually choose Equation 2.2 with the

luminance term. When defining volume lighting parameters it is far more natural

for the light emission to fluctuate with the particle density.

Changing the particle density independent of the glow can lead to unexpected

visual results. Raising the particle density without raising the glow leads to a dark,

sooty-looking volume. Lowering the particle density without lowering the glow results
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in an overly bright volume, often saturating the color channels of the display device.

However, when we parameterize the color by luminance rather than glow, the color

of the volume will appear constant as the particle density is varied.

The only real advantage of using the glow parameter is to allow volumes to emit

light without attenuating a significant amount of light. This can happen in a hot,

tenuous gas such as in a neon sign. This situation is difficult to model with luminance

because as the attenuation goes to zero the luminance must go to infinity, but the

glow can remain at a finite value. However, this is a rather simple special case to

solve (and I do it in Section 2.3.2).

2.2.3 Opacity and Blending

Direct volume rendering by its very nature deals with transparent objects. As such,

it is important to understand how to mix a transparent volume with other objects

within a scene. We refer to the process of mixing two overlaid images together as

image blending or image compositing.

Porter and Duff [74] in a seminal paper introduce an algebra for image blend-

ing; this algebra is still the foundation of compositing in computer graphics today.

Therefore, it is important to understand how the volume rendering integral relates

to the Porter and Duff algebra to perform blending appropriately.

In brief, Porter and Duff introduce the α blending term (the A part of a standard

OpenGL RGBA pixel color), which gives the fraction of a pixel that is covered and

will occlude whatever is “behind” the pixel. Another name for the fraction of a pixel

covered is the opacity. The opacity fits well with the model defined in Section 2.1

with minute particles that occlude light from behind them. Although I show the

derivation for the output light intensity from a volume, I do not give the opacity for

the volume there. I derive the opacity for the volume here.
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Consider the same thin cylinder surrounding the viewing ray shown in Figure 2.2

on page 13. As is shown in the derivation starting on page 13, the fraction of a cross

sectional disk of small length ∆s occluded by particles is τ∆s. Therefore, we can

express the transient change in opacity of the cylinder as

dα

ds
= τ(s)− α(s)τ(s) (2.6)

That is, the opacity increases by the fraction occluded in the new disk (the first

term) that is not already occluded by the cylinder behind it (the second term).

We can solve this differential equation with the same approach used in the deriva-

tion of Section 2.1.

dα

ds
= τ(s)− α(s)τ(s)

dα

ds
+ α(s)τ(s) = τ(s)

dα

ds
e

R s
0 τ(t)dt + α(s)τ(s)e

R s
0 τ(t)dt= τ(s)e

R s
0 τ(t)dt

d

ds
(α(s)) e

R s
0 τ(t)dt + α(s)

d

ds

(
e

R s
0 τ(t)dt

)
= τ(s)e

R s
0 τ(t)dt

d

ds

(
α(s)e

R s
0 τ(t)dt

)
= τ(s)e

R s
0 τ(t)dt

At this point, we can integrate both sides of the equation from s = 0 to s = D.

α(D)e
R D
0 τ(t)dt − α0 =

∫ D

0

τ(s)e
R s
0 τ(t)dtds

Because we are interested solely in the opacity of the ray segment within the volume

and not that behind it, we can assume that α0 = 0 and drop it from the equation.

Solving the rest of the equation, we find that

α(D) = 1− e
R D
0 τ(t)dt (2.7)

Although this derivation relies on using α as the function that is the opacity for a

given length through the volume, in practice we are interested only in the opacity of
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the entire segment. It is therefore often convenient to drop the functional notation

and simply refer to the opacity of a given segment as α.

Now that we have formally defined the α term, we can plug it into the volume

rendering integral (Equation 2.2 on page 14).

I(D) = I0(1− α) +

∫ D

0

L(s)τ(s)e−
R D

s τ(t)dtds (2.8)

If we let
∫ D

0
L(s)τ(s)e−

R D
s τ(t)dtds be color A, α be opacity A, and I0 be color B,

then we find that Equation 2.8 is really the Porter and Duff A over B operation

or, equivocally, the B under A operation, which means we can easily use graphics

hardware to do this blending.

2.2.4 Piecewise Integration

As we shall see shortly in Section 2.3, solving the volume rendering integral for all

but the simplest functions for luminance and attenuation is difficult to impossible.

In practice, we just perform piecewise integration. Most commonly, we segment

viewing rays by the model cells that they intersect, and we integrate piecewise per

segment. These segments may or may not be of uniform length, usually depending

on the model rendered.

Because of the importance of piecewise integration, I will speak to how we may

perform piecewise integration. Consider the volume rendering integral given in Equa-

tion 2.2, repeated here for convenience.

I(D) = I0e
−

R D
0 τ(t)dt +

∫ D

0

L(s)τ(s)e−
R D

s τ(t)dtds

Let us examine what happens when we break the integrals into two segments, one

in the range [0, x] and the other in the range [x, D]. Without loss of generality, we
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can rewrite Equation 2.2 as

I(D) = I0e
−

R x
0 τ(t)dt−

R D
x τ(t)dt

+

∫ x

0

L(s)τ(s)e−
R x

s τ(t)dt−
R D

x τ(t)dtds +

∫ D

x

L(s)τ(s)e−
R D

s τ(t)dtds (2.9)

We can rearrange Equation 2.9 by factoring out the constant e−
R D

x terms.

I(D) =

(
I0e

−
R x
0 τ(t)dt +

∫ x

0

L(s)τ(s)e−
R x

s τ(t)dt

)
e−

R D
x τ(t)dt

+

∫ D

x

L(s)τ(s)e−
R D

s τ(t)dtds (2.10)

Notice that the part of Equation 2.10 in the parenthesis is equal to I(x).

I(D) = I(x)e−
R D

x τ(t)dt +

∫ D

x

L(s)τ(s)e−
R D

s τ(t)dtds (2.11)

Finally, we can do a change of variables that will place the integral in the range

[0, D′], where D′ = D − x.

I ′(D′) = I(x)e−
R D′
0 τ ′(t)dt +

∫ D′

0

L′(s)τ ′(s)e−
R D′

s τ ′(t)dtds (2.12)

Careful inspection reveals that Equation 2.12 is equivalent to the original volume

rendering integral (Equation 2.2) for the segment closer to the eye when using the

intensity of light emanating from the farther segment as the incoming light. Using

this relationship, we can perform back to front rendering.

In Section 2.2.3, I show that you could express the opacity as α = 1 − e
R D
0 τ(t)dt

and how you can use the Porter and Duff [74] over and under operations described

in Section 2.2.3 to blend. The same blending is valid for this piecewise integration,

and we can therefore perform it easily on graphics hardware.
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We can rearrange Equation 2.9 yet again.

I(D) = I0e
−

R D
x τ(t)dte−

R x
0 τ(t)dt + e−

R x
0 τ(t)dt

∫ x

0

L(s)τ(s)e−
R x

s τ(t)dtds

+

∫ D

x

L(s)τ(s)e−
R D

s τ(t)dtds (2.13)

Equation 2.13 shows us how to perform front to back rendering. Using only

information from the front segment (the segment closest to the viewer), you could

solve the third term of Equation 2.13. Using this and the opacity of the front segment,

you could use the Porter and Duff [74] over operator, described in Section 2.2.3 to

blend with the back segment, solving the second two terms of Equation 2.13, and

combine the two opacities to allow for another over operation with the incoming I0

light when it becomes available.

2.3 Closed Forms of the Volume Rendering Inte-

gral

In Section 2.1, I provide a model for light transmission through volumes and derive

the volume rendering integral (Equation 2.2), provided here for reference.

I(D) = I0e
−

R D
0 τ(t)dt +

∫ D

0

L(s)τ(s)e−
R D

s τ(t)dtds

However, this equation has no closed form, and we cannot solve it without further

information about L(s) and τ(s). In this section, I will impose various restrictions

on L(s) and τ(s) that will allow us to solve the volume rendering integral.
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2.3.1 Only Attenuation

Our first restriction on the volumetric cloud is that it only attenuates light. The

cloud emits no light of its own. The only light, if any, reaching the front of the

volume comes from light that enters from the back. Mathematically, L(s) = 0.

Under this restriction, the volume rendering integral reduces to

I(D) = I0e
−

R D
0 τ(t)dt (2.14)

The major advantage of this form is its simplicity. The integral
∫ 1

0
τ(t)dt can be

solved for almost any desired interpolation of attenuation. In addition, when render-

ing a rectilinear grid with this optical model, we can use the Fourier projection-slice

theorem and the fast Fourier transform to render a grid of size O(N3) in O(N2 log N)

time [60].

Furthermore, consider what happens when we segment the volume rendering

integral to perform piecewise integration.

I(D) = I0e
−

R x1
0 τ(t)dt−

R x2
x1

τ(t)dt−···−
R xn

xn−1
τ(t)dt

= I0e
−

R x1
0 τ(t)dte

−
R x2

x1
τ(t)dt · · · e−

R xn
xn−1

τ(t)dt
(2.15)

Because multiplication is commutative, Equation 2.15 shows that we can compute

and then combine in any order the integrals for each segment to obtain a correct

image. This allows us to render the cells in an order independent fashion. Because

cell visibility sorting can be a challenging and computationally intensive process

[11, 52, 54, 64, 90, 91, 92, 103], this can be a great advantage when using projective

methods.

Unfortunately, the only-attenuation model has major weaknesses. Because the

model emits no light, the amount of lighting effects is severely limited. The order

independence property that makes this model so easy to render means also that there
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are no depth cues. There is no way to tell, given a fixed viewpoint, if one feature is

in front of another. Totsuka and Levoy [93] offer techniques to introduce visual cues,

but the cues are only moderately effective and are not realistic.

2.3.2 Only Emission

Our next restriction is the opposite of the previous one. We now assume that the

volume emits light, but the attenuation is negligible. With this assumption, defining

the emission in terms of luminance, which is in units of per particle area, is not

practical as the particle area is zero. Therefore, rather than use Equation 2.2 as the

form for the volume rendering equation, we will instead use Equation 2.5 defined in

Section 2.2.2 that uses a glow parameter instead of luminance. Setting τ(s) = 0,

Equation 2.5 reduces to

I(D) = I0 +

∫ D

0

g(s)ds (2.16)

The only-emission model has all the same advantages as the absorption-only

model (defined in Section 2.3.1), but it shares all the same disadvantages also. In

addition, the only-emission model suffers from color saturation. Equation 2.16 has no

bounds on the intensity of the final light ray, and in practice, the intensity can easily

soar beyond what a display device can handle. Therefore, real volume rendering

systems seldom use the only-emission model.

2.3.3 Completely Homogeneous

Another simple approximation is to assume that the volume is homogeneous. That

is, the attenuation and luminance parameters do not vary. We can model this by
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substituting the constants L and τ for L(s) and τ(s), respectively, in Equation 2.2.

I(D) = I0e
−

R D
0 τdt +

∫ D

0

Lτe−
R D

s τdtds

= I0e
−τD +

∫ D

0

Lτe−τ(D−s)ds

= I0e
−τD + L e−τ(D−s)

∣∣D
s=0

= I0e
−τD + L

(
1− e−τD

)
(2.17)

It is, of course, not practical or interesting to limit our volume to be completely

homogeneous. Instead (as alluded to in Section 2.2.4), you can use Equation 2.17 in

a Riemann sum to accurately estimate the volume rendering integral by breaking it

up into small enough pieces [63].

If we sample the volume uniformly, D in Equation 2.17 is constant. In this

case, we can convert the attenuation parameter (τ) to an opacity (α) offline and use

Porter and Duff blending as described in Section 2.2.3 to perform this Riemann sum.

Stein, Becker, and Max [92] demonstrate how to use 2D texture hardware to convert

the attenuation and distance to opacity before blending for volumes not sampled

uniformly.

Although, technically, we could subdivide our volume fine enough for any amount

of accuracy (although quantization errors become a problem), more subdivisions re-

sult in more computational overhead. Less constrained forms of the volume rendering

integral can lead to greater accuracy with fewer subdivisions.

2.3.4 Homogeneous Particles with Variable Density

Recall from Section 2.1 that we modeled our volume as a collection of minute par-

ticles. Max, Hanrahan, and Crawfis [64] proposed the following restriction. Let the
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density of the particles, ρ, vary throughout the volume, but constrain the particles

to all have the same properties.

The luminance, L, of the volume is a direct property of the volume and is constant.

In Section 2.1, I define the attenuation coefficient as τ = Aρ where A is the cross

sectional area of the particles. A is a property of the particles, which is constant

when the particles are homogeneous. Thus, τ is proportional to ρ.

It is therefore equivalent to say that τ varies whereas L does not. We therefore

constrain the volume rendering integral by substituting L for L(s) in Equation 2.2.

I(D) = I0e
−

R D
0 τ(t)dt +

∫ D

0

Lτ(s)e−
R D

s τ(t)dtds

Assuming that τ(s) is integrable, we can further resolve this equation.

I(D) = I0e
−

R D
0 τ(t)dt + Le−

R D
s τ(t)dt

∣∣∣D
s=0

= I0e
−

R D
0 τ(t)dt + L

(
1− e−

R D
0 τ(t)dt

)
(2.18)

Again, we have a more powerful but less than ideal form to the volume rendering

integral. Here we are able to vary the density of our cloud in almost any fashion we

desire, yet the luminance must remain constant.

2.3.5 Linear Interpolation of Volume Parameters

So far, in all the closed forms to the volume rendering integral that I have presented,

none is capable of interpolating both the luminance and attenuation parameters of

the volume (without the use of piecewise integration). The simplest form of inter-

polation is linear interpolation. Williams and Max [104] were the first to solve the

volume rendering integral with linear interpolation of both luminance and attenua-

tion. They choose to parameterize their equations using a tetrahedron that a viewing

ray intersects.
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I instead give a closed form that parameterizes the volume rendering equation

using only L(s) and τ(s), which, in my humble opinion, leads to a simpler form of

the equation. Without loss of generality, I use the following linear forms of L(s) and

τ(s).

L(s)= L b
D − s

D
+ L f

s

D
(2.19)

τ(s)= τ b
D − s

D
+ τ f

s

D
(2.20)

In Equation 2.19, L f and L b describe the luminance at the front and back of the

ray, respectively. This is likewise for the attenuation in Equation 2.20.

Substituting Equation 2.19 and Equation 2.20 into Equation 2.2 results in a

solvable equation, although the calculus to do so is difficult. Using the help of a

mathematical solver such as Mathematica [108], we get

I(D) = I0e
−D

τ b+τ f
2 + L f − L be

−D
τ b+τ f

2

+(L b − L f)
1√

D(τ b−τ f)
e

D
2(τ b−τ f )

τ2
f

√
π

2[
erf

(
τ b

√
D√

2(τ b−τ f)

)
− erf

(
τ f

√
D√

2(τ b−τ f)

)]
(2.21)

Equation 2.21 has many terms, which makes it computationally intensive to com-

pute. Furthermore, there are instances of the erf function. Here, erf is the error

function, defined as erf(x) = 2
π

∫ x

0
e−u2

du. The erf function does not have a closed

form, but there are several known numerical methods to compute it with sufficient

accuracy.

Further analysis shows us that if τ b < τ f , Equation 2.21 contains imaginary

terms, that is, terms with i =
√
−1 in them. The idea of having complex values for

light intensity is a bit disturbing, and it might lead you to question the validity of

Equation 2.21. However, as long as the values for τ b, τ f , L b, and L f are real, all

imaginary terms will cancel out.
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An implementation evaluating Equation 2.21 could compute it by performing

complex arithmetic. However, because it is generally more convenient to perform

strictly real arithmetic, we can manipulate Equation 2.21 to have only real numbers

when τ b < τ f . We can do this using the imaginary error function, erfi, defined

as erfi(x) = erf(ix)/i = 2√
π

∫ x

0
eu2

du. Although the relation contains i, both erf(x)

and erfi(x) are real functions. So for the case when τ b < τ f , we get the modified real

equation

I(D) = I0e
−D

τ f+τ b
2 + L f − L be

−D
τ f+τ b

2

+(L b − L f)
1√

D(τ f−τ b)
e
− D

2(τ f−τ b)
τ2

f

√
π

2[
erfi

(
τ f

√
D√

2(τ f−τ b)

)
− erfi

(
τ b

√
D√

2(τ f−τ b)

)]
(2.22)

Neither Equation 2.21 nor Equation 2.22 is well defined if τ b = τ f . For the special

case when the attenuation coefficient is constant, we have to resolve Equation 2.2

and get yet another equation:

I(D) = I0e
−τD + L b

(
1

τD
− 1

τD
e−τD − e−τD

)
+ L f

(
1 +

1

τD
e−τD − 1

τD

)
(2.23)

Equations 2.21 through 2.23 together make up the closed form for the volume

rendering integral with linear parameters.
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Chapter 3

Practical Implementations of

Volume Rendering

In the previous chapter, I introduced the volume rendering integral, which has pro-

vided the foundation of volume rendering for scientific visualization since the late

1980s. In this chapter, I will review the current techniques used to apply the volume

rendering integral to volumetric models.

We can break the process of volume rendering into two tasks. The first task is

that of determining cell-ray intersections. This task is the process of determining

which cells each viewing ray intersects. The result is a list (or stream) of samples

(or segments) along each viewing ray enumerating the properties of the volume.

The second task is that of performing color computations. This task is the

process of applying the volume rendering integral to the properties of the volume

already sampled along the ray.

Although I describe volume rendering as a two-step process, in reality, volume

renderers most often perform these two tasks together in a pipeline configuration.
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Even if we do not perform the process in a true hardware pipeline, pipelining the tasks

prevents the system from having to store the intermediate samples along viewing rays,

which are numerous for high quality renderings.

3.1 Cell-Ray Intersections

In this section, I discuss the process of determining how the cells in a volumetric

model project onto a viewing screen. As discussed in Section 1.2, in a graphics

hardware pipeline, this process is the geometric processing. Consequently, when

implementing volume rendering on graphics hardware, we usually perform cell-ray

intersections on the vertex processor.

In the first two sections, I discuss general methods that work on unstructured

grids, which are the types of models this dissertation is mostly concerned. For com-

pleteness, I discuss also techniques for rendering regular grids. However, I do not

expand on regular grid rendering as the problem of cell-ray intersections is simpler

than that for unstructured grids and errors in color computations are less noticeable.

Moreover, there already has been significantly more research on the rendering of

regular grids. This is because there is a large amount of models defined as regular

grids, particularly in medical visualization where CT, MRI, and ultrasound scans re-

sult in a regular grid of samples. Nevertheless, unstructured grids are an important

modeling tool that can provide far more accuracy with many fewer data. For exam-

ple, Leven and colleagues [58] built a volume renderer that resampled unstructured

grids with regular grids. To create enough samples to maintain the accuracy of the

unstructured grids, their data could grow by three orders of magnitude.
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3.1.1 Ray Casting

When volume rendering with ray casting (known also as ray tracing), the system

traces rays from the viewpoint through each pixel of the image and determines what

cells each ray intersects. If we desire global effects such as shadows or scattering,

then we can trace also other rays from cell intersections to light sources or other cells

(although computational cost quickly becomes prohibitive). Because the rendering

system, in its outer loop, iterates over all the pixels in the output image, ray casting

is known also as image-order rendering.

Näıve Ray Casting

The basic operation of a ray caster is, given a ray originating at a point, determining

the first object that the ray intersects. Determining where a ray intersects a cell is

a simple and quick operation for practical cells such as polyhedra [1]. To determine

the first cell a ray intersects, we could simply intersect the ray with every cell and

pick the intersection closest to the origination point in the direction of the ray.

Although this approach works, it is unnecessarily computationally intensive to

intersect a ray with every cell, and the first-intersection operation must occur many

times during a render operation. Therefore, any practical ray casting renderer ar-

ranges the objects in a spatial hierarchy to prune away cells quickly as shown in

Figure 3.1. The pruning hierarchy is sufficient for ray tracers that principally render

opaque surfaces [1]. However, rays intersect far too many cells of a translucent vol-

ume (and therefore the system must perform too many first-intersection operations)

to make this direct approach practical for volume rendering.
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1

Figure 3.1: An example of hierarchical pruning for ray casting (in 2D). With a K-D
tree structure, the application can isolate the nearest region in O (log(N)) time.

Cell Traversal

Garrity [31] introduces an efficient method for ray casting transparent unstructured

grids. His method requires that the unstructured grid be a conforming mesh. For

a mesh to be conforming, the intersection of any two of its cells is either empty or

the shared vertex, edge, or face. Non-conforming grids hold a variety of problems

with both simulation and visualization and are therefore usually considered to be

erroneous grids.

We can partition the cell faces in a conforming unstructured mesh into two sets.

The internal faces are those that are shared by two cells. The external faces

(known also as boundary faces) are those that belong to only one cell. Garrity’s

method starts with the obvious observation that a ray originating from outside a grid

must enter it through an external face. In general, the number of external faces is

drastically smaller than the total number of cells. Thus, checking only the external
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1

(a) A ray intersecting an exter-
nal face.

1

(b) The ray exiting
the cell.

1

(c) The ray entrance
to the next cell.

Figure 3.2: Ray tracing with cell traversal. A ray originating outside the grid first
intersects an external face (a). Once inside a cell, a ray must exit another face of the
cell (b). Once we determine the exit face, we can retrieve the next cell from the cell
connectivity graph (c).

faces drastically reduces the number of intersection tests. Bunyk, Kaufman, and Silva

[5] speed up this part of the algorithm further by computing all ray intersections of

each front facing external face at one time.

Once inside the cell, the ray, obviously, must exit through one of its faces. Thus,

at this point we need only to check intersections of the ray with the cell’s faces. If

the exit face happens to be an external face, then we can find the next entry point

by again checking only external faces. If the exit face is an internal face, then, by

definition, another cell shares the face. These shared faces are static with respect to

the grid. We could therefore generate offline a cell connectivity graph, a graph

where each node represents a cell and each edge represents a face shared between

cells. We could then consult the cell connectivity graph to determine the next cell

without further intersection tests. Figure 3.2 demonstrates this process.

Weiler and colleagues [99] developed a way to perform ray casting using cell

traversal on graphics hardware. Weiler finds the initial ray entry point by rendering

front faces. Weiler then traverses through cells using the fragment program by storing

the cells and connectivity graph in textures. Once a ray exits the grid, Weiler’s
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algorithm does not handle reentry into the grid. Thus, the grids must be convex.

To handle nonconvex grids, Weiler adds cells to make the grid convex in the same

manner as suggested by [103].

Sweeping

The major inefficiency with the previously introduced ray casting algorithms is that

they do not take advantage of coherency. The viewing rays from two adjoining pixels

are likely to intersect many of the same cells in the model. However, the previous

ray casting algorithms independently recast every ray, duplicating much of the work.

One way to take advantage of ray coherency is with a sweep algorithm. Sweeping

is a general-purpose idea in computational geometry that helps reduce the dimen-

sionality of the problem [17].

Giertsen [32] was the first to apply sweeping to volume rendering unstructured

grids. Giertsen placed a sweep plane perpendicular to the view plane at an extreme

point of the model. Giertsen then swept the plane through the model. As the sweep

plane passed through them model, Giertsen would maintain the set of polygons

formed by the intersection of the model and the sweep plane.

The sweep algorithm works because incrementally updating the intersection is

much easier than cutting the model by an arbitrary plane. As with all sweep algo-

rithms, the sweep plane in principle moves continuously, but in practice, the sweep

algorithm processes the plane only at certain events. In Giertsen’s case, the events

are the vertices of the model, where the topography of the polygons changes, and

the scan lines, where rays are cast through the plane to determine pixel colors. Silva

[87, 88, 89] made several improvements to Giertsen’s algorithm. The most notable

change is the use of a sweep line to determine the intersections of polygons in the

plane with viewing rays.
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Yagel and colleagues [111] introduce another sweep plane algorithm. Unlike Giert-

sen, Yagel uses a sweep plane parallel to the view plane. Yagel then renders the

polygons in the sweep plane directly on graphics hardware, making the algorithm,

in practice, much faster than Giertsen’s. However, Yagel’s sweep plane stops only at

a predetermined number of locations making it possible (even likely) that the sweep

plane completely misses cells. Weiler and Ertl [97] show how to use multitextures to

perform both the slicing of the cells in addition to rasterizing the resulting polygon.

3.1.2 Cell Projection

When volume rendering with cell projection, the system traverses the list of cells

and projects each one onto the viewing plane. Once the cell’s projection is deter-

mined, the renderer fills the pixels covering that part of the viewing plane, a process

we call rasterization. Because the rendering system, in its outer loop, iterates over

all the objects, cell projection is known also as object-order rendering.

The major advantage cell projection has over ray casting is that every viewing-

ray intersection with a cell is computed at once when the cell is projected, making

it easy to take advantage of coherency among viewing rays without the overhead of

a sweep algorithm. Furthermore, because commodity graphics hardware is also an

object-order rendering system, it is straightforward to implement the cell projection

algorithms on graphics hardware, making them faster than CPU-bound algorithms.

The major disadvantage of cell projection is its reliance on proper visibility ordering

of the cells. Therefore, in addition to reviewing the most popular cell projection

algorithms, I review common cell sorting algorithms.
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Projected Tetrahedra

Shirley and Tuchman [86] proposed the first algorithm for projecting cells of un-

structured grids. Like most other cell projection algorithms, Shirley and Tuchman’s

algorithm, for simplicity, works with a single type of polyhedron: the tetrahedron.

Because their algorithm works exclusively with tetrahedra, they dubbed their al-

gorithm projected tetrahedra. Thanks to its simplicity and effectiveness, a sig-

nificant number of rendering systems still uses the projected tetrahedra algorithm

today.

Shirley and Tuchman chose the tetrahedron because it is a simplex in three di-

mensions [36]. That is, the tetrahedron is the simplest possible polyhedron; it has

the minimum number of vertices (4), edges (6), or faces (4) required to construct a

polyhedron. A tetrahedron is always simple (non self-intersecting) and convex (any

segment connecting two points within the tetrahedron is completely contained by the

tetrahedron). Furthermore, we can decompose any simple polyhedron into tetrahe-

dra. Thus, the projected tetrahedra algorithm will work for general unstructured

grids once we decompose them into tetrahedra.

Shirley and Tuchman noted that when a tetrahedron projects onto a viewing

plane, they could classify it in one of four ways, shown in Figure 3.3. If the tetrahe-

dron is in general position, it will fall into Class 1 or Class 2. If one or two faces are

perpendicular to the viewing plane, it will fall into Class 3 or Class 4, respectively. By

comparing the dot products of the surface normals with the viewing vector, Shirley

and Tuchman were able to classify the tetrahedra.

Once it has determined the projection class, the algorithm can break the pro-

jection into triangles. Figure 3.3 shows how Shirley and Tuchman decompose each

projection into triangles. No triangular region crosses an edge of the projected tetra-

hedra. Thus, assuming we interpolate parameters linearly through the tetrahedron,
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1

Class 1 Class 2

Class 3 Class 4

Figure 3.3: Projected tetrahedra classes. The four cases comprise the possible ways a
tetrahedron projects onto a 2D viewing plane. For each case, this figure demonstrates
how we can decompose the tetrahedron into triangles.

the parameters vary linearly within the triangles. Once the triangles have been

determined, Shirley and Tuchman feed them to graphics hardware to render.

Wilhelms and van Gelder [102] propose a similar algorithm that projects hex-

ahedra instead of tetrahedra. Although the hexahedron is not as versatile as a

tetrahedron—in general, a polyhedron cannot be decomposed into hexahedra—it is

a common element in unstructured grids. Furthermore, we require five or six tetra-

hedra (depending on layout) to decompose a hexahedron. Therefore, projecting the

hexahedra directly can lead to a substantial performance improvement.
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GPU Accelerated Projected Tetrahedra

Although hardware accelerated, the projected tetrahedra algorithm requires a sub-

stantial amount of CPU usage. Ideally, we would like our graphics hardware to

project polyhedra (or at least tetrahedra) in the same manner as it projects points,

lines, and polygons. King, Wittenbrink, and Wolters [45] propose an architecture to

do just this, but neither they nor anyone else, have implemented their architecture.

Once programmable graphics hardware became available, Wylie and colleagues

[110] devised a means of performing tetrahedra projection completely on the graph-

ics card. They called their method the GPU Accelerated Tetrahedra Renderer

(GATOR).

The limitations of vertex programs were Wylie’s biggest challenge. At the time,

vertex programs had neither the ability to branch nor the ability to add or subtract

vertices.1 Therefore, Wylie had to know the number of triangles to use a-priori.

To get around this problem, Wylie builds a basis graph, shown in Figure 3.4. If

we treat each projected tetrahedra projection class (shown in Figure 3.3 on page 37)

as a graph, we notice that they are all isomorphic with the basis graph (assuming

we allow nodes of the basis graph to be located at a single point). Wylie draws the

basis graph as a triangle fan, so the problem reduces to finding a mapping from a

projection to the basis graph.

To find this mapping, Wylie enumerates all the permutations of the projections,

shown in Figure 3.5. There are fourteen permutations in all, which GATOR uniquely

identifies with four tests. Three of the tests involve checking the direction of the cross

product of various vectors along edges. The fourth test involves checking whether

two particular segments intersect. Once GATOR properly identifies the permutation,

1As of the time of the writing of this dissertation, there is still no way to change cell
topology from within a vertex program.
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1

Figure 3.4: GATOR basis graph.

GATOR retrieves the appropriate mapping of the basis graph via a lookup table.

View Independent Cell Projection

Weiler, Kraus, and Ertl [98] developed another method for performing cell projec-

tion completely within a graphics card that deviates significantly from the projected

tetrahedra method. They call their algorithm view independent cell projection

because, unlike projected tetrahedra, the process does not change with the viewing

position.

When rasterizing a projected cell, any cell projection algorithm must calculate

two intersections per pixel: the entry and exit points of the viewing ray. Finding

one of these two intersections on graphics hardware is trivial: simply rasterize the

polygon face. Doing this gives either the entry point (if it is a front-facing polygon)

or the exit point (if it is a back-facing polygon).
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Figure 3.5: All the permutations of the first two classes of the projected tetrahedra
algorithm. Each permutation has a unique mapping to the basis graph (given in
Figure 3.4 on page 39).

Weiler, Kraus, and Ertl’s algorithm proceeds by using the graphics hardware

rasterizer to find all the viewing ray entry points. They find all the entry points by

drawing the front faces of the tetrahedra. They then use the fragment processor to

determine the exit point for each viewing ray. They do not need to rasterize the back

faces, so the algorithm culls these faces.2

To find the exit point, Weiler, Kraus, and Ertl intersect the viewing ray with each

2Culling back facing polygons is a standard OpenGL operation[109].
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1

Figure 3.6: 2D example of the intersection of viewing rays with the planes of cell
faces. If a ray does not intersect a cell face, then it intersects the plane containing
that face either before the entrance (shown on the left) or after the exit (shown on
the right).

plane containing a face. Unless a face is parallel to the viewing ray, every plane will

intersect this viewing ray. However, as demonstrated in Figure 3.6, the intersection

of the ray and any plane containing a face not intersected by the ray will occur either

before the entry point or after the exit point [34]. Therefore, the true exit point is

the one closest to the entry point that is not before the entry.

Finding the intersection of a plane and a ray is easy. Consider the implicit

equation for a plane:

~n · ~x + a = 0 (3.1)

where ~n is the normal to the plane. Finding the plane equation for a face is as simple

as finding the face’s normal and then plugging in a known point in the face (i.e. one

of its vertices) into ~x to find a. For the ray, we use the parametric equation

~r = ~v + t~d (3.2)

where ~v is a point on the ray and ~d is a vector pointing in the direction of the ray.

If ~v is the entry point of the ray into the tetrahedron (which front-face rasterization

gives) and ~d is the normalized viewing ray, then t is the distance between the entry
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point and the intersection of the plane. Negative values for t mean the intersection

occurs in front of the entry point.

We can find the intersection by plugging Equation 3.1 into Equation 3.2 and

solving for the only unknown, t.

~n ·
(
~v + t~d

)
+ a = 0

~n · ~v + t~n · ~d + a = 0

t~n · ~d = − (~n · ~v + a)

t = −~n · ~v + a

~n · ~d
(3.3)

The actual exit intersection is that with the smallest value of t that is greater than

zero.

Once they determine the back intersection point, Weiler, Kraus, and Ertl still

need to know the scalar value at the back intersection point. Assuming that the

gradient, ~g, of the scalar is constant (and known), the scalar value at the back is

sb = sf +
(

~d · ~g
)

D (3.4)

where sb and sf are the values of the scalar at the front and back, respectively, of

the ray, ~d is again the normalized viewing ray, and D is the distance between the

front and back intersections (equal to t in Equation 3.3).

Given scalar values at the vertices of the tetrahedron, there exists a unique,

consistent, and constant gradient. We can find this gradient by establishing a system

of equations applying Equation 3.4 to all the edges connected to one vertex.

s1 = s0 + (~v1 − ~v0) · ~g

s2 = s0 + (~v2 − ~v0) · ~g

s3 = s0 + (~v3 − ~v0) · ~g
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We can change these equations into a more familiar matrix form.
s1 − s0

s2 − s0

s3 − s0

 =


(~v1 − ~v0)

T

(~v2 − ~v0)
T

(~v3 − ~v0)
T

~g (3.5)

We can solve Equation 3.5 with elementary linear algebra [2]. Note that the gradients

do not change with the viewpoint, and they can therefore be determined offline.

At the time Weiler, Kraus, and Ertl were developing their algorithm, the fragment

processor of commodity graphics cards was not powerful enough to perform the

ray-plane intersections, scalar determination, and ray integration.3 However, they

observe that the distance from a face to a plane and the scalar value on the opposite

plane varied linearly across a face of a tetrahedron. As such, they can compute the

ray-plane intersections and scalar values at the vertices in a vertex program. They

then store the depths and scalars in triples as texture coordinates that the rasterizer

linearly interpolates.

Weiler, Kraus, and Ertl note another advantage of performing ray-plane inter-

sections at cell vertices. At each vertex, the algorithm performs three intersection

calculations. However, as demonstrated in Figure 3.7, each vertex belongs to two

of the three faces with which they perform intersection calculations. Because the

vertex is part of these planes, the intersection at these planes is at the vertex. Thus,

the algorithm does not need to solve the intersection with these planes explicitly.

Visibility Sorting

When performing ray casting, we implicitly know the order in which a ray intersects

cells. However, when performing cell projection using any of the previously discussed

3Weiler and colleagues [100] later demonstrated how to perform all these operations on
the next generation of graphics cards.
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Figure 3.7: Ray-plane intersections at vertices. When rasterizing face f0, the distance
to the planes of faces f1, f2, and f3 must be computed. However, note that, for
example, vertex v1 touches f2 and f3. Thus, the distance to those faces is zero and
the scalar for that intersection is that at v1.

1

Figure 3.8: A visibility cycle.

algorithms, we must first determine the visibility order so that we can project the

cells in the proper order.

Formally, the visibility-sorting problem is that of finding a relationship among
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cells for a given viewpoint. We define the relationship ≺v such that if any part of

cell Ci occludes any part of cell Cj, then Ci ≺v Cj. We require our visibility-sorting

algorithm to build an array A = {a1, a2, . . . , an} such that ∀i, j : ai ≺v aj → i ≤ j.

There is no guarantee that such an array will exist. Figure 3.8 demonstrates how as

little as three convex cells can be mutually occluding. We call this mutual occlusion

a visibility cycle.

When faced with a visibility cycle, a visibility-sorting algorithm has only two

choices. The first choice is the ostrich algorithm: ignore the problem and hope

that visibility cycles either do not happen or do not make noticeable visual artifacts.

The second choice is to split cells so that the cycle is broken.

Newell, Newell, and Sancha [70] developed a direct algorithm for performing

visibility sorting of polygons in the early 1970’s. Their algorithm relies on a routine

that determined whether a cell Ci occluded a cell Cj. To speed up this operation,

Newell, Newell, and Sancha use a sequence of operations increasing in accuracy and

complexity to determine the truth of the relationship. Because the ≺v relationship

is not transitive, we cannot use this operation as the comparator in a standard

O(n log n) sorting algorithm. Instead, Newell, Newell, and Sancha order the cells

based on their distance from the viewpoint and then compare only pairs of cells whose

depth ranges overlap. In principle, this could lead to O(n2) algorithmic behavior,

but in practice, far fewer comparisons are performed. Stein, Becker, and Max [92]

extend the comparison operation to work with polyhedra.4

Other methods of sorting polygonal cells do not extend to polyhedrons. The

binary space partitioning (BSP) trees algorithm [29, 30] uses cutting planes to

divide space into a binary tree that the algorithm can quickly walk to determine a

visibility order. However, when applied to meshed polyhedra, the number of cells

4The comparison operation in Stein, Becker, and Max has a bug that is fixed by
Williams, Max, and Stein [105].
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Figure 3.9: An example of an MPVO cell connectivity graph. On the left is a convex
mesh with its connectivity graph superimposed. On the right, a viewpoint imposes
directionality on the edges.

can grow quadratically [72]. deBerg, Overmars, and Schwartzkopf [15, 16] present

a quicksort-like algorithm that used the transitive closure of ≺v as a comparison

operator. However, their method of determining if a pair of cells exists in this

transitive closure does not extend to polyhedra.

Williams [103] presents the well-known Meshed Polyhedra Visibility Order-

ing (MPVO) algorithm.5 Williams’ MPVO algorithm requires several restrictions

on the mesh. First, the mesh has to be fully connected. A connected mesh is in

one piece. More formally, you cannot partition the cells of a connected mesh into two

sets such that the partitions share no faces. Second, the mesh has to be convex. A

convex mesh contains all the faces of the convex hull of its vertices. A convex hull

of a set of points (in Euclidean three space) is the smallest polyhedron containing all

the points. Third, the mesh must have no holes, meaning the mesh cannot enclose

any empty regions. These restrictions ultimately mean that a ray exiting the mesh

cannot reenter the mesh.

The MPVO algorithm first preprocesses the mesh by building a connectivity

5Max, Hanrahan, and Crawfis [64] independently developed a similar algorithm.

46



Chapter 3. Practical Implementations of Volume Rendering

graph. The connectivity graph represents each cell with a node and each shared face

with an edge. Given a viewpoint for visibility sorting, the MPVO algorithm gives

directionality to each edge based on which side of the associated face is facing the

viewpoint. The cell on the front face occludes the cell at the back face. Assuming no

visibility cycles are present, adding edge directionality results in a directed acyclic

graph (DAG). The DAG thus reduces sorting to walking the tree.

The biggest problem with MPVO is its reliance on connected, convex meshes,

a requirement seldom enforced in unstructured grids. To deal with nonconvex

meshes, Williams [103] proposes also an extension to MPVO called MPVONC.

The MPVONC extension provides several heuristics for choosing a total ordering

from the partial ordering of the DAG that is likely to be correct for occlusions out-

side of the DAG. However, there is no guarantee that these heuristics will be correct.

Williams [103] suggests also filling concavities and holes with dummy cells used for

the sorting but not for the drawing.

Silva, Mitchell, and Williams [90] extend the MPVO algorithm with the XM-

PVO algorithm. XMPVO works exactly like MPVO except that at every viewpoint

a sweep plane algorithm determines any occlusions caused by rays exiting and then

reentering the mesh. XMPVO adds these occlusions as edges to the DAG. Comba and

colleagues [11] again improve the algorithm with BSP-XMPVO. BSP-XMPVO is

just like its predecessor except that it uses a BSP tree to determine occlusions instead

of a sweep plane. The BSP tree requires more preprocessing and more memory, but

is ultimately faster to compute per viewpoint change than the sweep plane algorithm.

For the special case of Delaunay triangulations, Max, Hanrahan, and Crawfis

[64] give a simple method for visibility sorting. A Delaunay triangulation (in 3D) is

one that has the property that the circumsphere of the vertices of each tetrahedron

contains no other vertices [17].
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Let the power distance of a point with respect to a sphere be d2 − r2, where d

is the distance between the point and the sphere’s center, and r is the radius of the

sphere. Max, Hanrahan, and Crawfis show that the sorting of the power distances

between the viewpoint and the circumspheres of the tetrahedra in a Delaunay trian-

gulation is equivalent to the visibility sorting of the tetrahedra. However, the method

is valid only for proper Delaunay triangulations and is sensitive to degenerate cases.

Cignoni and De Floriani [9] provide an algorithm to create valid sets of spheres for

general meshes, but their algorithm is complex and not guaranteed to work for all

meshes.

Algorithms exist for detecting and projecting visibility cycles. Snyder and Lengyel

[91] extend the Newell, Newell, and Sancha algorithm to detect cycles. Kraus and

Ertl [52] extend MPVO to detect cycles, making MPVOC. Both algorithms use an

image based approach to project cells with a visibility cycle correctly rather than

split the cells geometrically.

Ideally, graphics hardware would employ an image-based ordering solution much

like the z-buffer algorithm for opaque surfaces [8]. However, the z-buffer algo-

rithm gives only the closest surface where volume rendering requires the ordering of

every cell projected on a pixel. Carpenter [7] proposes the A-buffer. The A-buffer

maintains a linked list of depth sorted fragments at every pixel. However, such data

structures are difficult and slow to implement on graphics hardware. Given enough

oversampling of the image, one could implement screen door transparency, which

renders pixels opaque but writes only some of the pixels based on the opacity [28, 69].

Jouppi and Chang [39] propose an improved screen door transparency called Z3.

However, Jouppi and Chang demonstrate accuracy to depth complexities of only 16,

which is nowhere near deep enough for volume rendering. Wittenbrink [107] proposes

the R-buffer, which serves the same function as the A-buffer but stores fragments in

a single array rather than a collection of linked lists. Although more practical than
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the A-buffer, it still has yet to be implemented in graphics hardware. Furthermore,

a 1000 by 1000 pixel volume rendering with a modest average depth complexity of

100 requires over 600 megabytes of storage.

ZSWEEP

Farias, Mitchell, and Silva [24, 25] propose the ZSWEEP algorithm. Although it has

its roots in sweep plane algorithms, ZSWEEP actually projects cells onto the viewing

plane. The basic idea behind ZSWEEP is simple. First, ZSWEEP sorts the vertices

of the mesh based on the current viewpoint. The algorithm then visits the vertices

one at a time in back to front order. When it visits a vertex, ZSWEEP projects all

faces attached to that vertex that are not yet projected. Using information stored in

frame buffers, ZSWEEP can extract the parameters necessary for volume integration.

Of course, sorting vertex depths alone is not sufficient to create a proper depth

ordering of the cells. However, tests performed by Farias, Mitchell, and Silva show

that about 70% of the fragments projected are in front of all those previously pro-

jected, about 82% are behind no more than one other fragment, and over 99% are

behind no more than two. Farias, Mitchell, and Silva conclude that, given their order

of projection, they need in practice an A-buffer of only limited depth. Although A-

buffers of even limited depth are not available yet on commodity graphics hardware,

one could be implemented with high efficiency. Furthermore, ZSWEEP stands alone

in accuracy and speed for software implementations of unstructured grid volume

rendering.

3.1.3 Rectilinear Grid Resampling

Volume rendering rectilinear grids is significantly easier than for unstructured grids.

For example, tracing a ray through a rectilinear grid is a simple operation and would
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Viewing Rays
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Figure 3.10: Shear-warp factorization. The image on the left shows the traditional
casting of rays. The image on the right shows a progression of shear, project, and
then warp transformations that provide the equivalent ray-cell intersections.

make for a reasonable, if näıve, ray caster. However, this type of implementation is

not optimal. For example, as the ray traverses the volume it skips over large portions

of data in memory, usually killing cache performance. Furthermore, nearby rays may

touch the same elements in the rectilinear grid, which causes the same values to be

loaded multiple times.

Lacroute and Levoy [56] provide a way to resample a rectilinear volume that is

significantly faster than the näıve approach. They call their method shear-warp

factorization. The shear-warp factorization algorithm’s ability to traverse the vol-

ume memory consecutively helps make it the fastest known algorithm for CPU-based

volume rendering.6

Rather than trace rays through the volume, Lacroute and Levoy instead traverse

the volume data in the order it is stored in memory, slice by slice. They warp the

6According to Pfister and colleagues [73] based on experiments performed by Lacroute
[55].
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1

Figure 3.11: Potential slicing of rectilinear volumes for texture-based volume render-
ing. On the left are object-aligned slices. On the right are view-aligned slices.

slices to project properly on the image plane. As the algorithm moves from one slice

to the next, it shears the slices of the volume so that the same warp may be used.

Figure 3.10 demonstrates how this approach is equivalent to casting rays.

We can use commodity graphics hardware also to render rectilinear volumes effec-

tively. The most successful approaches simply render slices of the volume as polygons

while using the texture hardware to map the data onto the slices. Only the speed at

which fragments may be processed and the amount of texture memory available limit

the method. We can obtain greater speeds by using fewer slices, but this reduces the

sampling of the grid and, therefore, aliasing quickly becomes a problem.

When using texture hardware to render rectilinear volumes, the system may slice

the volume in one of two ways [12], as shown in Figure 3.11. The first mode of

slicing is object-aligned slicing. With object-aligned slicing, the slices are fixed

to the volume, much like in shear-warp factorization. Because the slices are fixed

with respect to the volume, the data for each slice may be stored in a 2D texture.

Of course, slices will not be visible if they are parallel to the viewing rays. For

object-aligned slices to work, there must be at least three copies of the slices where
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each set is perpendicular to a principle axis of the volume. Furthermore, as the

viewing rays deviate from the principle axes, the spacing and interpolation between

the slices changes, leading to errors. Recent advances in graphics hardware allow us

to compensate for these errors [79].

The second mode of slicing is view-aligned slicing. With view-aligned slicing,

the slices are always perpendicular to the view plane and the renderer trilinearly

interpolates the volume data to map onto the slice. Cabral, Cam, and Foran [6]

perform this interpolation on the CPU [6], but a more efficient approach is to use

3D textures [106].

A significant problem with using texture hardware on a traditional OpenGL

pipeline is that the texture holds the final colors. This means that classifica-

tion and shading cannot change without reloading all the texture data. However,

recent research and hardware improvements have largely corrected this problem

[13, 22, 68, 79, 95, 101].

3.2 Color Computations

In this section, I discuss the process of taking samples of volume material properties

along a viewing ray and applying the volume rendering integral to determine the

light intensity at each pixel. As discussed in Section 1.2, in a graphics hardware

pipeline, we refer to this process as fragment processing. Consequently, when imple-

menting volume rendering on graphics hardware, we perform color computations on

the fragment processor.

Ultimately, the goal of the color computations is to compute the volume rendering

integral, defined as

I(D) = I0e
−

R D
0 τ(t)dt +

∫ D

0

L(s)τ(s)e−
R D

s τ(t)dtds (3.6)
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I derive and discuss Equation 3.6 in detail in Chapter 2. In this section, I discuss

practical methods of evaluating this integral.

3.2.1 Riemann Sum

A simple (albeit inaccurate) method for numerical approximations of integrals is

the Riemann sum. The idea behind the Riemann sum is to take an integral, for

example of the form∫ b

a

f(x)dx (3.7)

and break it up into a finite amount of pieces that we sum together. The sum is

n∑
i=1

f(xi)∆x (3.8)

where ∆x = (b − a)/n and the sample xis are chosen such that (i − 1)∆x ≤ xi ≤

i∆x. As ∆s approaches zero (and n approaches infinity), Equation 3.8 converges to

Equation 3.7. Consequently, using more terms in the sum results in a more accurate

numerical approximation.

Max [63] gives an overview of how we may apply the Riemann sum to the vol-

ume rendering integral. The volume rendering integral (Equation 3.6) actually has

several integrals in it. The first is the integral attenuating the incoming light. We

approximate exp
(
−
∫ D

0
τ(t)dt

)
as follows.

exp

(
n∑

i=1

τ(ti)∆t

)
=

n∏
i=0

exp (τ(ti)∆t) =
n∏

i=0

ζi (3.9)

Note that in Equation 3.9 I have substituted ζi for exp (τ(ti)∆t). Assuming that ∆t

is fixed, we can precompute values of ζi based on the associated values for τ(ti).
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We approximate the second outer integral of Equation 3.6 in much the same way.∫ D

0
L(s)τ(s) exp

(∫ D

s
τ(t)dt

)
becomes

n∑
i=1

gi

n∏
j=i+1

ζj (3.10)

Putting Equation 3.9 and Equation 3.10 together, we get the following approximation

for the volume rendering integral.

I(D) ≈ I0

n∏
i=0

ζi +
n∑

i=1

gi

n∏
j=i+1

ζj

= gn + ζn(gn−1 + ζn−1(gn−2 + ζn−2(gn−3 + · · · ζ2(g1 + ζ1I0) · · · ))) (3.11)

Equation 3.11 yields simple front-to-back or back-to-front methods for computing it.

Until now, I have been intentionally vague on the form of gi. Max [63] defines

it as the traditional Riemann sum form dictates it: gi = L(si)τ(si)∆s. However, in

Section 2.3.3, I show that the output intensity of a ray segment of length ∆s is

L(si)
(
1− e−τ(si)∆s

)
= L(si)(1− ζi) (3.12)

Using Equation 3.12 for gi results in a more accurate approximation of the integral.

Nevertheless, we may precompute Equation 3.12 just as we can precompute ζi. Fur-

thermore, consider what happens when we substitute Equation 3.12 for the gis in

Equation 3.11.

I(D) ≈ Ln(1− ζn) + ζn(Ln−1(1− ζn−1) + · · · ζ2(L1(1− ζ1) + ζ1I0) · · · ) (3.13)

We can use graphics hardware to perform the basic operation Li(1 − ζi) + ζi(· · · )

used in Equation 3.13 as described in Section 2.2.4.

Volume rendering systems use the Riemann sum method most often when sam-

pling of the data set along viewing rays is convenient and does not result in a large

loss of information. Such situations occur when rendering rectilinear grids using

methods such as those described in Section 3.1.3.
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3.2.2 Average Luminance and Attenuation

Max, Hanrahan, and Crawfis [64] and Shirley and Tuchman [86] independently de-

veloped a method for approximating the volume rendering integral for unstructured

grids and other arenas where resampling is not practical.

The method starts with the (impractical) assumption that the luminance along

the ray is constant. Plugging this constraint in the volume rendering integral we get

I(D) = I0e
−

R D
0 τ(t)dt +

∫ D

0

Lτ(s)e−
R D

s τ(t)dtds

= I0e
−

R D
0 τ(t)dt + L

[
e−

R D
s τ(t)dt

]D
0

= I0e
−

R D
0 τ(t)dt + L

(
1− e−

R D
0 τ(t)dt

)
(3.14)

We can solve Equation 3.14 for any integrable function for τ(t). Recall from the

discussion in Section 2.2.4 that we can perform piecewise integration on the viewing

rays. Furthermore, it is convenient to break up the integral based on its intersection

with cells. The assumption that the volume properties vary linearly through the cells

is often (but not always) valid. Solving Equation 3.14 for a linear interpolation of

the attenuation, we get

I(D) = I0e
− τ b+τ f

2 + L
(
1− e−

τ b+τ f
2

)
(3.15)

We still have a major problem with Equation 3.15: the luminance is constant. In

general, we require the luminance to vary within cells just like the attenuation. Both

[64] and [86] solve this problem by averaging the color over the length of the segment.

When the color varies linearly like the luminance, this approximation yields

I(D) = I0e
− τ b+τ f

2 +
L b + L f

2

(
1− e−

τ b+τ f
2

)
(3.16)

An interesting feature of Equation 3.16 is that it is equivalent to approximating

the volume by averaging the luminance and attenuation and assuming the volume is
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(a) Averaged color. (b) Linearly interpolated color.

Figure 3.12: An example in the error caused by averaging luminance in a viewing
ray. Both images show two hexahedral cells. The image on the left averages the
luminance in each ray. The image on the right has correct linear interpolation.

homogeneous. This can be verified by plugging in L(s) = (L b + L f)/2 and τ(s) =

(τ b+τ f)/2 into the volume integral for homogeneous volumes (given in Section 2.3.3).

The biggest cause of error is that caused by averaging the luminance. Figure 3.12

demonstrates the error that can occur. When we average the luminance, the color

on the back faces of the cells bleeds in through the front. Furthermore, although

the color should be constant along the front face of the volume, the approximation

changes at the interface between the two cells. The change in colors causes Mach

bands to be visible. Mach bands are lines introduced by the human visual system

in places where color changes are discontinuous. Mach bands help the visual system

detect the edges of objects.

3.2.3 Linear Interpolation of Luminance and Intensity

In Section 2.3.5, I solve the volume rendering integral for linearly varying luminance

and attenuation. I parameterize the integral with the front and back values of the
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luminance and attenuation, as shown in the following two equations.

L(s)= L b
D − s

D
+ L f

s

D
(3.17)

τ(s)= τ b
D − s

D
+ τ f

s

D
(3.18)

The solution to the volume rendering integral using the linear terms demonstrated

in Equations 3.17 and 3.18 is complicated. If we wish to compute the volume render-

ing integral using only finite, real values, we need at least three forms of the solution.

The first form has real and finite terms when τ b > τ f .

I(D) = I0e
−D

τ b+τ f
2 + L f − L be

−D
τ b+τ f

2

+(L b − L f)
1√

D(τ b−τ f)
e

D
2(τ b−τ f )

τ2
f

√
π

2[
erf

(
τ b

√
D√

2(τ b−τ f)

)
− erf

(
τ f

√
D√

2(τ b−τ f)

)]
(3.19)

The second form has real and finite terms when τ b < τ f .

I(D) = I0e
−D

τ f+τ b
2 + L f − L be

−D
τ f+τ b

2

+(L b − L f)
1√

D(τ f−τ b)
e
− D

2(τ f−τ b)
τ2

f

√
π

2[
erfi

(
τ f

√
D√

2(τ f−τ b)

)
− erfi

(
τ b

√
D√

2(τ f−τ b)

)]
(3.20)

The third form is valid when τ b = τ f = τ .

I(D) = I0e
−τD + L b

(
1

τD
− 1

τD
e−τD − e−τD

)
+ L f

(
1 +

1

τD
e−τD − 1

τD

)
(3.21)

Computing Equations 3.19 through 3.21 is not straightforward. First is the prob-

lem of computing the functions erf and erfi with high numerical accuracy. Second is

the problem where the value in the brackets can become quite small while the value

it multiplies with becomes exceptionally large, which leads to numerical instability.

Williams, Max, and Stein [105] solve these problems, and I review their solutions

here.
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We first consider Equation 3.19. In particular, consider the last term. For con-

venience, let us use the groupings δb ≡ τ b

√
D√

2(τ b−τ f )
and δ f ≡ τ f

√
D√

2(τ b−τ f )
. The third

term of Equation 3.19 becomes

(L b − L f)
1√

D(τ b−τ f)
eδ2

f

√
π

2
[erf (δb)− erf (δ f)] (3.22)

In particular, note that if δb and δ f are moderately large, then the value inside the

brackets is close to zero and the exponent outside the brackets is large. The disparity

between the two factors leads to numerical errors.

To compute the erf functions, Williams uses an approximation given by Press

and colleagues [75]. (Press actually gives his approximation for the complementary

error function, defined as erfc(x) = 1− erf(x), but the conversion is trivial.) Press

demonstrates approximating erf as

erf(x) ∼= 1− u(x)e−x2+p(u(x)) (3.23)

where u(x) = 1
1+0.5x

and p(z) is a ninth degree Chebyshev polynomial selected to

give an accurate fit to the tail of the error function. Specifically, p(z) is

p(z) = −1.26551223 + z ∗ (1.00002368 + z ∗ (0.37409196

+z ∗ (0.09678418 + z ∗ (−0.18628806 + z ∗ (0.27886807

+z ∗ (−1.13520398 + z ∗ (1.48851587 + z ∗ (−0.82215223

+z ∗ 0.17087277)))))))); (3.24)

Substituting Equation 3.23 into Equation 3.22, we get more flexibility.

(L b − L f)
1√

D(τ b−τ f)
eδ2

f

√
π

2

[
1− u(δb)e

−δ2
b+p(u(δ b)) − 1 + u(δ f)e

−δ2
f+p(u(δ f))

]
Now we cancel the 1s and move the exponent inside the brackets.

(L b − L f)
1√

D(τ b−τ f)

√
π

2

[
u(δ f)e

p(u(δ f)) − u(δb)e
δ2

f−δ2
b+p(u(δ b))

]
(3.25)
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Equation 3.25 does not have the disparate factors as before and therefore is generally

far more accurate when evaluated.

We next consider Equation 3.20. I rewrite the last term using the groupings

δ′b ≡ τ b

√
D√

2(τ f−τ b)
and δ′f ≡ τ f

√
D√

2(τ f−τ b)
.

(L b − L f)
1√

D(τ f−τ b)
e−δ′2f

√
π

2
[erfi (δ′f)− erfi (δ′b)] (3.26)

Rather than compute erfi directly, Williams instead computes Dawson’s in-

tegral, defined as D(x) ≡ ex2 ∫ x

0
ey2

dy. Dawson’s integral relates to erfi as

D(x) = 1
2

√
πe−x2

erfi(x). Rybicki [82] gives a good numerical method for computing

Dawson’s integral. Press and colleagues [76] also summarize the method.

Substituting erfi(x) = 2√
π
ex2

D(x) into Equation 3.26, we again get more flexibil-

ity.

(L b − L f)
1√

D(τ f−τ b)
e−δ′2f

√
π

2

[
2
√

π
eδ′2f D(δ′f)−

2
√

π
eδ′2b D(δ′b)

]

(L b − L f)
√

2√
D(τ f−τ b)

[
D(δ′f)− eδ′2b−δ′2f D(δ′b)

]
(3.27)

Equation 3.21 contains no form of the error function and is numerically stable

enough to compute directly with the exception of when the quantity τD approaches

zero. However, it is straightforward to show that limτD=0 I(D) = I0. Therefore, this

is just a simple special case.

So, in summary of Williams and colleagues’ work [105], we can accurately compute

the volume rendering integral with linearly interpolated attenuation and luminance
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with the following equation.

I(D) ∼=



I0e
−D

τ b+τ f
2 + L f − L be

−D
τ b+τ f

2

+(L b − L f)
1√

D(τ b−τ f)

√
π

2[
u(δ f)e

p(u(δ f)) − u(δb)e
δ2

f−δ2
b+p(u(δ b))

] τ b > τ f

I0e
−D

τ b+τ f
2 + L f − L be

−D
τ b+τ f

2

+(L b − L f)
√

2√
D(τ f−τ b)[

D(δ′f)− eδ′2b−δ′2f D(δ′b)
] τ b < τ f

I0e
−τD + L b

(
1

τD
− 1

τD
e−τD − e−τD

)
+L f

(
1 +

1

τD
e−τD − 1

τD

)
(τ b = τ f = τ) ∩ (τD > 0)

I0 (τ b = τ f = τ) ∩ (τD = 0)

(3.28)

where δb ≡ τ b

√
D√

2(τ b−τ f )
, δ f ≡ τ f

√
D√

2(τ b−τ f )
, δ′b ≡ τ b

√
D√

2(τ f−τ b)
, δ′f ≡ τ f

√
D√

2(τ f−τ b)
, u(x) =

1
1+0.5x

, p(x) is defined in Equation 3.24, and D(x) is Dawson’s integral.

The listing for a fragment program that calculates Equation 3.28 resides in Ap-

pendix B.3.

3.2.4 Gaussian Attenuation

When performing scientific volume visualization, most systems simply use 1D trans-

fer functions. That is, the volume defines a field of scalars in space, and the volume

rendering feeds these scalars into a 1D transfer function that returns the luminance

and attenuation to use in the volume. The previously reviewed color calculation

methods reflect the use of 1D transfer functions.
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However, Kniss, Kindlmann, and Hansen [46, 47] show that using multidimen-

sional transfer functions with vectors containing a scalar and its first and second

derivatives is capable of providing useful renderings that cannot be performed with

only 1D transfer functions. Furthermore, Kniss and colleagues [50] and Tzeng, Lum,

and Ma [94] demonstrate that it is possible and useful to apply multidimensional

transfer functions to vector data.

Kniss and colleagues [50] show how to build many useful multidimensional trans-

fer functions using the Gaussian function (often known also as the normal distri-

bution). Kniss defined the Gaussian transfer function of a vector of d dimensions

as

GTF~µ,K(~v) = exp
(
−(~v − ~µ)TKTK(~v − ~µ)

)
(3.29)

where ~v is the input vector, ~µ is mean of the distribution, and K is a rotational matrix.

A traditional Gaussian function has a scaling term of 1/
(
(2π)d/2|K−1K−T|

)
, which

scales the function such that the area under the curve is 1. However, this property

is not useful for transfer functions and Kniss therefore drops it.

Kniss interpolates the attenuation as

τ(t) = τGTF~µ,K (~v1 + t(~v2 − ~v1)) (3.30)

Kniss then plugs Equation 3.30 into the volume rendering integral proposed by Max,

Hanrahan, and Crawfis [64]. I also discuss this integral in Section 2.3.4. I give the

equation for the integral, Equation 2.18, on page 26. Plugging Equation 3.30 into

Equation 2.18, we get

I(D) = I0e
−τD

R 1
0 GTF~µ,K(~v1+t(~v2−~v1))dt + L

(
1− e−τD

R 1
0 GTF~µ,K(~v1+t(~v2−~v1))dt

)
(3.31)

Kniss and colleagues [49] solve the integral∫ 1

0

GTF~µ,K (~v1 + t(~v2 − ~v1)) dt (3.32)
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The solution they give is
√

π

2

S

‖~d‖
(erf(B)− erf(A)) (3.33)

where

A =
~d · ~v′1
‖~d‖

, B =
~d · ~v′2
‖~d‖

= A + ‖~d‖, S = e−‖~v
′
1‖+A2

~d = ~v′2 − ~v′1, ~v′1 = K(~v1 − ~µ), ~v′2 = K(~v2 − ~µ)

Once Equation 3.32 is computed (using Equation 3.33), computing the rest of

Equation 3.31 is trivial. Of course, Equation 3.31 assumes a constant luminance.

Kniss uses a weighted sum to simulate luminance interpolated on Gaussian curves;

however, this approximation can lead to the same color bleeding demonstrated in

Figure 3.12 on page 56.

3.2.5 Pre-Integration

Röttger, Kraus, and Ertl [81] use a clever technique called pre-integration. Their

approach is to store the result of the volume rendering integral for all possible thick-

ness, luminance, and attenuation parameters in a table for rapid lookup. Of course,

doing this calculation for even the linear solution (Equation 3.28 on page 60) requires

five independent variables. Creating a five dimensional table with high enough fi-

delity is impractical.

However, Röttger and colleagues’ target applications are those pertaining to sci-

entific visualization. As such, the volumetric parameters of the models they are

rendering are specified by scalar information from a physical simulation, such as

pressure or temperature, that are mapped to rendering parameters (luminance and

attenuation) through a transfer function. Figure 3.13 demonstrates the process of

converting scalar values to volume properties to color. By using their lookup table
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Figure 3.13: The calculations performed by a pre-integration table lookup. The pre-
computed values in the table are performed over all the functional units encapsulated
in the dashed green box.

for both classification (converting scalars to rendering properties) and computa-

tion of the volume rendering integral enables them to reduce the dimensionality of

their lookup table to three. The dashed box in Figure 3.13 shows the scope of the

calculation of the pre-integrated lookup. Röttger and colleagues provide also an ap-

proximation that requires only a two dimensional lookup table. (The approximation

is improved by Guthe and colleagues [33] using a succession of 2D tables.)

The major advantage of the pre-integration technique is that it is fast (a texture

lookup) and potentially can handle any interpolation of volumetric properties includ-

ing an arbitrary number of isosurfaces. Engel, Kraus, and Ertl [22] argue (correctly)

that interpolating the model’s scalar values separately from the volumetric proper-

ties can reduce aliasing introduced by the interpolation. Ultimately, we can perform

the pre-integration approach on commodity graphics hardware and can compute the

volume rendering integral with appropriate interpolation in real time.

One disadvantage of the pre-integration approach is that the transfer function

must be constant. If the transfer function ever changes, then an application has to

recalculate the volume integral for every pair of entries in the table, often taking

several minutes. This precludes the possibility of interactively changing the transfer

function. Röttger and Ertl [80] improve the technique somewhat by performing the

recalculation of the pre-integrated values on the graphics hardware, thereby reducing
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the time from minutes to seconds.

Another potentially serious problem with pre-integration is that we can use only

one-dimensional transfer functions without introducing impractically high table di-

mensions. However, Kniss, Kindlmann, and Hansen [46, 47] introduce effective tools

that use 2- and 3-dimensional transfer functions for data exploration and presen-

tation. Recent work has made advances in using transfer functions of even higher

dimensions [50, 94].

Furthermore, the use of pre-integration precludes the use of any view-dependent

rendering effects. These include several non-photorealistic rendering techniques

[21, 43, 44] and global illumination [19, 37, 48, 51, 112, 113]. Therefore, the pre-

integration technique is useful for many systems, but it has fundamental flaws that

can hamper visualization tasks.

3.3 Summary

As I have shown in this chapter, the previous fifteen years have seen great strides

in volume rendering. Although commodity graphics hardware still does not directly

support volumetric primitives, several techniques utilize graphics hardware to per-

form some or all of the volume rendering. However, as the capabilities of graphics

hardware continue to improve, we must continue to look for new ways to take ad-

vantage of them.

In addition, many approaches exist for computing the volume rendering integral.

However, they all have flaws. Averaging luminance is fast but can be quite inaccurate.

We can perform linear interpolation of luminance accurately, but it is far slower

than other ray integration methods. Pre-integration computes the volume rendering

integral outside of the rendering loop, so the system is capable of performing accurate
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computations without affecting the rendering rate. However, the size of the lookup

table limits the accuracy. Furthermore, we must rebuild the table every time the

transfer function changes, which can be often. None of these algorithms can perform

computations that are both fast and accurate for changes in viewing position and

transfer function.
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Cell Projection

In this chapter, I discuss a fast, hardware-accelerated method for projecting tetrahe-

dra. My algorithm runs efficiently on the current generation of graphics hardware,

which is called the DirectX-9 class of graphics cards [61]. Furthermore, I expect the

method will be applicable for many generations to come.

I start this chapter by reviewing the cell projection algorithm on which I base my

work. I then make improvements on the algorithm that shall significantly improve

the rendering speed. Finally, I make extensions to the algorithm that can increase

the overall accuracy of the rendering system.

4.1 Quick Review of View Independent Cell Pro-

jection

I base my algorithm on the view independent cell projection of Weiler, Kraus, and

Ertl [98, 100]. Like the ever-popular Projected Tetrahedra algorithm [86], view in-

dependent cell projection is a projection-based algorithm that takes advantage of
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the optimized rasterizing of graphics hardware. However, view independent cell pro-

jection also takes advantage of programmable vertex hardware so that the CPU no

longer must transform points or classify tetrahedron projections. I give an overview

of this algorithm in Section 3.1.2 starting on page 39. I build on that review in this

section by defining the procedures required.

I first give the procedure for projecting a single tetrahedron. Obviously, it is

the application’s responsibility to loop over all tetrahedra and render each one. A

tetrahedron, by definition, has four triangular faces and four vertices. I assume that

each vertex has a scalar associated with it. Furthermore, I assume that we interpolate

the scalars linearly throughout the tetrahedron. Given these assumptions, the scalar

gradient is constant. Section 3.1.2 discusses how to compute this gradient on page 43.

Models sometimes define scalar data on a per-cell basis. In this case, all four

vertices of the tetrahedron have the same scalar value and the gradient is the zero

vector. We can optimize the procedures I give for this case, but the optimization is

trivial and I will not discuss it. It is possible also for the model to define the scalars

with arbitrary parametric functions (in so-called nonlinear cells). The current best

method for rendering such cells is to decompose the nonlinear cells into linear pieces

[42].

The VICP-ProjectTet procedure formalizes the part of the view independent

cell projection algorithm that runs on the CPU.
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VICP-ProjectTet(T )

1 ~g ← gradient of scalars in tetrahedron T

2 for each face F of tetrahedron T

3 do Send BEGIN TRIANGLE to graphics card

4 for i← 0 to 2

5 do ~v ← vertex i of face F

6 sv ← scalar value at ~v

7 Pv ← plane for face opposite ~v

8 Send (~v, sv, Pv, ~g, i) to graphics card

9 Send END TRIANGLE to graphics card

The VICP-ProjectTet procedure is quite simple. By design, the VICP-

ProjectTet procedure does little more than send data to the graphics card. The

overhead of this part of the algorithm is not the amount of computation performed

on the CPU, which is almost nothing, but rather the amount of data passed to the

graphics card. All memory passing from the CPU to the GPU must pass through a

bus, which often leads to a bottleneck. I therefore count how much memory VICP-

ProjectTet transfers to the graphics card.

Although I show VICP-ProjectTet specifically sending begin and end triangle

events in lines 3 and 9, respectively, we more commonly simply specify that every

three vertices makes a triangle. Because the begin-triangle and end-triangle events

are not specifically sent to the graphics hardware, I will not count them.

In line 8, VICP-ProjectTet sends (~v, sv, Pv, ~g, i) to the graphics card. sv and

i are scalars and thus require one component each. ~v and ~g are each 3-vectors. A

plane equation such as Pv is often parameterized with four components, but Weiler,

Kraus, and Ertl [98] demonstrate how to parameterize it with only three components.

Therefore, assuming we represent all the components with floating point values, each

call to line 8 passes 11 floats to the graphics hardware. Line 8 is called three times
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per triangle, and there are four triangles per tetrahedron, so 132 floats are passed to

the graphics hardware per tetrahedron in all.1

The interesting calculations in view independent cell projection begin in the ver-

tex program. The vertex program, defined as VICP-VertexProg, takes the pa-

rameters for a single vertex as input (as sent from VICP-ProjectTet) and returns

modified parameters that the rasterizer interpolates.

VICP-VertexProg(~v, sv, Pv, ~g, i)

1 ~v′ ← ~v modified by current transform

2 P ′
v ← Pv modified by current transform

3 ~d← [0, 0, 0]

4 ~s← [sv, sv, sv]

5 R← ray originating at ~v′ and pointing in view direction

6 (~di, ~si)← IntersectBackFace(R,P ′
v, sv, ~g)

7 return (~v′, sv, ~d, ~s)

VICP-VertexProg generates the vectors ~d and ~s. Each entry in the ~d vector

gives the distance, along the view vector, to one of the opposite faces (an opposite

face being one of the three faces of the tetrahedron not being projected). Each entry

in the ~s vector gives the scalar value on the corresponding opposite face. Each vertex

touches three faces. One of the faces is the one being projected and is not included

in the ~d and ~s vectors. The other two faces correspond to 0 entries in ~d and sv entries

in ~s. Lines 3 and 4 initialize the two vectors.

In line 6, VICP-VertexProg computes the intersection of the viewing ray with

the one face not touching the vertex. The procedure IntersectBackFace performs

1Weiler and colleagues [100] actually pass plane information for three faces instead of
one face and the index. This makes 16 floats per vertex or 192 floats per tetrahedron. The
added floating point values allow the fragment program to perform the intersection of each
viewing ray with all three potential exiting faces.
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this intersection. It returns the distance to the intersection and the scalar value at

the intersection, both of which are placed in the appropriate index of the ~d and ~s

vectors. I do not specifically give the implementation of IntersectBackFace, but

Equations 3.3 and 3.4 in Section 3.1.2 on page 42 provide the mathematics for the

operation.

The rasterizer interpolates the values of ~d and ~s across the front face. In other

words, the rasterizer is interpolating the distance to and scalar value of viewing ray

intersections to all potential back faces. It is the job of the fragment program to pick

the values for the actual exit point.

VICP-FragmentProg(sv, ~d, ~s)

1 i← the index such that
(

~di > 0
)
∩
(
∀j, ~dj > 0⇒ ~dj ≥ ~di

)
2 return IntegrateRay(sv, ~si, ~di)

VICP-FragmentProg picks the correct exit point by examining the distance

to each face. Specifically, the correct exit point has a distance that is the minimum

of all those greater than zero. Once it determines the correct exit point, VICP-

FragmentProg needs only perform ray integration. I discuss ray integration in

Chapter 5.

4.2 GPU-CPU Balanced Cell Projection

In this section, I modify the view independent cell projection algorithm of Weiler,

Kraus, and Ertl [98] by removing one constraint: view independence. In order for the

projection to be view independent, the algorithm must perform all the calculation

on the graphics card. Furthermore, the algorithm must pass all the data required

for the calculation to the graphics card. Because I plan to use optical models that

are view dependent, having a view independent cell projection is not helpful.
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I modify Weiler, Kraus, and Ertl’s algorithm by moving some of the calculations

from the vertex program back into the CPU. The changes I make have minimal effect

on either the CPU or GPU running time. Rather, my changes minimize the amount

of memory that we must transfer from the CPU to the GPU.

Balanced-ProjectTet(T )

1 ~g ← gradient of scalars in tetrahedron T

2 for i← 0 to 3

3 do ~v ← vertex i of tetrahedron T

4 s f ← scalar value at ~v

5 Pv ← plane for face opposite ~v

6 R← ray originating at ~v and pointing in view direction

7 (d, s b)← IntersectBackFace(R,Pv, s f , ~g)

8 Send (~v, d, s f , sb, i) to graphics card at index i

9 Send RenderTriangleStrip + 6 indices

Let us compare the differences between VICP-ProjectTet and Balanced-

ProjectTet. First, the balanced cell projection calls IntersectBackFace here

on the CPU rather than in the vertex program. Thus, rather than send the vectors

for Pv and ~g, we send the two scalars d and s b. Second, the balanced cell projection

sends vertex information 4 times rather than 12. To do this, I use an indexing

mode that allows me to reuse vertex information among faces. Vertex arrays and the

vertex buffer object extension support indexing mode. The reason we need to send

the vertex information twelve times in VICP-ProjectTet and only four times in

Balanced-ProjectTet becomes clear when we analyze Balanced-VertProg.

71



Chapter 4. Cell Projection

Balanced-VertProg(~v, d, s f , sb, i)

1 ~v′ ← ~v modified by current transform

2 ~d← [0, 0, 0, 0]

3 ~di ← d

4 ~s← [s f , s f , s f , s f ]

5 ~si ← s b

6 return (~v′, s f , ~d, ~s)

Balanced-VertProg differs from VICP-VertProg in two ways. First, the

Balanced-VertProg procedure does not compute IntersectBackFace be-

cause Balanced-ProjectTet already computed it. Second, ~d and ~s are 4-vectors

rather than 3-vectors. One of the values in the 4-vector corresponds to the face that

the rasterizer interpolates. Thus, we know the corresponding values in ~d and ~s will

be 0 and s f , respectively. However, commodity graphics hardware has redundant

arithmetic units to handle 4-vectors, so the extra computation costs us nothing.

The 4-vectors ~d and ~s maintain the intersection of the viewing ray with all four

faces of the tetrahedron. The four faces do not change with the face being projected,

and so the indexing of the faces may remain consistent. When dealing with 3-vectors

as in VICP-VertProg, the indexing of these vectors must change with each face

being projected. This is why VICP-ProjectTet has to send data for twelve

vertices whereas Balanced-ProjectTet has to send data for only four vertices.

We thus reduce the amount of data sent to the GPU from 132 floats to 28 floats.

Balanced-ProjectTet has also to send six indices, but these indices can remain

constant while a sorting algorithm reorders the vertex information. Therefore, we

can store them directly on the graphics card with vertex buffer objects, and we do

not have to send them every frame.
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Balanced-FragmentProg(sv, ~d, ~s)

1 i← the index such that
(

~di > 0
)
∩
(
∀j, ~dj > 0⇒ ~dj ≥ ~di

)
2 return IntegrateRay(sv, ~si, ~di)

Balanced-FragmentProg looks exactly like VICP-FragmentProg. The

only difference is that ~d and ~s are 4-vectors instead of 3-vectors. Again, the extra

entry holds the intersection for the face being projected. That entry in ~d will be

zero, so Balanced-FragmentProg will never select it.

4.3 Adaptive Transfer Function Sampling

One major problem of volume rendering systems is that of aliasing of the transfer

function. Typically, we sample the transfer function at the vertices of cells and in-

terpolate the colors. However, this sampling often completely misses transitions in

the transfer function. As an example, consider Figure 4.1(a). Because it samples the

transfer function at only cell vertices, the renderer completely misses sharp transi-

tions in the transfer function within cells, leaving a blocky, blurry mess. Compare

this result to the appropriate transfer function sampling in Figure 4.1(b).

Engel, Kraus, and Ertl [22] solve this problem using pre-integration. By perform-

ing the integration offline, the rendering system can afford to sample the transfer

function tightly independent of how the model samples scalars. However, I choose

to avoid pre-integration because of the high computational overhead required every

time the transfer function changes. Furthermore, the accuracy of pre-integration

is low and pre-integration precludes the use of multidimensional transfer functions

[47, 50], non-photorealistic rendering effects [21, 43, 44], and global illumination

[19, 37, 51, 113].

Williams, Max, and Stein [105] solve this same problem by splitting cells. They
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(a) Linearly interpolated colors and opacities.

(b) Adaptively sampled transfer function.

Figure 4.1: The effect of aliasing of the transfer function. Both images have the same
transfer function, which has a sharp opacity transition to highlight an isosurface. The
rendering on the top samples the transfer function at only the vertices of the cells,
which induces aliasing. The rendering on the bottom adaptively samples the transfer
function.
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define their transfer functions as piecewise linear functions. Each control point,

a point where the transfer function is nonlinear, defines an isosurface. They split

the cells on these isosurfaces, yielding a linear interpolation of rendering parameters

within the split cells. The problem with the Williams, Max, and Stein approach is

that it also introduces a high overhead when the transfer function changes.

My approach is similar to that of Williams, Max, and Stein in that I split cells on

the isosurfaces of transfer-function control points. Except, instead of splitting a cell

geometrically, I clip the cell on the graphics card. To do the clipping I need to pass

two more pieces of information, the two control points that are clipping the tetrahe-

dron, to the graphics card. (Note that this added information increases the data sent

to the card to 36 floats per tetrahedron.) If any control points lay within the scalar

range of a tetrahedron, I render the tetrahedron multiple times with varying clipping

parameters until the entire cell is rendered. The ATFS-ProjectClippedTet pro-

cedure formalizes how, given a tetrahedron and two control points, we can send the

data to the graphics card.

ATFS-ProjectClippedTet(T, c f , c b)

1 ~g ← gradient of scalars in tetrahedron T

2 for i← 0 to 3

3 do ~v ← vertex i of tetrahedron T

4 s f ← scalar value at ~v

5 Pv ← plane for face opposite ~v

6 R← ray originating at ~v and pointing in ~view

7 (d, s b)← IntersectBackFace(R,Pv, s f , ~g)

8 norm-s f ← (s f − c f)/(c b − c f)

9 norm-s b ← (s b − c f)/(c b − c f)

10 Send (~v, d, norm-s f , norm-s b, c f , c b, i) to graphics card at index i

11 Send RenderTriangleStrip + 6 indices
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The ATFS-ProjectClippedTet procedure is identical to the Balanced-

ProjectTet procedure with two exceptions. First, the two scalar values of the

transfer function control points (c f and c b) are passed to the graphics card. Second,

rather than send the scalar values themselves, lines 8 and 9 normalize the scalars to

the two control points.

Using normalized scalar values provides two features. One feature is that all parts

of the tetrahedron that we do not clip will have a normalized scalar value in the range

[0, 1], making it easier to identify the clipped regions. Another feature is that because

the luminance and attenuation parameters will vary linearly with the scalars in the

range between the two control points, we can use the normalized scalar to interpolate

these parameters. Thus, we can store the transfer function in the graphics card as a

set of control points and then pass c f and c b indices to the appropriate control point.

This mode removes any error that might occur with sampling the transfer function

because it does not sample the transfer function.

Of course, we still need to determine the front and back transfer-function control

points (c f and c b) before calling ATFS-ProjectClippedTet. The procedure

ATFS-ProjectTet extracts the appropriate control points and renders the clipped

tetrahedra in back to front order.
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ATFS-ProjectTet(T, transfer -func)

1 cmin ← largest control point in transfer -func that is ≤ smallest scalar in T

2 cmax ← smallest control point in transfer -func that is ≥ largest scalar in T

3 ~g ← gradient of scalars in tetrahedron T

4 zgradient ← ~g · ~view

5 if zgradient < 0

6 then c b ← cmin

7 while c b < cmax

8 do c f ← smallest control point in transfer -func that is > c b

9 ATFS-ProjectClippedTet(T, c f , c b)

10 c b ← c f

11 else c b ← cmax

12 while c b > cmin

13 do c f ← largest control point in transfer -func that is < c b

14 ATFS-ProjectClippedTet(T, c f , c b)

15 c b ← c f

ATFS-ProjectTet first determines the range of scalar values within tetrahe-

dron T and over which transfer-function control points the range lies (lines 1 and 2).

The procedure then determines in which direction to traverse the control points by

taking a dot product of the scalar gradient with the view vector (lines 3 and 4). Both

branches of the if statement starting on line 5 iterate over the control points and

render each clipped piece of the tetrahedron in back-to-front order. If the blending

requires front-to-back rendering rather than back-to-front rendering, then we can

reverse the conditions of the if statement.
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ATFS-VertProg(~v, d, norm-s f , norm-s b, c f , c b, i)

1 ~v′ ← ~v modified by current transform

2 ~d← [0, 0, 0, 0]

3 ~di ← d

4 ~norm-s ← [norm-s f , norm-s f , norm-s f , norm-s f ]

5 ~norm-s i ← norm-s b

6 iso-dist ← d/(norm-s f − norm-s b)

7 return (~v′, ~d, norm-s f , ~norm-s , c f , c b, iso-dist)

The vertex program for adaptive transfer function sampling, ATFS-VertProg,

is much like Balanced-VertProg. ATFS-VertProg, of course, passes also the

two control points. In addition, it calculates the distance between the two isosurfaces

at the control points in line 6. These two isosurfaces are parallel planes, and thus

does not change throughout the tetrahedron. However, by performing the calculation

in the vertex program, we can avoid transmitting more information from the CPU

to the GPU.

The way ATFS-VertProg determines the distance is not straightforward. It

is constrained to use the information already passed to it. From lines 8 and 9 in

ATFS-ProjectClippedTet, we know that norm-s = (s−c f)/(c f−c b). Consider

the difference of the two normalized scalars.

norm-s f − norm-s b =
s f − c f

c f − c b

− s b − c f

c f − c b

=
s f − s b

c f − c b

(4.1)

We know also that, given a linear interpolation of scalar values through space,

the distance between two points in space along a viewing vector is proportional to

the difference between the scalar values at those points. Therefore,

iso-dist

d
=

c f − c b

s f − s b

78



Chapter 4. Cell Projection

where d, just like in ATFS-VertProg, is the distance between two points with

scalar values s f and s b. It follows that

iso-dist = d
c f − c b

s f − s b

(4.2)

Combining Equation 4.1 and Equation 4.2, we get

iso-dist =
d

norm-s f − norm-s b

(4.3)

which line 6 of ATFS-VertProg clearly computes.

The isosurfaces of the control points are planes within each linearly interpolated

tetrahedron. Ideally, we would like to use the clipping hardware of the graphics

card to modify the geometry. Unfortunately, the clipping hardware can clip only

polygons and the vertex processor cannot generate the extra vertices necessary to

clip tetrahedra. Instead, we perform the clipping on each fragment. Consequently,

ATFS-FragmentProg is more complicated than the previously defined fragment

programs.
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ATFS-FragmentProg(~d, norm-s f , ~norm-s , c f , c b, iso-dist)

1 i← the index such that
(

~di > 0
)
∩
(
∀j, ~dj > 0⇒ ~dj ≥ ~di

)
2 norm-s b ← norm-s i

3 d← ~di

4 param-c f ← volume parameters for scalar c f

5 param-c b ← volume parameters for scalar c b

6 if (norm-s f > 1) ∪ (norm-s b < 0)

7 then discard fragment

8 if norm-s f < 0

9 then d← d− (−norm-s f) iso-dist

10 param-s f ← param-c f

11 else param-s f ← LinearInterpolate(param-c f , param-c b, norm-s f)

12 if norm-s b > 1

13 then d← d− (norm-s b − 1) iso-dist

14 param-s b ← param-c b

15 else param-s b ← LinearInterpolate(param-c f , param-c b, norm-s b)

16 return IntegrateRay(param-s f , param-s b, d)

ATFS-FragmentProg starts the same as the previous fragment programs by

determining the face that the viewing ray exits the tetrahedron through (line 1). It

then retrieves normalized scalar at the exit point and the distance between ray entry

and exit (lines 2 and 3). It follows by retrieving the volume parameters for the two

transfer-function control points.2 Lines 6 through 15 clip the ray segment.

To facilitate our discussion of per fragment tetrahedra clipping, consider Fig-

ure 4.2, which shows examples of clipped viewing-ray segments. Some rays, such as

ray c, are not clipped at all. Other rays, such as rays a and d, will be completely re-

2Previous examples of fragment programs did not explicitly convert scalars to volume
parameters. They instead delegated this process to IntegrateRay.
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1

a b c ed f

Figure 4.2: Tetrahedron clipping (reduced to a 2D example). Here I show two
example triangles that I clip on a per fragment basis between the two isosurfaces.
Six example viewing rays (labeled a–f ) are given.

moved. Still others will be partially clipped such that they enter the front isosurface

or exit the back isosurface or both, such as rays e, b, and f, respectively. As I explain

the remainder of ATFS-FragmentProg, I will reference the rays in Figure 4.2.

The conditional on line 6 determines whether to clip the ray-tetrahedron in-

tersection entirely. This type of clipping occurs if and only if the ray enters the

tetrahedron behind the back isosurface (ray a) or exits the tetrahedron in front of

the front isosurface (ray d). Although we could perform this test by comparing the

position of intersections along the viewing ray, we can perform the same test by

comparing the scalar values at these intersections, which are proportional. Because

ATFS-ProjectClippedTet normalized the scalar values at the tetrahedron in-

tersections, this test, like all the other tests, reduces to simply checking whether the

normalized scalars are in the range [0, 1]. If the test determines to clip the entire ray,
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ATFS-FragmentProg discards the fragment. That is, it writes nothing into the

frame buffer.

The conditional on line 8 determines whether the front isosurface lies within the

tetrahedron. This is true if and only if the ray enters the tetrahedron before it

intersects the isosurface (and the first test fails). If the test determines to clip the

front part of the ray (as in rays e and f ), then ATFS-FragmentProg subtracts

the distance between the ray entry and the isosurface from the segment length. The

volume parameters at the front of the ray are also set to the value at the front

isosurface. If the test determines to not clip the front part of the ray (as in rays b

and c), then the volume parameters of the two isosurfaces are interpolated to get the

scalar value at the surface of the tetrahedron. The conditional on line 12 performs the

equivalent operations based on whether the back isosurface is inside the tetrahedron

along the ray.

Appendices B.1 and B.2 list implementations of the vertex and fragment pro-

grams, respectively, required for tetrahedra projection with adaptive transfer func-

tion sampling.

4.4 Synopsis

Thanks to the assistance of efficient graphics hardware, the Projected Tetrahedra

algorithm [86] was the fastest known unstructured-mesh rendering algorithm for

over a decade. The view independent cell projection algorithm, developed by Weiler

and colleagues [98, 100] and reviewed in Section 4.1, improves on the Projected

Tetrahedra algorithm by taking advantage of graphics hardware capabilities that

were not available when Projected Tetrahedra was developed.

In Section 4.2, I proposed changes to the view independent cell projection algo-
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rithm that reduce the demands of the bandwidth between CPU and GPU. We shall

see in Chapter 6 that these changes greatly improve the speed of the algorithm.

In Section 4.3, I added adaptive transfer function sampling to the algorithm. It

divides the tetrahedra such that material properties vary linearly within each piece.

This linear variance makes our integration of volume properties (discussed in the

next chapter) far more accurate. This tetrahedron division ultimately slows down

the algorithm. The changes send more data to the card and add tetrahedra to the

rendering. However, we require better transfer function sampling such as this to

achieve high quality renderings. We shall see the overall effect of adding adaptive

transfer function sampling in Chapter 6.
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Ray Integration

In the previous chapter, I discussed how to take a collection of unstructured volume

elements and sample them with a grid of viewing rays. In this chapter, I discuss

how to take a collection of samples along a viewing ray and convert the material

properties of the volume into the intensity of light that emits from the volume. I

do not define a model for the volume in this chapter. I use the model defined in

Chapter 2.

When computing the light intensity, I will not consider an infinite viewing ray,

but rather I will consider a finite segment of a viewing ray. I assume that the volume

properties vary linearly throughout the segment. The adaptive transfer function

sampling method introduced in Section 4.3 ensures that the volume properties will

vary linearly. Furthermore, I parameterize the volume properties as I do in Chapter 4:

with the volume parameters at the front and back of the segment and the length of

the segment.

I reviewed several competitive ray integration methods in Section 3.2. However,

all of the methods either introduce artifacts (requiring excessive sampling of the

volume) or are too computationally intensive to use in real time or interactive envi-
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ronments. The ray integration methods I provide in this chapter have a balance of

accuracy and computational complexity.

5.1 Linear Interpolation of Luminance

Of all the ray integration methods reviewed in Section 3.2, only the work of Williams

and colleagues [105] (reviewed in Subsection 3.2.3) linearly interpolates the lumi-

nance. However, their solution is computationally intensive (see Appendix B.3 for

a sample implementation). In this chapter, I present ray integration methods that

also linearly interpolate the luminance, but can do so with far less computation. I

do this by grouping terms in the volume rendering integral.

Let us start with the general volume rendering integral, Equation 2.2.

I(D) = I0e
−

R D
0 τ(t)dt +

∫ D

0

L(s)τ(s)e−
R D

s τ(t)dtds (5.1)

We plug in a linear form for L(s), L(s) = L b(1− s
D

) + L f
s
D

, and then group terms

containing the parameters for luminance (L b and L f) obtaining

I(D) = I0e
−

R D
0 τ(t)dt +

∫ D

0

(
L b

(
1− s

D

)
+ L f

s

D

)
τ(s)e−

R D
s τ(t)dtds

I(D) = I0e
−

R D
0 τ(t)dt + L b

∫ D

0

(
1− s

D

)
τ(s)e−

R D
s τ(t)dtds

+L f

∫ D

0

s

D
τ(s)e−

R D
s τ(t)dtds

We can further resolve the integrals through integration by parts.

I(D) = I0e
−

R D
0 τ(t)dt + L b

((
1− s

D

)
e−

R D
s τ(t)dt

∣∣∣D
0
−
∫ D

0

− 1

D
e−

R D
s τ(t)dtds

)
+L f

(
s

D
e−

R D
s τ(t)dt

∣∣∣D
0
−
∫ D

0

1

D
e−

R D
s τ(t)dtds

)
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I(D) = I0e
−

R D
0 τ(t)dt + L b

(
−e−

R D
0 τ(t)dt +

1

D

∫ D

0

e−
R D

s τ(t)dtds

)
+L f

(
1− 1

D

∫ D

0

e−
R D

s τ(t)dtds

)
(5.2)

There is a significant amount of repetition of terms in Equation 5.2. We define

the following two terms, each of which appear twice.

ζD,τ(t) ≡ e−
R D
0 τ(t)dt (5.3)

ΨD,τ(t) ≡
1

D

∫ D

0

e−
R D

s τ(t)dtds (5.4)

Substituting Equations 5.3 and 5.4 into Equation 5.2 results in

I(D) = I0ζD,τ(t) + L b

(
ΨD,τ(t) − ζD,τ(t)

)
+ L f

(
1−ΨD,τ(t)

)
(5.5)

Given ζD,τ(t) and ΨD,τ(t), Equation 5.5 is a simple enough form to be computed

in real time on a graphics processor. The following sections discuss the computation

of ζD,τ(t) and ΨD,τ(t).

5.2 Linear Interpolation of Attenuation

Consider the case when we interpolate the attenuation linearly, as is done in much

of the volume rendering literature [63, 64, 86, 92, 102, 104, 105]. That is, τ(t) =

τ b(1 − t) + τ ft. This section discusses solutions for ζ and Ψ and provides means of

computing them when the attenuation is linear.
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5.2.1 Computing ζ

Solving for ζD,τ(t) is straightforward. Plugging in the linear form of τ(t) into Equa-

tion 5.3, we get the following.

ζD,τ b,τ f
= e−

R D
0 (τ b(1− t

D )+τ f
t
D )dt

= e
−

“
τ b

“
t− t2

2D

”
+τ f

t2

2D

”˛̨̨D
0

= e−(τ b(D−D
2 )+τ f

D
2 )

= e−
D
2

(τ b+τ f) (5.6)

Because Equation 5.6 resolves to such a simple expression, we can compute it

directly in programmable fragment units (of DirectX 9 class graphics hardware [61])

with few instructions.

5.2.2 Computing Ψ

In contrast, using a linear form for τ(s) does not resolve ΨD,τ(s) to a simple, easily

computed form.

ΨD,τ b,τ f
=

1

D

∫ D

0

e−
R D

s (τ b(1− t
D )+τ f

t
D )dtds (5.7)

However, the linear form of Ψ relies on only three variables: D, τ b, and τ f . It is

therefore possible to precompute Ψ for all applicable (D, τ b, τ f) triples. Also, note

that the Ψ table is ubiquitous. Once computed, its results are valid for any volume

rendering application. Thus, we have the luxury of using numerical methods that

may take hours or days.

Although loading a three-dimensional lookup table into a three-dimensional tex-

ture is possible, a two-dimensional table and a two-dimensional texture are preferable.

Röttger and colleagues point out that the significantly lower memory requirements
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of two-dimensional tables allow for much higher fidelity in the data they store [81]

and that data retrieval from two-dimensional textures is often faster than that from

three-dimensional textures on current graphics hardware [80]. Furthermore, not all

current graphics hardware supports three-dimensional textures with floating point

precision.

Fortunately, pre-integrated values of the Ψ function for linear attenuation coeffi-

cients may be stored in a two-dimensional table with no approximations apart from

those introduced by sampling the function. Consider what happens when we change

the limits of the integrals in Equation 5.7 to range between 0 and 1.

ΨD,τ b,τ f
=

1

D

∫ D

0

e−
R D

s (τ b(1− t
D )+τ f

t
D )dtds

=
1

D

∫ D

0

e−D
R 1

s/D(τ b(1−t)+τ f t)dtds

=

∫ 1

0

e−D
R 1

s (τ b(1−t)+τ f t)dtds

Next, we distribute D within the inner integral.

Ψτ bD,τ fD =

∫ 1

0

e−
R 1

s (τ bD(1−t)+τ fDt)dtds (5.8)

Equation 5.8 demonstrates that we may store Ψ in a two-dimensional table by

pre-computing Ψ for all applicable (τ bD, τ fD) pairs. Before a lookup into this table

may occur, we must compute the products τ bD and τ fD. We can perform both

multiplications in a single GPU vector operation, and we can reuse the products

to compute ζ if we rewrite Equation 5.6 as e−
1
2
(τ bD+τ fD), so the multiplications are

essentially free.

Once we compute ζ and determine Ψ via a lookup table, we can calculate Equa-

tion 5.5 directly to perform the ray integration. Because this method uses a table

that holds the pre-integration of part of the volume rendering integral, I dub this

method partial pre-integration.
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Figure 5.1: Plot of Ψ (Equation 5.8) against τ bD and τ fD for values in the range
[0, 4].

5.2.3 Domain of Ψ

In the previous section, I show that it is most prudent to build a two dimensional

table with entries corresponding to (τ bD, τ fD) pairs (Equation 5.8). However, valid

values for τD lay in the range [0,∞). We must choose a subset of this range that

provides good resolution for the most frequently encountered values of τD.

Figure 5.1 shows Ψτ bD,τ fD plotted for parameters in the range [0, 4]. Despite the

number of terms generated when solving Equation 5.8, we see that our plot is quite

smooth. The absence of high frequencies makes storing the function over a finite

domain in a table practical.

However, the partial pre-integration tables I have described thus far are not com-

plete. For example, the domain for Ψτ bD,τ fD shown in Figure 5.1 is not sufficient.

Notice that Ψ4,0 = 0.6, whereas limτ bD→∞ Ψτ bD,0 = 0. Therefore, the assumption

that Ψ4,τ fD ≈ Ψ∞,τ fD is incorrect. Using a table based on the plot in Figure 5.1 can

cause extreme and incorrect fluctuations in color space, an effect I dub Ψ clipping.
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Figure 5.2: Plot of Ψ (Equation 5.8) against τ bD and τ fD for values in the range
[0, 16].

So what can we do about Ψ clipping? One approach is to structure the application

such that no integrated ray segment ever has a value of τD that exceeds 4. For many

applications, such an approach is perfectly reasonable. After all, providing a larger

attenuation does not make the model look more opaque, so why support higher

attenuations? On the other hand, if rendering a model with cells varying wildly in

size, it may not be possible to pick a range for τ that allows for smaller cells to be

rendered opaque while maintaining the constraint that τD < 4.

Another straightforward approach to eliminate Ψ clipping is to increase the do-

main of Ψτ bD,τ fD until the Ψ clipping effect is below a tolerable threshold. Figure 5.2

demonstrates why this approach will not work. In it, we have significantly increased

the range over which Ψτ bD,τ fD is plotted. The area plotted increased 16 fold, and

the surface is far less smooth, thereby necessitating a significant increase in lookup

table resolution. Yet Ψ16,0 = 0.3, which is still significantly greater than Ψ∞,0.

I propose a means of eliminating Ψ clipping by changing the variables we use to

index Ψ, much like we did to reduce the dimensionality of the Ψ table as described
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Figure 5.3: Plot of Ψ against γb and γ f (Equation 5.10).

in Section 5.2.2. First, we define the variable γ as

γ ≡ τD

τD + 1
(5.9)

Solving Equation 5.9 for τD,

τD = γ/(1− γ)

and substituting into Equation 5.8, we get the following.

Ψγ b,γ f
=

∫ 1

0

e
−

R 1
s

“
γ b

1−γ b
(1−t)+

γ f
1−γ f

t
”
dt
ds (5.10)

The principle advantage of using γ over τD is that valid values of γ range only

over [0, 1). It is therefore possible to store the entire domain of Ψ into a single table.

Figure 5.3 shows a plot of Ψγ b,γ f
over its entire domain.

Appendix A contains instructions on computing tables of Ψ values with Mathe-

matica. Appendix B.4 lists Cg code that uses such a table to compute the volume

rendering integral.

91



Chapter 5. Ray Integration

0
0.2

0.4
0.6

0.8
Γb

0

0.2

0.4

0.6

0.8

Γf

0
0.0005

0.001

0.0015

0
0.2

0.4
0.6

0.8
Γb

Y
E
r
r
o
r

(a) Absolute maximum error of Ψ table.
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(b) Cumulative maximum Ψ error
through 100 cells.

Figure 5.4: Maximum error of Ψ calculation using a lookup table with a resolution
of 1024 by 1024. The error is assumed to be caused by adding or subtracting 1/2048
to each γ, which is the maximum distance between the correct value and the nearest
value stored in the lookup table.

5.2.4 Resolution of Ψ Table

In this section, we examine the error introduced by using a lookup table to compute

Ψ rather than using numerical methods to compute it directly. I arbitrarily picked a

resolution of 1024 by 1024 for the table. Using floating-point values for entries, the

table takes 4 MB of memory, a large texture but well within the resource limits of

today’s graphics hardware.

Figure 5.4(a) shows the maximum error introduced by performing a table lookup

for any (γb, γ f) pair. The error, measured as the absolute difference between the

correct Ψ and the nearest value in the lookup table, seldom reaches above 0.001 of

the maximum intensity of the display device, which is below what the human eye is

likely to discern. However, these values can be misleading. In practice, we use the

value of Ψ to compute the color of a ray segment through just one of many cells.

It is fortunate that the Ψ table error is minimized when values of γ are close
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to zero (i.e. the cell is nearly transparent). When the opacity is low, many cells

determine the value of the final ray color. When the opacity is high, only the closest

few cells contribute to the final ray color. Figure 5.4(b) demonstrates the maximum

cumulative error that can occur through 100 cells. As can be seen, although the

error for one cell is small when the opacity is lowest, the cumulative error is highest

in this region.

Note, however, that although we see potentially high errors, they occur only

in pathological conditions with minimal attenuation and maximum fluctuation in

luminance. Such errors are therefore unlikely to occur in practice. We can reduce

the potential error by increasing the resolution of the lookup table or performing

linear interpolation among values when performing the lookup.

Figure 5.5 compares various approaches for performing ray integration. The

approximation that averages both the luminance and the attenuation has obvious

errors where the blue is bleeding through the yellow. Partial pre-integration elimi-

nates these errors. The numerical methods from Williams, Max, and Stein [105] give

equally good results, but, as we shall see in Chapter 6, this approach takes over an

order of magnitude longer than partial pre-integration to compute.

5.3 Linear Interpolation of Opacity

Although interpolating the attenuation parameter (τ) linearly is common, it can lead

to problems. As the attenuation changes linearly, the opacity (α), the fraction of in-

coming light occluded by the volume, changes exponentially. Because the observable

effect is not changing in proportion to the modified parameter, building a transfer

function is difficult.

Instead, a preferable option is to parameterize the opacity rather than the atten-
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(a) Average Luminance and Attenua-
tion

(b) Partial Pre-Integration

(c) Linear Luminance and Attenuation

Figure 5.5: A comparison of ray-integration approaches that linearly interpolate the
luminance.
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(a) ζ with linearly interpolated opac-
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(b) ζ approximated with average opac-
ity.

Figure 5.6: Approximation of ζ for linearly interpolated opacity (α). Both compu-
tations are with unit length segments.

uation of the volume—a subtle but important difference. Wilhelms and van Gelder

[102] give a simple relationship between the two.1

α =1− e−τ (5.11)

τ =− ln (1− α) (5.12)

5.3.1 Initial Approximation

Linearly interpolated opacity results in an unwieldy form for ζ. Instead of trying to

calculate ζ directly, we can use an approximation similar to that given by Wilhelms

and van Gelder [102]. We assume that τ(s) is constant in Equation 5.3. In this

case, ζD,τ = e−Dτ . To get a value for τ , we average the opacity (α(s) ≈ 1
2
(αb + α f))

and then convert that to an attenuation coefficient (via Equation 5.12). Figure 5.6

demonstrates that this approximation is quite close.

1Wilhelms’ nomenclature is “material opacity” for α and “differential opacity” for τ .
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(b) Ψ approximated with average
opacity.

Figure 5.7: Approximation of Ψ for linearly interpolated opacity (α). Both compu-
tations are with unit length segments.

When α varies linearly (τ varies logarithmically), Ψ (Equation 5.4) does not have

a closed form. We can approximate Ψ in the same manner as we approximate ζ: by

averaging α. If we constrain the opacity and attenuation to be constant, Equation 5.4

reduces to

ΨD,τ =
1− e−Dτ

Dτ
=

1− ζ

Dτ

Figure 5.7 shows us that this approximation is also reasonable.

Appendix B.5 lists Cg code that we can use to perform this volume rendering

integral approximation. However, under rare circumstances when the opacity changes

drastically over a large cell, errors can become noticeable.
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Figure 5.8: Plot of ζ with linearly interpolated α, where αb + α f = 1 and the length
of the ray is 1. The solid line is the actual ζ. The dashed line is a parabola we fit
over this curve.

5.3.2 Improved Approximation

Although the plot in Figure 5.6(a) is mostly flat, like our approximation, there is a

tapering at the corners where the two α parameters are maximally different. Fig-

ure 5.8 shows the plot of the cross section between these two corners. The result looks

like a parabola. We are able to reduce the error significantly by fitting a parabola to

this plot and using

α(s) ≈ 1

2
(αb + α f) + 0.108165 (αb − α f)

2 (5.13)

instead of α(s) ≈ 1
2
(αb + α f).

Our approximation of Ψ is trivially correct when αb = α f but can have noticeable

error when the two opacities are significantly different. Because we are averaging the

opacity, our approximation yields the same result for any pair of (αb, α f) that satisfies

αb + α f = c. However, Ψ should have smaller values when α f is larger and the front

color becomes more predominant than the back color. We can capture this effect by

using a weighted sum for α(s) rather than an average. Using

α(s) ≈ 0.27αb + 0.73α f (5.14)
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Figure 5.9: Plots the error of the Ψ approximations. Both plots give values for unit
length segments.

instead of α(s) ≈ 1
2
(αb + α f) yields a much lower error, as Figure 5.9 demonstrates.

I get this weighting by using Mathematica [108] to minimize the l2-norm of the errors

of 3840 samples over the domain of Ψ.

Appendix B.6 lists Cg code that can use to perform this improved volume render-

ing integral approximation. When compiled with the latest NVIDIA Cg compiler, it

requires 11 more instructions than the code listed in Appendix B.6 for the approxi-

mation given in Section 5.3.1.

Figure 5.10 compares various approaches for performing ray integration. The

approximation that averages both the luminance and the opacity (Figure 5.10(a)) has

obvious errors where the blue is bleeding through the yellow. The approximation that

averages the opacity but linearly interpolates the color, introduced in Section 5.3.1,

(Figure 5.10(b)) is a vast improvement. The same errors still exist, but are vary

faint. The approximation for linear luminance and opacity introduced in this section

(Figure 5.10(c)) reduces the errors yet again.
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(a) Average color and opacity (b) Linear color, average opacity

(c) Linear color and opacity approxi-
mation

Figure 5.10: A comparison of ray-integration approaches that linearly interpolate
the luminance.
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5.4 Synopsis

An often used approximation for the volume rendering integral is to average the

luminance over the ray segment [64, 86, 102]. Although the computation is fast

enough to compute in real time, the errors introduced by the approximation are

noticeable. A closed form for the volume rendering integral with linearly interpolated

luminance and attenuation is known [104, 105], but it takes more than an order of

magnitude longer to compute than the approximation, making it suitable only for

off-line rendering.

In Section 5.2, I introduced partial pre-integration. Partial pre-integration per-

forms the same linear interpolation on luminance and attenuation as [105], but in a

fraction of the time. Partial pre-integration is accurate yet fast enough to use in real

time applications.

Rather than linearly interpolate attenuation, linearly interpolating opacity can

facilitate the building of transfer functions. There is no closed form of the volume

rendering integral for linearly interpolated luminance and opacity, but [102] provides

a rough approximation. In Section 5.3, I provide improvements to the approximation

that eliminate visual artifacts.
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Results and Comparisons

In this chapter, we explore the performance of the volume rendering methods intro-

duced in Chapter 4 and Chapter 5. We shall analyze the volume rendering on several

fronts. First, we examine the speed at which the volume rendering runs. Second,

we analyze the accuracy of the volume rendering. That is, we determine how closely

our approximations compute the actual volume rendering integrals specified by our

model. Third, we examine what effect cell boundaries have on the approximation.

We compute the ray integrals over a cell boundary where the color should be consis-

tent and look for variations and discontinuities in the output color that make errors

more noticeable.

6.1 Speed

Rendering speeds of a volume rendering system can vary with the volume being

rendered, the transfer function being used, the viewing projection, and the image

size. In this chapter, I give rendering times for several data sets taken from the
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Data Set Vertices Tetrahedra
Blunt Fin 40,921 187,395
Oxygen Post 108,300 513,375
Delta Wing 211,680 1,005,675

Table 6.1: Data sets used for testing.

NASA Advanced Supercomputing website1 and converted to tetrahedra. Table 6.1

lists the volumes used. Figure 6.1 shows sample renderings of the volumes.

The timings given in this section are for 800 by 800 pixel images unless otherwise

specified. The transfer function used for each model is a fixed function with 8 to 10

control points. The renderings rotate the camera around the center of the model.

The frame times given are an average of the rendering speed over every frame through

the rotation. I performed the tests on a 3.2 GHz Pentium 4 with 2 GB of RAM and

a Quadro FX 3000 graphics card. The Quadro graphics card has 256 MB of its own

memory and resides on an AGP 8X bus.

6.1.1 Cell Projection

The cell projection that performs adaptive transfer function sampling, described in

Section 4.3, clips tetrahedra and renders them multiple times. Before analyzing the

rendering rate of this cell-projection method, we must first understand how many

more tetrahedra we must render to perform the adaptive transfer function sampling.

Table 6.2 gives, for each data set, the number of extra tetrahedra rendered. All the

transfer functions selected require the adaptive transfer function sampling method

to render about 33% more tetrahedra.

Table 6.3 compares view independent cell projection with the two cell-projection

methods defined in Chapter 4. Figure 6.2 summarizes these results in a bar graph.

1http://www.nas.nasa.gov/Research/Datasets/datasets.html
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(a) Blunt Fin (b) Oxygen Post

(c) Delta Wing

Figure 6.1: Sample data sets.
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Data Set Tetrahedra in Data Set Tetrahedra Rendered Growth
Blunt Fin 187,395 249,278 33%
Oxygen Post 513,375 662,625 29%
Delta Wing 1,005,675 1,373,010 36%

Table 6.2: Growth in data sets for adaptive transfer function sampling. This table
gives the size of the original data set, the number of tetrahedra rendered by the
adaptive transfer function sampling approach, and the growth in the number of
tetrahedra rendered.

Model Cell Projection Frames/sec Tetrahedra/sec
Blunt Fin

View Independent Cell Projection 3.296 618 K
Balanced Cell Projection 4.498 843 K
Adaptive Transfer Function Sampling 1.312 327 K

Oxygen Post
View Independent Cell Projection 1.343 690 K
Balanced Cell Projection 2.275 1168 K
Adaptive Transfer Function Sampling 0.599 397 K

Delta Wing
View Independent Cell Projection 0.721 725 K
Balanced Cell Projection 1.556 1565 K
Adaptive Transfer Function Sampling 0.421 578 K

Table 6.3: Running times for various volume rendering cell-projection approaches.
Methods printed in blue represent implementations of previous work whereas meth-
ods printed in green are introduced in this dissertation.

View Independent Cell Projection is the method developed by Weiler, Kraus, and

Ertl [98] and reviewed in Section 4.1. Balanced Cell Projection and Adaptive Transfer

Function Sampling are the methods presented in Sections 4.2 and 4.3, respectively.

To highlight the running times of each cell-projection method, I used the least compu-

tationally intensive ray integration methods. For View Independent Cell Projection

and Balanced Cell Projection, I used pre-integration to perform ray integration. For

Adaptive Transfer Function Sampling, I simply averaged the color and opacity of

each ray segment.
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Figure 6.2: Running times for various volume rendering cell-projection approaches.
The bars with the hatched fill represent implementations of previous work whereas
solid fill represents methods introduced in this dissertation.

My Balanced Cell Projection is a modified version of View Independent Cell Pro-

jection, and the rendering times suggest that these changes do indeed speed up the

rendering. Adaptive Transfer Function Sampling is the same as Balanced Cell Pro-

jection with the added ability to clip cells. We expect the added computation to

clip cells to affect performance, and the data show that it does. In these ways,

the comparative running times verify our preconceived notions of how well these

cell-projection methods perform.

However, these results also differ somewhat from what I would expect. I would

expect the improvements of the Balanced Cell Projection over the View Independent

Cell Projection to be more dramatic. Furthermore, the penalty of the Adaptive

Transfer Function Sampling is more costly than I would expect. I believe these

results arise from the system being fragment-processing bound. If the fragment
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Figure 6.3: Effect of fragment processing on cell projection speed. All readings are
taken from the Blunt Fin data set.

processing were the bottleneck, it would diminish improvements in the cell projection.

Furthermore, the clipping performed in the Adaptive Transfer Function Sampling

relies heavily on the fragment processor.

Figure 6.3 shows how the rendering rate changes as the image size (and conse-

quently the number of fragments processed) increases. For all cell-projection meth-

ods, the rendering rate holds nearly constant until the image size reaches four thou-

sand pixels. After that, the renderer becomes fragment processor bound and the

rendering rate steadily decreases as the image size increases.
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Model Ray Integration Frames/sec Tet/sec
Blunt Fin

Average Luminance and Attenuation 1.314 328 K
Linear Luminance and Attenuation 0.080 20 K
Partial Pre-Integration 0.937 234 K
Average Luminance and Opacity 1.312 327 K
Linear Luminance, Average Opacity 1.196 298 K
Linear Luminance and Opacity Approx 0.938 234 K

Oxygen Post
Average Luminance and Attenuation 0.577 382 K
Linear Luminance and Attenuation 0.028 18 K
Partial Pre-Integration 0.338 224 K
Average Luminance and Opacity 0.599 397 K
Linear Luminance, Average Opacity 0.417 276 K
Linear Luminance and Opacity Approx 0.337 224 K

Delta Wing
Average Luminance and Attenuation 0.407 558 K
Linear Luminance and Attenuation 0.029 40 K
Partial Pre-Integration 0.313 430 K
Average Luminance and Opacity 0.421 578 K
Linear Luminance, Average Opacity 0.375 515 K
Linear Luminance and Opacity Approx 0.309 424 K

Table 6.4: Running times for various volume rendering ray integration approaches.
Methods printed in blue represent implementations of previous work whereas meth-
ods printed in green are introduced in this dissertation.

6.1.2 Ray Integration

Table 6.4 compares the various methods for computing the volume rendering inte-

gral that I discussed in this dissertation. Figure 6.4 summarizes these results in

a bar graph. Average Luminance and Attenuation is the approximation reviewed

in Section 3.2.2 and Linear Luminance and Attenuation is the full computation of

the volume rendering integral reviewed in Section 3.2.3. Partial Pre-Integration is

the fast computation of linear luminance and attenuation introduced in Section 5.2.

Average Luminance and Opacity is the same as Average Luminance and Attenua-
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Figure 6.4: Running times for various volume rendering ray integration approaches.
The bars with the hatched fill represent implementations of previous work whereas
solid fill represents methods introduced in this dissertation.

tion except that the former averages opacity rather than attenuation. This method

is similar to that used by Wilhelms and van Gelder [102]. Linear Luminance, Av-

erage Opacity and Linear Luminance and Opacity Approx are the approximations

presented in Sections 5.3.1 and 5.3.2, respectively.

Note that I perform the ray integration for all these methods exclusively in the

fragment processor and recall from the previous section that the renderer is fragment-

processing bound for these tests. Therefore, the comparative rates shown in Table 6.4

are good indicators of the relative performance of the different methods.

The Average Color and Luminance approach pioneered by Shirley and Tuchman

[86] has one of the fastest frame rates, but, as we see in the following sections, can

have large errors caused by color averaging. The Linear Color and Luminance com-
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putation developed by Williams, Max, and Stein [105] has superior image quality but

abysmal rendering rates. In contrast, the Partial Pre-Integration method introduced

in this dissertation has a rendering speed competitive with the Shirley and Tuchman

method yet, as we see in the following sections, its accuracy is competitive with that

of the Williams, Max, and Stein method.

The Average Color and Opacity approach used by Wilhelms and van Gelder [102]

also has excellent frame rates but poor image quality. Both the Linear Color, Average

Opacity and Linear Color and Opacity Approx methods have competitive frame rates

but more accuracy. The Linear Color, Average Opacity method is slightly faster, but

the Linear Color and Opacity Approx is sometimes more accurate.

6.2 Accuracy

In this section, we analyze the accuracy of the various methods for computing the

volume rendering integral outlined in this dissertation. I measure the absolute devi-

ation of the light intensity computed with each approximation from the true value of

the associated model. Because the basic function of the receptors in the human eye

is to measure light intensity, minimizing this deviation is important for good image

quality. However, the human visual system is a complicated structure that can adapt

well to changes in intensity, so the absolute deviation may not be proportional to the

actual error perceived. We shall consider perceptive errors in the following section.

To quantify the error, I solve the volume rendering integral for a set of parameters

offline using the numerical solving capabilities of Mathematica [108] and compare

those to computations performed on the actual graphics card. I used a Quadro FX

3000 graphics card for the GPU calculations.2

2I used the same hardware to produce all the results presented in this chapter. All
ray integration calculations are performed on a full 32-bit per channel GPU. However, the
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Figure 6.5: Error for various approximations to the volume rendering integral. For
all plots, L b = 1− L f , τ b = 1− τ f , and D = 0.001.

The volume rendering integral with linearly varying properties relies on five pa-

rameters. Rather than present an exhaustive report of errors on all combinations

of these parameters, I show the combinations where the error is the greatest. All

the approximations reviewed or presented in this dissertation are correct when the

luminance and attenuation parameters are constant, whereas the errors of these ap-

proximations are maximal when the color and attenuation are both changing rapidly.

Figure 6.5 provides plots of the error of the Average Luminance and Attenuation

and Partial Pre-Integration approximations, as well as the brute-force, on-card nu-

merical method of Linear Luminance and Attenuation. All values in Figure 6.5 are

computed for a ray segment length of D = 0.001. Figures 6.6, 6.7, and 6.8 hold sim-

ilar plots for errors when the ray segment length is 0.1, 1, and 100, respectively. In

all plots, the error is the absolute difference between the result of the approximation

method and the value computed with the high precision numerical methods available

images produced for the results in Section 6.1 were written to an 8-bit per channel frame
buffer whereas the values presented in Sections 6.2 and 6.3 are taken as 32-bit values. I used
the 8-bit frame buffer because the color blending required for the image generation is not
available for the 32-bit frame buffer. I used 32-bit values for Sections 6.2 and 6.3 to minimize
quantization errors, which are orthogonal to the errors intrinsic to the approximations.
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Figure 6.6: Error for various approximations to the volume rendering integral with
D = 0.1.
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Figure 6.7: Error for various approximations to the volume rendering integral with
D = 1.

with the Mathematica software package [108]. Assuming, without loss of generality,

that valid values of intensity are in the range [0, 1], 0 being no light and 1 being the

maximum output intensity of the display device, we can take the error plotted as the

fraction of the display’s intensity range for which the value is incorrect.

For all ranges of ray segment length, Average Luminance and Attenuation has the

poorest performance. Furthermore, the error gets larger with longer ray segments.
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Figure 6.8: Error for various approximations to the volume rendering integral with
D = 100.

As the segment length gets large, the maximum error approaches one-half of the full

color range.

Partial Pre-Integration has consistently lower error overall. Furthermore, the

error grows slowly with the length of the ray segment. Its accuracy is limited only

by the quantization errors of its lookup table.

The accuracy of Linear Luminance and Attenuation from [105] is close to the pre-

cision of the 32-bit floating-point variables on which it is calculated. This accuracy

is marginally higher than that of Partial Pre-Integration. However, visual discrep-

ancies between the two methods are unlikely, and, as we saw in Section 6.1, the

Linear Luminance and Attenuation method takes over ten times as long as Partial

Pre-Integration.

Figure 6.9 provides plots of the accuracy the Average Luminance and Opacity,

Linear Luminance, Average Opacity, and Linear Luminance and Opacity Approx

approximations. All values in Figure 6.9 are computed for a ray segment length of

D = 0.001. Figures 6.10 and 6.11 hold similar plots for errors when the ray segment

length is 0.1 and 1, respectively.
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Figure 6.9: Error for various approximations to the volume rendering integral. For
all plots, L b = 1− L f , τ b = 1− τ f , and D = 0.001.
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Figure 6.10: Error for various approximations to the volume rendering integral with
D = 0.1.

The accuracy of Average Luminance and Opacity is poor. The accuracy of Linear

Luminance, Average Opacity is no higher in the worst case. As before, the error

gets larger with longer ray segments. The Linear Luminance and Opacity method

improves the error by almost an order of magnitude.

113



Chapter 6. Results and Comparisons

0
0.2

0.4

0.6

0.8

1

Lf
0

0.2

0.4

0.6

0.8

1

Αf

0

0.05

0.1

0.15

0
0.2

0.4

0.6

0.8

1

Lf

(a) Average Luminance
and Opacity

0
0.2

0.4

0.6

0.8

1

Lf
0

0.2

0.4

0.6

0.8

1

Αf

0

0.05

0.1

0.15

0.2

0
0.2

0.4

0.6

0.8

1

Lf

(b) Linear Luminance,
Average Opacity

0
0.2

0.4

0.6

0.8

1

Lf
0

0.2

0.4

0.6

0.8

1

Αf

0

0.02

0.04

0
0.2

0.4

0.6

0.8

1

Lf

(c) Linear Luminance
and Opacity Approx

Figure 6.11: Error for various approximations to the volume rendering integral with
D = 1.

6.3 Cell Boundary Smoothness

In this section, we analyze how the various methods for computing the volume ren-

dering integral outlined in this dissertation behave across cell boundaries. As in the

previous section, I solve the volume rendering integral for a set of parameters offline

using the numerical solving capabilities of Mathematica [108] and compare those to

computations performed on the actual graphics card. I used a Quadro FX 3000

graphics card for the GPU calculations.

The difference between the measurements in this section and those in the previous

section is that those in this section take into account spatial effects. Viewers are

unlikely to notice differences in color if they are all uniform. After all, there are

uniform differences in color with different display media or with the parameters of

the medium (for example the paper type in a printer or adjustment controls on

a monitor). Furthermore, the response of a human’s visual system is constantly

changing with its environment.

Although the human visual system readily adjusts to uniform changes in light
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1

Figure 6.12: Model used to study Mach bands caused by approximation errors.

intensity, it is sensitive to changes in light intensity across its field of vision. This

sensitivity is critical for segmenting a visual scene and helps us identify the size,

shape, and orientation of objects. If the errors introduced by our approximations

are not uniform, they may become noticeable. Therefore, in this section we analyze

how the error may change spatially within the image.

The light receptors in the human eye are clustered together into ganglion cells

[26]. The receptors in the center of each cell have a positive response to incoming light

whereas those toward the edge have a negative response. When aimed at a constant

field of light, the positive and negative receptors cancel each other out. When aimed

at a varying field of light, the positive and negative receptors may contribute in the

same way, which enhances the effect of the change. These enhancements generated

by our visual system are Mach bands.

Figure 6.12 shows the model I used to study how approximation errors may

cause fluctuations in colors across the viewing plane, which could induce the human

visual system to create mach bands. The model is such that from the viewpoint

the volume has a uniform length. The front and back faces of the model each have

constant volume parameters. The color of the volume should be constant from the

viewpoint, but approximations may cause the color to vary. For each approximation,

I plot the output intensity across the face. I also plot the convolution of the light

115



Chapter 6. Results and Comparisons

x-1

-0.5

0

0.5

1

Response

Figure 6.13: Ganglion receptor response.

x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Intensity

(a) Average Luminance
and Attenuation

x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Intensity

(b) Partial Pre-
Integration

x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Intensity

(c) Linear Luminance
and Attenuation

Figure 6.14: Color output from model shown in Figure 6.12. The attenuation is
constant. In the red plot, the luminance is constant. The luminance is full in the
front and zero in the back for the green plot and vice versa for the blue plot. The
dashed plots show the convolution with the ganglion response of Figure 6.13.

intensity with an example ganglion receptor response function shown in Figure 6.13.

Figures 6.14, 6.15, and 6.16 show the output of our model with various ray in-

tegration methods that linearly interpolate attenuation and with various volume

parameter combinations. The Average Luminance and Attenuation model has no-

ticeable spikes when convolved with the ganglion response. The other two models

have no noticeable fluctuations across the visual field.

Figures 6.17, 6.18, and 6.19 show the output of our model with various ray inte-

gration methods that linearly interpolate opacity and with various volume parameter

combinations. The Average Luminance and Opacity and Linear Luminance, Aver-

age Opacity Approx models both have significant spikes when convolved with the
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Figure 6.15: Cell boundaries with large attenuation in the back. In the red plot, the
luminance is constant. The luminance is full in the front and zero in the back for the
green plot and vice versa for the blue plot. The dashed plots show the convolution
with the ganglion response of Figure 6.13.
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Figure 6.16: Cell boundaries with large attenuation in the front. In the red plot, the
luminance is constant. The luminance is full in the front and zero in the back for the
green plot and vice versa for the blue plot. The dashed plots show the convolution
with the ganglion response of Figure 6.13.
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Figure 6.17: Color output from model shown in Figure 6.12. The opacity is constant.
In the red plot, the luminance is constant. The luminance is full in the front and
zero in the back for the green plot and vice versa for the blue plot. The dashed plots
show the convolution with the ganglion response of Figure 6.13.
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Figure 6.18: Cell boundaries with large opacity in the back. In the red plot, the
luminance is constant. The luminance is full in the front and zero in the back for the
green plot and vice versa for the blue plot. The dashed plots show the convolution
with the ganglion response of Figure 6.13.
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Figure 6.19: Cell boundaries with large opacity in the front. In the red plot, the
luminance is constant. The luminance is full in the front and zero in the back for the
green plot and vice versa for the blue plot. The dashed plots show the convolution
with the ganglion response of Figure 6.13.

ganglion response. In contrast, the Linear Luminance and Opacity model has little

fluctuation, even when convolved with the ganglion response.

Although I have addressed spatial effects of image error in this chapter, the errors

I quantify may still not be indicative of the error perceived. Ganglion cells and Mach

bands are but a small part of the human visual system. In fact, there is still much we

do not understand about the human visual system. To get a true measure of how well

humans are able to detect the errors discussed in this chapter, one must generate a set

of images from different ray integration methods and compare them either by human

experiment or with image quality metrics based off human experiment [23, 65, 96].
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Chapter 7

Conclusions

The goal of this dissertation is to improve the state of the art in unstructured mesh

volume rendering. Over the past decade, there has been research to perform volume

rendering that is either fast [86, 98, 102, 110] or accurate [92, 105], but not both.

This dissertation presented algorithms that are as fast as the former but as accurate

as the latter.

I started with the View Independent Cell Projection algorithm [98, 100]. The

speed of the algorithm was obtained by taking advantage of recent improvements in

accelerated graphics hardware. I have made several improvements to this algorithm

and demonstrated their effectiveness.

The original View Independent Cell Projection implementation used Pre-Integra-

tion [81] to perform its color computations. Pre-Integration had many advantages.

Because the heavy ray integrations were done off line, Pre-Integration could yield

high frame rates. Given a large enough table, Pre-Integration eliminated errors

from sampling the transfer function. In addition, Pre-Integration could potentially

support any type of ray integration method.
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However, Pre-Integration had several design limitations. The pre-integration ta-

ble was built specifically for a given transfer function. Thus, the table had to be re-

built every time the transfer function changed, which, during a practical application,

was often. Furthermore, the accuracy of Pre-Integration relied heavily on the size of

the table used and ray integrations performed. However, larger tables and more ac-

curate ray-integration methods would slow down the table building. Pre-Integration

worked only with 1D transfer functions, whereas higher dimensional transfer func-

tions could more effectively highlight features in the volume [46, 47, 50, 94]. Pre-

Integration was incapable also of performing many non-photorealistic feature high-

lighting techniques [21, 43, 44]. For these reasons, my algorithms did not rely on

Pre-Integration.

To avoid aliasing without Pre-Integration, I implemented Adaptive Transfer Func-

tion Sampling. Although it improved image quality, the Adaptive Transfer Function

Sampling negatively affected the rendering speed. However, even with Adaptive

Transfer Function Sampling, my algorithm ran at about the same speed as View

Independent Cell Projection.

My algorithms performed ray integration in the graphics card during rendering.

To do this, I devised new ray-integration methods that were both fast and accurate.

These ray-integration methods are for linearly varying volume parameters. I provided

methods for both linearly varying volume density, which has a closed form, and

linearly varying observable opacity, which does not have a closed form. I have shown

that these ray-integration methods are competitive with both the speed of previous

fast approximations [86, 102] and the accuracy of slow approximations [105].

Sandia National Laboratories is currently using the algorithms introduced in this

dissertation for its scientific visualization needs. Furthermore, the code is integrated

into the Visualization Toolkit (VTK) [84] and will soon be incorporated into Par-

aView [57], a fully featured, open-source scientific visualization package.
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The work in this dissertation may take several directions. First, although I have

contrasted the ray integrations presented in this dissertation with the approach of

Pre-Integration, the two approaches could be complementary. The entries in the

pre-integration table are filled with values computed with ray integration. We could

use the ray-integration methods presented in this dissertation to increase both the

accuracy of the entries in the table and the speed with which they are calculated.

Second, although my volume rendering implementations currently support only

1D transfer functions, there are no fundamental limitations preventing the use of

transfer functions of two or more dimensions so long as they are still piecewise linear.

However, the representation of a piecewise linear function in two or more dimensions

can be problematic, and tools for building multidimensional transfer functions are

still being developed.

Third, although the ray integration methods introduced in this dissertation are

valid only for piecewise linear approximations, we can approximate higher orders of

color variation along the ray with a piecewise linear function without any noticeable

visual artifacts. However, for maximal speed, we need to minimize the number of

segments used in the piecewise linear approximation. The minimal segmentation

needs to be investigated.
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Appendix A

Computing Pre-Integration Tables

with Mathematica

The following is a script that we can use to make Ψ tables with Mathematica. The

partial pre-integration method introduced in Section 5.2 uses the Ψ table generated.

The script builds a 1024 by 1024 table. You may change the size of the table by

changing the step size in the last line.
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Appendix A. Computing Pre-Integration Tables with Mathematica

� general � � 1 � D � Integrate � Exp � � Integrate � � � t � , 	 t, s, D 
 � � , 	 s, 0, D 
 � ;

� backopaque � FullSimplify � � general � . 	 � � t_ � � � 1 � t � D � � backD � D � t � D � frontD � D 
 ; � ;

� frontopaque � FullSimplify �
� backopaque �� . 	 1 � Sqrt � � backD ��� frontD � � 1 � � I Sqrt � � frontD ��� backD � � 
 ; � ;

� const � Simplify � � general � . 	 � � t_ � ��� D � D 
 ; � ;

Simplify � � backopaque � . Erf � x_ � � 1 � u � x � Exp � � x � x � p � u � x � � � ; � ;

% � . 	 u � x_ � � 1 � � 1 � x � 2 � 
 ;

� backopaquep � % � . p � x_ � ��� 1.26551223 � x � 1.00002368 �
x � 0.37409196 � x � 0.09678418 � x � � 0.18628806 � x � 0.27886807 � x � � 1.13520398 �

x � 1.48851587 � x � � 0.82215223 � x 0.17087277 � � � � � � � � ;

� frontopaquep � � frontopaque;

� constp � If � � D � 0, Evaluate � Limit � � const, � D � 0 � � , Evaluate � � const � � ;

� precise � MapAll � Evaluate, Function � 	 � backD, � frontD 
 , If � � backD ��� frontD,
� constp � . � D ��� frontD, If � � backD ��� frontD, � backopaquep, � frontopaquep � � � � ;

ReleaseHold � Hold � Table � Abs � N � � precise � � back � � 1 ��� back � , � front � � 1 ��� front � � � � ,
	 � front, 0, 1 � step, step 
 , 	 � back, 0, 1 � step, step 
 � � ��� .

	 step � N � 1 � 1024 � 
 � �� "PsiGammaTable.dat"

Untitled-2 1

Printed by Mathematica for Students
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Appendix B

Vertex and Fragment Programs

This appendix lists the vertex and fragment programs referenced throughout this

dissertation. All programs use the Cg shader language.

B.1 Clipped Tetrahedron Projection Vertex Pro-

gram

This listing is a vertex program that is part of the tetrahedra projection with adaptive

transfer function sampling. Section 4.3 discusses the algorithm in its entirety.

struct rayseg {
float4 position : POSITION; /* Position of front face. */
float4 distances : TEXCOORD0; /* Distance of front face to each

face in direction of view
vector. */

float3 isovalues : TEXCOORD1; /* x and y are Color lookups for
scalar values of where tetrahedra
(ray segment) is clipped. x value
is closer to viewer. z is the
distance between the two isoplanes
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in the view direction. */
float frontinterp : TEXCOORD2; /* Interpolates the color of the

front face from the front isovalue
to the back. */

float4 backinterp : TEXCOORD3; /* Interpolates the color of each
face from the back isovalue to the
front. */

};

float4 selectmask[4] = {
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1}

};
float4 invselectmask[4] = {

{0, 1, 1, 1},
{1, 0, 1, 1},
{1, 1, 0, 1},
{1, 1, 1, 0}

};

rayseg mainvert(float4 position, /* Position of the vertex. */
float distance, /* Distance from the vertex to the

to opposite face in the view
direction (negative if opposite
face is closer to viewpoint).*/

float2 isovalues, /* Texture lookup indices for
clipping isovalues. The x

index is closer to the
viewpoint. */

float2 interpolants, /* Used to interpolate the actual
colors of the front and back
scalars. */

float vertNum,
uniform float4x4 ModelViewProj)

{
rayseg output;

output.position = mul(ModelViewProj, position);

output.distances = selectmask[vertNum]*distance;
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output.frontinterp = interpolants.x;

/* Note that we invert the interpolation so that the back scalar is
interpolated from the back isoplane to the front isoplane. */

output.backinterp = 1 - ( invselectmask[vertNum]*interpolants.x
+ selectmask[vertNum]*interpolants.y );

output.isovalues.xy = isovalues;
/* Compute distance between isoplanes. */
if (interpolants.x != interpolants.y)
{
output.isovalues.z = distance/(interpolants.y-interpolants.x);
}

else
{
/* Special case when front and back scalars are equal: distance

between planes does not matter. */
output.isovalues.z = 1.0e30;
}

return output;
}

B.2 Fragment Program for Clipped Tetrahedron

Projection

This listing is a fragment program that is part of the tetrahedra projection with

adaptive transfer function sampling. Section 4.3 discusses the algorithm in its en-

tirety.

The following program relies on the function IntegrateRay, which is not defined.

Instead, subsequent sections provide various algorithms for IntegrateRay.

struct rayseg {
float4 position : POSITION; /* Position of front face. */
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float4 distances : TEXCOORD0; /* Distance of front face to each
face in direction of view

vector. */
float3 isovalues : TEXCOORD1; /* x and y are Color lookups for

scalar values of where tetrahedra
(ray segment) is clipped. x value
is closer to viewer. z is the
distance between the two isoplanes
in the view direction. */

float frontinterp : TEXCOORD2; /* Interpolates the color of the
front face from the front isovalue

to the back. */
float4 backinterp : TEXCOORD3; /* Interpolates the color of each

face from the back isovalue to the
front. */

};

float4 IntegrateRay(in float4 BackColor, in float4 FrontColor,
in float Length);

float4 mainfrag(rayseg input,
uniform sampler1D TransferFunction,
uniform float LengthMultiply) : COLOR

{
float4 mask;

/* Make mask be 1 for all distances <= 0. */
mask = (float4)(input.distances <= 0);

/* Make all these entries larger so that we do not select them. */
float4 tmp1 = input.distances + mask*1.0e38;

float2 tmp2 = min(tmp1.xy, tmp1.zw);
/* distance is actual distance from front to back of ray segment. */
float distance = min(tmp2.x, tmp2.y);

/* Make mask be 1 for minimum depth. */
mask = (float4)(tmp1 == distance);

float2 interpolants;
interpolants.x = input.frontinterp;
interpolants.y = dot(mask, input.backinterp);
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/* If either interpolation variable is greater than 1, the segment is
completely outside the iso range. */

discard (interpolants > 1);

/* Remove any "empty space" from the distance. */
distance -= dot(float2(1,1),

input.isovalues.z*max(-interpolants, float2(0,0)));

float4 isocolorFront = tex1D(TransferFunction, input.isovalues.x);
float4 isocolorBack = tex1D(TransferFunction, input.isovalues.y);

/* If either distance is negative, it means that face is in between the
two isosurfaces. We have to interpolate the actual scalar value in
this case. It is the expected case that we have to interpolate at
least one value. */

interpolants = max(interpolants, float2(0,0));
float4 colorFront =lerp(isocolorFront, isocolorBack, interpolants.xxxx);
float4 colorBack = lerp(isocolorBack, isocolorFront, interpolants.yyyy);

return IntegrateRay(colorBack, colorFront, distance*LengthMultiply);
}

B.3 Volume Rendering Integral with Linear At-

tenuation and Luminance

This listing is a function that will, given a pair input colors (with the alpha com-

ponents set to the attenuation parameter τ), compute the volume rendering integral

with linear interpolation for the luminance and attenuation. Section 3.2.3 contains

the details for the mathematics. The program outputs a fragment that must be

properly blended with the image in the frame buffer using the Porter and Duff [74]

over operator. See Section 2.2.3 for details on blending.

/* Forward declarations. */
float Psi(in float taub, in float tauf, in float length);
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float erf(in float x);
float erfi(in float x);
float dawson(in float x);
float erf_fitting_function(in float u);

float4 IntegrateRay(in float4 BackColor, in float4 FrontColor,
in float Length)

{
float Y = Psi(BackColor.a, FrontColor.a, Length);
float zeta = exp(-Length*0.5*(BackColor.a+FrontColor.a));

float4 OutColor;
OutColor.rgb = FrontColor.rgb*(1-Y) + BackColor.rgb*(Y-zeta);
OutColor.a = (1-zeta);
return OutColor;

}

#define M_SQRTPI 1.77245385090551602792981
#define M_SQRT1_2 0.70710678118654752440
#define M_2_SQRTPI 1.12837916709551257390
#define M_1_SQRTPI (0.5*M_2_SQRTPI)

float Psi(in float taub, in float tauf, in float length)
{

float difftau = taub - tauf;
bool useHomoTau = ((difftau > -0.0001) && (difftau < 0.0001));
bool useErf = difftau > 0;

float Y;

if (!useHomoTau) {
float invsqrt2lengthdifftau = 1/sqrt(2*length*abs(difftau));
float t = length*invsqrt2lengthdifftau;
float frontterm = t*tauf;
float backterm = t*taub;
float expterm = exp(frontterm*frontterm-backterm*backterm);
if (useErf) {
/* Back more opaque. */

float u = 1/(1+0.5*frontterm);
Y = u*exp(erf_fitting_function(u));
u = 1/(1+0.5*backterm);
Y += -expterm*u*exp(erf_fitting_function(u));
Y *= M_SQRTPI;
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} else {
/* Front more opaque. */

expterm = 1/expterm;
Y = 2*(dawson(frontterm) - expterm*dawson(backterm));

}
Y *= invsqrt2lengthdifftau;

} else {
float tauD = taub*length;
Y = (1 - exp(-tauD))/tauD;

}

return Y;
}

float erf(in float x)
{

/* Compute as described in Numerical Recipes in C++ by Press, et al. */
/* x = abs(x); In this application, x should always be <= 0. */

float u = 1/(1 + 0.5*x);
float ans = u*exp(-x*x + erf_fitting_function(u));

/* return (x >= 0 ? 1 - ans : ans - 1); x should always be <= 0. */
return 1 - ans;

}

float erf_fitting_function(in float u)
{

return
- 1.26551223 + u*(1.00002368 + u*(0.37409196 + u*(0.09678418 +
u*(-0.18628806 + u*(0.27886807 + u*(-1.13520398 + u*(1.48851587 +
u*(-0.82215223 + u*0.17087277))))))));

}

float erfi(in float x)
{

return M_2_SQRTPI*exp(x*x)*dawson(x);
}

/* Compute Dawson’s integral as described in Numerical Recipes in C++ by
Press, et al. */

#define H 0.4
#define NMAX 6
float dawson_constant0 = 0.852144;
float dawson_constant1 = 0.236928;
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float dawson_constant2 = 0.0183156;
float dawson_constant3 = 0.000393669;
float dawson_constant4 = 2.35258e-6;
float dawson_constant5 = 3.90894e-9;
float dawson(in float x)
{

float result;
if (x > 0.2) {

/* x = abs(x); In this application, x should always be <= 0. */
int n0 = 2*floor((0.5/H)*x + 0.5);
float xp = x - (float)n0*H;
float e1 = exp((2*H)*xp);
float e2 = e1*e1;
float d1 = n0 + 1;
float d2 = d1 - 2;
float sum = 0;
sum = dawson_constant0*(e1/d1 + 1/(d2*e1));
d1 += 2; d2 -= 2; e1 *= e2;
sum += dawson_constant1*(e1/d1 + 1/(d2*e1));
d1 += 2; d2 -= 2; e1 *= e2;
sum += dawson_constant2*(e1/d1 + 1/(d2*e1));
d1 += 2; d2 -= 2; e1 *= e2;
sum += dawson_constant3*(e1/d1 + 1/(d2*e1));
d1 += 2; d2 -= 2; e1 *= e2;
sum += dawson_constant4*(e1/d1 + 1/(d2*e1));
d1 += 2; d2 -= 2; e1 *= e2;
sum += dawson_constant5*(e1/d1 + 1/(d2*e1));
result = M_1_SQRTPI*exp(-xp*xp)*sum;

} else {
float x2 = x*x;
result = x*(1 - (2.0/3.0)*x2*(1 - .4*x2*(1 - (2.0/7.0)*x2)));

}
return result;

}
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B.4 Volume Rendering Integral with Partial Pre-

Integration

This listing is a function that will, given a pair input colors (with the alpha compo-

nents set to the attenuation parameter τ), a ray segment length, and a Ψ table (which

is ubiquitous), compute the volume rendering integral with linear interpolation for

the luminance and attenuation. Section 5.2 introduces the partial pre-integration

technique.

The function assumes that the Ψ table, which is stored in the PsiTable variable, is

1024 by 1024. The size can be changed by changing the definition of PSI TABLE SIZE.

Appendix A gives a Mathematica script that builds Ψ tables.

#define PSI_TABLE_SIZE float2(1024,1024)
float4 integrateRay(in float4 colorBack, in float4 colorFront,

in float distance, in sampler2D PsiTable)
{

float2 taudbackfront;
taudbackfront.x = distance*colorBack.a;
taudbackfront.y = distance*colorFront.a;
float zeta = exp(-dot(taudbackfront, float2(0.5,0.5)));

float2 gammabackfront = taudbackfront/(1+taudbackfront);
float Psi = tex2D(PsiTable,

gammabackfront + float2(0.5,0.5)/PSI_TABLE_SIZE).w;

float4 outColor;
outColor.rgb = colorFront.rgb*(1-Psi) + colorBack.rgb*(Psi-zeta);
outColor.a = 1 - zeta;

return outColor;
}
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B.5 Volume Rendering Integral with Linear

Opacity and Luminance, Rough Approxima-

tion

This listing is a function that provides a rough but usually reasonable approximation

to volume rendering with linearly interpolated opacity and luminance. Section 5.3.1

gives details of the approximation. We may use this function in conjunction with

the fragment program given in Appendix B.2.

float4 IntegrateRay(in float4 BackColor, in float4 FrontColor,
in float Length)

{
float dtau = -distance*LengthMultiply

*log(1-0.5*(colorBack.a+colorFront.a));
float zeta = exp(-dtau);
float alpha = 1 - zeta;
float Psi = alpha/dtau;

float4 color;
color.rgb = colorFront.rgb*(1-Psi) + colorBack.rgb*(Psi-zeta);
color.a = alpha;

return color;
}
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B.6 Volume Rendering Integral with Linear

Opacity and Luminance, Close Approxima-

tion

This listing is a function that provides a close but reasonably fast approximation

to volume rendering with linearly interpolated opacity and luminance. Section 5.3.2

gives details of the approximation. We may use this function in conjunction with

the fragment program given in Appendix B.2.

float4 IntegrateRay(in float4 BackColor, in float4 FrontColor,
in float Length)

{
float zeta = pow(1 - ( 0.5*(colorBack.a+colorFront.a)

+ (0.108165*(colorBack.a-colorFront.a)
*(colorBack.a-colorFront.a)) ),

distance*LengthMultiply);
float alpha = 1 - zeta;
float dtau2 = -distance*LengthMultiply

*log(1-(0.27*colorBack.a+0.73*colorFront.a));
float zeta2 = exp(-dtau2);
float Psi = (1-zeta2)/dtau2;

float4 color;
color.rgb = colorFront.rgb*(1-Psi) + colorBack.rgb*(Psi - zeta);
color.a = alpha;

return color;
}
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[80] Stefan Röttger and Thomas Ertl. A two-step approach for interactive pre-
integrated volume rendering of unstructured grids. In Proceedings of IEEE
Volume Visualization and Graphics Symposium 2002, pages 23–28, October
2002.
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