
From Cluster to Wall with VTK

Kenneth Moreland∗ David Thompson†

Sandia National Laboratories

Abstract

This paper describes a new set of parallel rendering components
for VTK, the Visualization Toolkit. The parallel rendering units al-
low for the rendering of vast quantities of geometry with a focus
on cluster computers. Furthermore, the geometry may be displayed
on tiled displays at full or reduced resolution. We demonstrate an
interactive VTK application processing an isosurface consisting of
nearly half a billion triangles and displaying on a power wall with a
total resolution of 63 million pixels. We also demonstrate an inter-
active VTK application displaying the same geometry on a desktop
connected to the cluster via a TCP/IP socket over 100BASE-T Eth-
ernet.

CR Categories: I.3.8 [Computing Methodologies]: Computer
Graphics—Applications

Keywords: parallel rendering, desktop delivery, tile display, PC
cluster, Chromium, VTK

1 Introduction

“That’s great. How can I use it?” This is the question our visualiza-
tion research team is faced with whenever we present a promising
new tool to our analysts. Until recently, our best solution was to
wrap the tool in its own user interface. This proliferation of visu-
alization tools wastes human resources on many fronts. It requires
our researchers to design, build, and maintain user interfaces for
their tools. Since our visualization researchers are often neither
motivated nor experienced at designing user interfaces, the tool in-
terfaces are often ill-conceived, rarely consistent, and never tightly
coupled. Analysts are forced to learn a wide variety of interfaces for
the tools they wish to use, if they are aware of the tools’ existence
at all. Often this results in tools being unused.

To alleviate these problems, we have chosen to leverage the Vi-
sualization Toolkit (VTK) [Schroeder et al. 2002]. VTK is an
open-source API containing a comprehensive suite of visualiza-
tion tools. More importantly, VTK incorporates an extensible,
component-based architecture. Our new approach to delivering
visualization tools is to wrap these tools into VTK components
and store these components in a common component library. This
should allow each tool to work together with current and future
tools under the same, consistent user interface. All three DOE
Advanced Simulation and Computing (ASC) national labs, Sandia,

∗e-mail: kmorel@sandia.gov
†e-mail: dcthomp@sandia.gov

VTK
Parallel
Render

Modules

Chromium
(Optional)

OpenGL

User App.
(e.g. Paraview)

Figure 1: A high level view of our proposed visualization system.

Los Alamos, and Lawrence Livermore, are using VTK to some ex-
tent in their visualization R&D programs.

Our visualization needs put a large strain on VTK. ASC rou-
tinely creates simulations on the order of 50 million cells [Heer-
mann 1999], and it is predicted that by 2004 applications will rou-
tinely create 250 million cell simulations requiring up to a petabyte
of storage [Smith and van Rosendale 1998]. The processing of such
data is well beyond the capabilities of a standard workstation. Our
most cost-effective means for handling this data in a timely man-
ner is the use of commodity cluster computers running distributed
memory algorithms. The creation of such high fidelity models also
necessitates the use of high fidelity displays for visualization. To
realize these high resolution displays we build power walls, pro-
jected displays driven by tiled arrays of commodity projectors. We
require our VTK applications to run interactively on clustered com-
puters while either driving a power wall or shipping images back to
a remote computer for desktop delivery.

Figure 1 shows the layout of the high-level functional compo-
nents of our system. Rather than build our user level application
directly on top of a graphical API such as OpenGL, we plan to
build our applications on top of the VTK framework. The advan-
tage is twofold: We can leverage the enormous visualization code
base available with VTK, and we can build an application that can
be flexible enough to accept emerging visualization technologies.
We can also potentially layer VTK on top of Chromium to lever-
age Chromium’s powerful parallel rendering capabilities. Because
Chromium’s interface mimics that of OpenGL, we can optionally
add or remove that layer with little impact on the system. This paper
describes our work adding modules to VTK that can interchange-
ably perform various cluster-driven parallel rendering algorithms.

2 Previous Work

Thanks to a recent collaboration between Kitware and the
ASC/VIEWS program, VTK now supports parallel programming
and can be run on cluster computers [Ahrens et al. 2000]. The par-
allel VTK libraries support several parallel modes. The mode we
concern ourselves with in this paper is data parallelism in which the
input data is split amongst processes, the pieces are filtered and ren-
dered independently, and then composited to one image in the end.
This method allows us to make effective use of the parallel and

kmorel
IEEE Symposium on Parallel and Large-Data Visualization and Graphics 2003,October 20-21, 2003, Seattle, Washington, USA,pages 25-31Copyright 2003 IEEE



Slave Node(s)Master Node

Render
Window

Parallel
Render

Manager

Parallel
Render

Manager

UI

Render

Start Render
Start Render RMI

Render Window
Information

Renderer
Information

Render
Window

Render

Start Render

Pre Render
Processing

End Render
End Render

Post Render
Processing

Image Image

Figure 2: Interactions of the parallel render manager during a render.

distributed nature of our clusters, but can break down if the model
pieces are too big to be processed by the available resources1.

While parallel visualization and rendering are now supported by
VTK, display to a power wall and desktop delivery currently are
not. Instead, all current parallel rendering codes in VTK assume
that the user interface is available at the “root” process in a paral-
lel job. One possible approach for driving power walls is to use
Chromium [Humphreys et al. 2002]. Chromium is capable of re-
placing the OpenGL library loaded by an application at runtime,
intercepting the stream of OpenGL commands, and performing sev-
eral alterations to it, including driving a power wall. Unfortunately,
an OpenGL stream is inherently serial and must be issued from
a single process, which is a huge bottleneck when dealing with
large amounts of data. Chromium also supports a parallel rendering
mode, but an application must be “aware” of Chromium to take ad-
vantage of this parallel rendering. We describe our efforts to make
VTK applications Chromium aware.

Another power wall display solution available to us is the Image
Composite Engine for Tiles (ICE-T). The ICE-T API is an imple-
mentation of the work presented by Moreland, Wylie, and Pavlakos
for efficiently performing sort-last parallel rendering onto tile dis-
plays [Moreland et al. 2001]. The ICE-T methodology for render-
ing fits well with VTK’s existing parallel rendering paradigm. We
therefore implemented a new parallel rendering engine for VTK us-
ing the ICE-T API.

1Ahrens et al. [Ahrens et al. 2001] describe using VTK in a streaming
mode to perform out-of-core processing of data.

3 Parallel Rendering Interface

Parallel rendering in VTK is supported via the vtkComposite-

Manager class. This class works by listening for render events on
any renderable VTK window. After each render, but before the im-
ages are presented to the user, vtkCompositeManager reads back
the frame buffers, performs a sort-last compositing, and writes the
image back to the frame buffer.

Although vtkCompositeManager provides much of the func-
tionality we need for our parallel rendering tools, it is unnecessar-
ily constrained to a single mode of parallel rendering. Our initial
approaches to creating parallel rendering modules involved sub-
classing vtkCompositeManager. Unfortunately, vtkComposite-
Manager expects its subclasses to only handle image data that has
already been read from frame buffers. Attempting to work around
this limitation resulted in obfuscated code.

Our response was to create a new class, vtkParallelRender-
Manager. It works in a manner similar to vtkCompositeManager

in that they both listen to render events and perform appropriate
actions around them. The difference is that vtkParallelRender-
Manager is an abstract class designed to give subclasses as much
or as little control as they need.

Figure 2 outlines how the vtkParallelRenderManager be-
haves during a render event. After the “master” or “root” paral-
lel render manager receives the start render event, it broadcasts
a remote method invocation to all other parallel render managers
to also start a render. It then broadcasts rendering information to
all other parallel render managers. The parallel render manager
also calls protected virtual methods to allow subclasses to perform
their own data synchronization. Finally, the parallel render manager
class calls another protected virtual function to allow a subclass to
perform any other necessary processing before the actual render oc-



ServerClient

Render
Window

Desktop
Delivery
Client

Desktop
Delivery
Server

UI

Render
Start Render

Start Render RMI

Render Window
Information

Renderer
Information

Render
Window

Render

Start Render

End Render
End Render

Image

Image

Figure 3: Interactions during rendering with desktop delivery.

curs.
The vtkParallelRenderManager then relinquishes control

back to the render window, which proceeds to perform the actual
image synthesis. Afterwords, each render window sends an end
render event to its respective parallel render manager. The vtk-

ParallelRenderManager calls yet another protected virtual func-
tion to allow subclasses to perform any post-processing, such as
image composition.

In addition to handling render events and their propagation
and synchronization as described above, vtkParallelRender-

Manager also has the following features.

Object Creation Provides factory methods for creating renderer
and render window objects. Some parallel rendering schemes
require fine control over the rendering process. As such, it
may become necessary to override the behavior of renderers
and render windows. By providing object creation, the paral-
lel render manager can help ensure that the rendering objects
match the parallel rendering scheme.

Boundaries Will compute the physical boundary, in 3-space, of
the composite object rendered by all processes.

Image Reduction Can reduce the size of the image being rendered
and then restore the image to full size for viewing. Reducing
the image size can drastically reduce the time required for im-
age composition strategies. The class can also automatically
set the image reduction based on the user’s desired rendering
rate.

Image Caching If the post render processing requires the image to
be read from the graphics card’s frame buffer, the image will
be cached for potential vtkParallelRenderManager users.

All of the parallel rendering classes described in this paper in-
herit from vtkParallelRenderManager. Doing this affords us a
significant amount of code reuse. It also provides an abstraction

that allows us to easily swap the parallel rendering method in our
applications.

We have also implemented a class called vtkComposite-

RenderManager. This class is identical in features to the vtk-

CompositeManager class distributed with VTK. However, hav-
ing it also inherit from vtkParallelRenderManager allows it
to play with our applications along with our other parallel ren-
dering classes. The code for vtkCompositeRenderManager is
quite small since vtkParallelRenderManager does most of the
work. It took us very little time to code and debug vtkComposite-
RenderManager. Our goal is to integrate these changes into VTK’s
composite manager.

4 Desktop Delivery

Since we in no way expect each analyst to have a parallel cluster
available in his/her office, we find it important to provide the ability
of remote desktop delivery. That is, we wish a user to be able to
interactively control a visualization job rendering on a cluster and
display back to a typical desktop machine connected via a local area
network.

To this end, we have built a pair of collaborating objects: vtk-
DesktopDeliveryClient and vtkDesktopDeliveryServer.
The client object is responsible for accepting user input and dis-
playing rendered images. The server object is responsible for the
visualization processing and rendering. The two objects are con-
nected together with a pair of vtkMultiProcessController ob-
jects. vtkMultiProcessController, which is part of the VTK
distribution, is an abstract interface to parallel process control and
communication. The desktop delivery objects expect the process
controller to control exactly two processes with client and server in
opposite processes. The controller used is typically implemented
with a socket, but does not have to be.

The vtkDesktopDeliveryClient object attaches itself as an
observer to a render window. As shown in Figure 3, when a render
event occurs, the desktop delivery client object sends a render re-



quest to the server along with the rendering parameters, waits for an
image to come back, and pastes the image to the window. As one
would expect, the vtkDesktopDeliveryServer object responds
to render requests from the client by invoking the render window
and shipping the resulting image back.

The reader may notice a striking similarity between the opera-
tional features of the desktop delivery client/server and the parallel
render manager described in Section 3. In particular, the interac-
tions shown in Figures 2 and 3 are nearly identical. Because of this,
both vtkDesktopDeliveryClient and vtkDesktopDelivery-

Server inherit from vtkParallelRenderManager. While this
inheritance strains the is-a requirement dictated by good object-
oriented program design, we feel the amount of code re-use we
achieved was too important to neglect. Furthermore, by inheriting
from vtkParallelRenderManager we were able to take advan-
tage of its boundary calculation and image reduction capabilities,
both of which are vital properties of our desktop delivery.

Because the desktop delivery server was designed to enable de-
livery from clusters, it can optionally work with another vtk-

ParallelRenderManager object. The vtkDesktopDelivery-

Server performs image delivery after the other vtkParallel-

RenderManager generates the image. The desktop delivery server
object uses the other parallel render manager to compute the com-
plete object bounds, get timing statistics, and otherwise control the
parallel rendering process. The desktop delivery server will also
take advantage of the other parallel render manager’s image caching
to avoid multiple reads and writes from the graphics card frame
buffer.

5 Chromium

We also need to drive power walls in our parallel VTK applica-
tions. One means of doing this is with the Chromium system
[Humphreys et al. 2002]. Chromium intercepts a stream of OpenGL
commands and filters them. Chromium’s filters are pluggable com-
ponents called stream processing units (SPUs). One such unit
distributed with Chromium is the tilesort SPU. The tilesort

SPU determines the area of the screen that groups of primitives oc-
cupy and ships them to cluster nodes responsible for displaying that
portion of the screen.

Because Chromium has the ability to put itself in place of an
OpenGL shared object library, it can provide a tile display and/or a
number of other filtering operations to almost any OpenGL applica-
tion without modification or even recompilation. While flexibility
was a major design consideration for Chromium, so was efficiency.
As such, many SPUs like tilesort can be applied with little or no
degradation of frame rates. However, as mentioned before, using
Chromium in serial mode is not feasible for large data models, so
we must make our application Chromium aware so that we can use
it in parallel.

To make our VTK applications Chromium aware, we built the
vtkCrRenderManager object. Because the parallel rendering is
really being handled by Chromium, vtkCrRenderManager does
little but allow its superclass, vtkParallelRenderManager, to
propagate render events and parameters. We also implemented
vtkCrOpenGLRenderWindow and vtkCrOpenGLRenderer ob-
jects, which the Chromium render manager will build for the ap-
plication. They work very much like their OpenGL counterparts
except that they can interface directly with the Chromium API.
Currently, they suppress the creation of unused windows, provide
bounding box hints for tilesort, and provide some interaction
with a few other select SPUs. In time, the features of these objects
may grow to strengthen the coupling between VTK applications
and Chromium.

Using Chromium and its tilesort SPU, one can achieve very
impressive frame rates on large power wall displays. However, this

approach has scaling issues. Generally, the number of rendering
nodes is fixed to the number of tiles being displayed. Adding more
rendering nodes requires splitting the tiles into smaller pieces. This
approach means the smaller pieces must be recombined to form a
full image for each tile. This must be done either with additional
image combining hardware [Stoll et al. 2001], which we don’t have,
or with software by reading back the frame buffer, largely at the ex-
pense of frame rates. Furthermore, the sort-first approach to paral-
lel rendering performed by tilesort has inherent scalability and
load balancing issues. Some work has been done to correct these
issues [Samanta et al. 1999], but has not yet been implemented in
Chromium.

Of course, Chromium is not bound to the sort-first approach to
parallel rendering that tilesort implements. It can just as easily
support a sort-last approach, and the binaryswap SPU does just
that. Like most sort-last parallel renderers, binaryswap scales well
with the size of geometry being rendered and the number of proces-
sors doing the rendering, but at the expense of frame rate speeds.
However, the sort-last technique is very sensitive to the resolution
of the output display. Generating images that fit on a typical desk-
top is feasible, but generating images on high resolution tiled dis-
plays is not. We are currently considering techniques that may use
tilesort and binaryswap together to better distribute the work
for large amounts of data on tiled displays.

6 ICE-T

Another power wall display solution available to us is the Image
Composite Engine for Tiles (ICE-T). The ICE-T API allows ap-
plications to easily perform sort-last parallel rendering. It uses sev-
eral image space reduction and compression techniques to make the
composition of even high resolution tiled displays feasible. The de-
tails of ICE-T’s algorithms can be found in [Moreland et al. 2001].

Our initial goal was to embed ICE-T into a Chromium SPU.
However, we quickly found that this was an impractical target.
The Chromium SPUs, because they operate on streams of OpenGL
commands, use a push model. That is, the application pushes
OpenGL commands to the first SPU, which pushes them to the next
SPU, and so on. A SPU generally processes one command and
then moves on. In contrast, ICE-T uses a pull model. ICE-T can
perform compositions for images that can be much larger than what
the available graphics card can render in one pass. It therefore may
have to pull several images of the same geometry rendered with dif-
ferent projections. For this to be performed in a Chromium SPU,
the entire OpenGL stream would have to be cached each frame.
This would be very inefficient for large amounts of geometry, which
ICE-T was specifically designed to handle. We briefly considered
Chromium hints and extensions that might make the application’s
data available. Ultimately, we decided that trying to shoehorn ICE-
T into Chromium like this would require applications to be so tai-
lored to the ICE-T SPU that they might as well use the ICE-T API
directly.

We were able to instead embed ICE-T into the VTK framework.
We found this much more practical because, like ICE-T, VTK uses
a pull model. A render request is given to the window at the bottom
of the VTK pipeline. The event is propagated up the pipeline as
each component pulls fresh geometry or images from the compo-
nent above it. ICE-T fits well in this framework.

To start, we built an object called vtkIceTRenderManager. As
always, this class inherits from vtkParallelRenderManager. As
such, it attaches itself to a render window and listens for render
events. vtkIceTRenderManager works in conjunction with the
ICE-T API to compose images.

However, ICE-T also must in some cases transform the pro-
jection matrix and perform several renderings. This behavior is



0

100

200

300

400

500

600

16 32 48 64 80 96 112 128

R
en

de
rin

g 
S

pe
ed

 (
M

ill
io

ns
 o

f t
ria

ng
le

s 
pe

r 
se

co
nd

)

Number of Processors

Sort-Last Scaling

ICE-T, 1x1 Tiles
ICE-T, 4x4 Tiles
ICE-T, 12x4 Tiles
VTK Composite (1 Tile)

Figure 4: Scaling of sort last parallel rendering. ICE-T is used to
render to various tile layouts. The performance of the compositer
distributed with VTK is also measured. Each application proces-
sor renders about 7.4 million triangles (i.e. larger jobs have more
triangles).

beyond that of a vtkParallelRenderManager unit, so we de-
signed an object called vtkIceTRenderer to handle this. vtk-

IceTRenderer responds to ICE-T render requests and returns the
appropriate images. The ICE-T render manager object will create
ICE-T renderer objects for the user level application.

The ICE-T render manager also builds on the concept of image
reduction. Unlike the image reduction of the parent vtkParallel-
RenderManager class, the ICE-T render manager does not reduce
the size of the renderable viewport. Recall that in a tiled display, the
overall display size is larger than any one image. ICE-T uses an ex-
tension of the floating viewport described in Moreland, Wylie, and
Pavlakos [Moreland et al. 2001] to render images spanning multiple
tiles and therefore reduce the number of times the geometry must
be rendered.

7 Steering Station

Another important issue with rendering to tiled displays is provid-
ing an interface with which users can interact. The typical solution
for VTK applications such as ParaView using a composite manager
is to place the user interface at node 0 where the image is displayed
[Law et al. 2001]. This is problematic with a tile display for several
reasons. The most significant problem for us is the fact that, for se-
curity reasons, our display wall and driving cluster are in different
rooms, separated by a bolted steel door. Instead, our user interface
resides on a steering station, a separate PC located in view of the
display and connected to the cluster via a standard Ethernet con-
nection. Changes made in the user interface running on the steering
station are then propagated to the images on the display wall.

It so happens that this exact functionality is already implemented
by the desktop delivery objects described in Section 4 except that
images are displayed on the server rather than shipped back the
client. Therefore, the desktop delivery server object has a flag to
select the display. If displaying to the client, the behavior is as de-
scribed in Section 4. If displaying to the server, the render windows
on the server side are never resized and images are not transferred
back to the client. The client simply renders a very coarse represen-
tation of the geometry, which is a bounding box by default.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8

R
en

de
rin

g 
S

pe
ed

 (
M

ill
io

ns
 o

f t
ria

ng
le

s 
pe

r 
se

co
nd

)

Number of Application Processors

Sort-First Scaling

2x2 Tiles
4x4 Tiles
12x4 Tiles

Figure 5: Scaling of parallel rendering using Chromium’s tile-

sort SPU. Each client renders about 7.4 million triangles (i.e.
larger jobs have more triangles). Measurements were taken using
TCP/IP connections over a 100BASE-T network.

8 Conclusion

With the introduction of desktop delivery, Chromium, and ICE-T
components into VTK, we have shown that VTK is a viable frame-
work for cluster-based interactive applications that require remote
display or display to high-resolution power walls. By using both
the image-centric level of detail provided by the reduction factors
in conjunction with the geometry-centric level of detail directly pro-
vided by VTK, we can achieve highly interactive rendering for al-
most any image transfer, compositing, or rendering speeds.

Our ability to abstractly swap the parallel rendering method is of
tremendous importance. Each method of parallel rendering has its
own strengths and weaknesses, and it may be imperative to pick the
method that best fits the current usage for the system. For example,
when using our sort last methods on our cluster (comprised of 128
Dell Precision 530 workstations, each with dual 2.0 GHz Pentium-4
Xeon CPUs, 1 GB RDRAM, a GeForce 3 graphics card, and inter-
connected with Myrinet 2000), we find that even with very little ge-
ometry we can achieve frame rates of only about 10 Hz for our tile
displays due to the overhead of image compositing. However, as
can be seen in Figure 4, with sufficiently large input geometry we
can achieve very impressive rendering performance even on tiled
displays.

In contrast, the Chromium tilesort SPU has been shown to be
able to render with frame rates in excess of 40 Hz [Humphreys et al.
2002]. However, our current method of rendering has the number
of Chromium “server” nodes fixed to the number of tiles and we
see from Figure 5 that we get negative returns attempting to use
more than about four application processes. Thus, we can only use
our current Chromium configuration with modest sized data. It is
conceivable to build other Chromium configurations that allow for
better rendering performance of large data on tile displays, but race
conditions existing in the Chromium network layer at the time of
this writing have prohibited us from experimenting in this arena.
These race conditions have also prohibited us from showing the
scaling behavior past eight application processors in Figure 5.

9 Future Work

We have just begun the process of creating a viable production-
quality tool to run on our clusters and display on our power walls.
There is much work still to be done.



Our desktop delivery objects allow for any type of interface to be
built on the client side. However, we currently have not built a GUI
capable of much more than simple navigation controls. Ultimately,
we would like a fully-featured visualization tool such as ParaView
[Law et al. 2001] to be presented at the desktop. We currently have
a contract with Kitware (www.kitware.com) to incorporate the tech-
nologies described in this paper into ParaView. The latest version
of ParaView is available free from www.paraview.org.

The two methods of rendering to tile walls discussed have di-
ametrical performance properties. Chromium’s tilesort excels
at providing fast frame rates for small amounts of geometry while
ICE-T excels at rendering large amounts of geometry. We would
like our application to be able to pick the most appropriate ren-
dering method. Unfortunately, Chromium and ICE-T have to be
launched in different ways. An application cannot easily switch be-
tween the two. Our proposed solution is to instead modify ICE-T
to take advantage of data replication. By replicating the geomet-
ric data we can reduce the amount of image data that needs to be
processed and can thereby greatly increase the speed of image com-
position.

While the concept of a steering station allows an arbitrarily com-
plex user interface, it can be less than ideal. Often, we find the user
walking to the wall for a closer look and back to the steering station
to drive the application. We would like to incorporate a hand-held
device that could move with the user and at least provide navigation
controls.

10 Acknowledgments

This work was performed at Sandia National Laboratories. Sandia
is a multi-program laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of
Energy under contract DE-AC04-94AL85000.

We would also like to give a special thanks to Brian Wylie for
his support, inspiration, and the encouragement to write this paper
in the first place.

References

AHRENS, J., LAW, C., SCHROEDER, W., MARTIN, K., AND PAPKA, M.
2000. A parallel approach for efficiently visualizing extremely large,
time-varying datasets. Tech. Rep. LAUR-00-1620, Los Alamos National
Laboratory.

AHRENS, J., BRISLAWN, K., MARTIN, K., GEVECI, B., LAW, C. C.,
AND PAPKA, M. E. 2001. Large-scale data visualization using par-
alle data streaming. IEEE Computer Graphics and Applications 21, 4
(July/August), 34–41.

HEERMANN, P. D. 1999. Production visualization for the ASCI one Ter-
aFLOPS machine. In Proceedings of Visualization ’99, 459–462.

HUMPHREYS, G., HOUSTON, M., NG, R., FRANK, R., AHERN, S.,
KIRCHNER, P. D., AND KLOSOWSKI, J. T. 2002. Chromium: A
stream-processing framework for interactive rendering on clusters. In
Proceedings of ACM SIGGRAPH 2002, vol. 21 of acm Transactions on
Graphics, 693–702.

LAW, C. C., HENDERSON, A., AND AHRENS, J. 2001. An application
architecture for large data visualization: A case study. In Proceedings
of the IEEE 2001 Symposium on Parallel and Large-Data Visualization
and Graphics, 125–128.

MORELAND, K., WYLIE, B., AND PAVLAKOS, C. 2001. Sort-last paral-
lel rendering for viewing extremely large data sets on tile displays. In
Proceedings of the IEEE 2001 Symposium on Parallel and Large-Data
Visualization and Graphics, 85–92.

SAMANTA, R., ZHENG, J., FUNKHOUSER, T., LI, K., AND SINGH, J. P.
1999. Load balancing for multi-projector rendering systems. In SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, 107–116.

SCHROEDER, W., MARTIN, K., AND LORENSEN, B. 2002. The Visual-
ization Toolkit, 3nd ed. Kitware, Inc. ISBN 1-930934-07-6.

SMITH, P. H., AND VAN ROSENDALE, J. 1998. Data and visualization
corridors, report on the 1998 DVC workshop series. Tech. Rep. CACR-
164, Center for Advanced Computing Research, September.

STOLL, G., ELDRIDGE, M., PATTERSON, D., WEBB, A., BERMAN, S.,
LEVY, R., CAYWOOD, C., TAVERIA, M., HUNT, S., AND HANRA-
HAN, P. 2001. Lighting-2: A high-performance display subsystem for
PC clusters. In Proceedings of ACM SIGGRAPH 2001, Computer Graph-
ics, 141–148.



Figure 6: The VIEWS Corridor display. The display contains about 63 million pixels. The isosurface being displayed contains about 470
million triangles. Our VTK application can render this isosurface on our display in about 15 seconds. With coarser levels of both geometric
and image detail, we can sustain a minimum frame rate of 5–10 Hz.

Figure 7: Our manager, Philip Heermann, inspecting a plume of gas. Philip can inspect the details of the plume without losing the context of
the rest of the model.




