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Abstract

In situ computation of Lagrangian flow maps to enable post hoc time-varying vector field analysis has recently become an

active area of research. However, the current literature is largely limited to theoretical settings and lacks a solution to address

scalability of the technique in distributed memory. To improve scalability, we propose and evaluate the benefits and limitations

of a simple, yet novel, performance optimization. Our proposed optimization is a communication-free model resulting in local

Lagrangian flow maps, requiring no message passing or synchronization between processes, intrinsically improving scalability,

and thereby reducing overall execution time and alleviating the encumbrance placed on simulation codes from communication

overheads. To evaluate our approach, we computed Lagrangian flow maps for four time-varying simulation vector fields and

investigated how execution time and reconstruction accuracy are impacted by the number of GPUs per compute node, the total

number of compute nodes, particles per rank, and storage intervals. Our study consisted of experiments computing Lagrangian

flow maps with up to 67M particle trajectories over 500 cycles and used as many as 2048 GPUs across 512 compute nodes. In

all, our study contributes an evaluation of a communication-free model as well as a scalability study of computing distributed

Lagrangian flow maps at scale using in situ infrastructure on a modern supercomputer.

CCS Concepts

• Human-centered computing → Scientific visualization;

1. Introduction

As compute capabilities continue to outpace I/O capacity on su-
percomputers, in situ processing is an increasingly important so-
lution to enable analysis of large-scale simulation data [BAA∗16].
In situ processing involves coupling with the simulation code and
operating on the full spatiotemporal resolution of the data in mem-
ory. However, in situ analysis tasks operate in constrained environ-
ments and are afforded limited execution time and memory. Con-
sequently, analysis tasks must scale effectively since simulations
execute across hundreds of compute nodes (CNs). In this paper, we
investigate the performance of in situ data reduction via Lagrangian
analysis to enable exploratory time-varying vector field analysis.

Lagrangian analysis is a powerful tool to explore time-varying
vector fields generated by simulations. The notion of calculating a
Lagrangian flow map, i.e., sets of particle trajectories, for an ocean
modeling simulation “online" for “offline” exploration was first
proposed by Vries et al. [VD01] two decades ago. More recently,
compared to the traditional Eulerian technique under sparse tem-
poral settings, Agranovsky et al. [ACG∗14] evaluated reduced La-
grangian representations of time-varying vector fields and showed
significantly improved accuracy-storage propositions for explo-
ration. Figure 1 illustrates the approach. The Lagrangian flow maps
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Figure 1: The phases of Lagrangian analysis. The in situ phase

uses uniform seed placement and extracts flow maps over tempo-

rally nonoverlapping intervals. In this example, the flow maps for

the intervals [t0, t1] and [t1, t2] consist of particles {x0, x1, x2} and

{x3, x4, x5}, respectively. The extracted flow maps are used as in-

put during the post hoc phase. Here, the trajectory of particle p0

is calculated by interpolating the flow maps, i.e., from x1 and x2 in

the first time interval, and x3 and x4 in the second time interval.

are computed in situ using every cycle of a simulation, i.e., the full
temporal resolution. After calculating and storing the flow maps,
post hoc analysis tasks can use the flow maps to interpolate new
particle trajectories to explore the vector field.
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Table 1: Differences in distributed-memory particle advection factors for in situ data reduction and post hoc analysis.

Use Case In situ reduction via Lagrangian flow map Post hoc flow analysis

Input / Output Simulation vector field / Flow map Eulerian mesh or flow map / Trajectories
Objective Store representation of vector field Analysis and visualization of vector field
Vector Field Type Unsteady (time-varying) state Steady and unsteady state
Number of Particles Depends on sampling strategy and data set size Depends on analysis task and data set size
Number of Steps Depends on storage interval/sampling strategy Depends on analysis task
Memory Constraints Shared with simulation code and typically limited Can use all available memory
Spatial Decomposition

and Data Access

Simulation-determined with each rank accessing one
data block

Can be strategically modified, duplicated, re-
quested on-demand, etc.

Communication Required every cycle to compute a complete flow map Can be strategically performed and/or delayed
Load Balance Depends on sampling strategy Depends on analysis task
Preprocessing No prior work Used in several works
Domain Coverage Strategy to maintain domain coverage is necessary Depends on analysis task

The Agranovsky et al. [ACG∗14] study has been followed by
several works to advance our understanding of the Lagrangian
paradigm. However, the scalability of the technique while operating
in situ has not been previously addressed. The authors of a recent
comprehensive review of Lagrangian analysis [v∗18], have identi-
fied the challenges of (1) utilization of heterogenous computer ar-
chitectures, (2) providing parallel performance and scalability, and
(3) lack of an accessible API that allows integration with different
simulations. In this paper, we address the challenge of scalability,
as well as utilize a runtime in situ infrastructure for multi-physics
HPC simulations and GPUs for Lagrangian flow map computation.

With this study, our contributions include:

• A scalability study of distributed-memory particle advection us-
ing GPUs for Lagrangian flow map computation.

• An evaluation of a proposed performance optimization, i.e.,
computing local Lagrangian flow maps, across multiple extrac-
tion parameter configurations.

2. Background and Related Work

In the following section, we restrict our attention to the use of La-
grangian analysis as an in situ data reduction strategy and the rele-
vant research on distributed-memory particle advection.

Lagrangian Analysis. In the Lagrangian specification of a time-
varying vector field, information is stored using integral curves,
where each curve encodes the trajectory of a single massless parti-
cle. Each integral curve provides insight regarding flow behavior in
the vicinity of the particle’s trajectory [BJ15]. Collectively, a large
number of integral curves spanning the spatial domain can be de-
fined in terms of a flow map, i.e., a Lagrangian representation of the
flow field. The flow map Ft

t0(x0) : Rd ×R×R → R
d describes to

where a particle starting at position x0 ∈R
d and time t0 ∈R moves

in the time interval [t0, t]⊂ R [GGTH07].

Agranovsky et al. [ACG∗14] proposed a two phase approach:
(1) use in situ processing to compute reduced Lagrangian flow
maps, and (2) interpolate the flow maps for time-varying vector
field exploration. The study demonstrated significantly improved
accuracy-storage propositions for exploration under sparse tem-
poral settings compared to the traditional Eulerian approach. The
Eulerian approach is susceptible to error due to high numerical
approximation in settings of temporal sparsity [VB04, QvSSG14,

ACG∗14, SBC18, RLG19]. In comparison, the Lagrangian ap-
proach benefits from access to the complete spatiotemporal res-
olution to compute flow maps. Multiple works have advanced
this research area by considering in situ sampling or extraction
strategies [SCB19, RPD19], post hoc reconstruction and theoreti-
cal/empirical error analysis using the flow map as input [HSW11,
AOGJ15, BJ15, COJ15, CBJ16, HBJG16, SBC18, SCB19, RPD19,
JGG20], and the use of reduced data sets for analysis of ocean mod-
eling applications [NBSS17].

In this paper, we focus on the first phase, i.e., in situ computation
of a Lagrangian flow map. Agranovsky et al. [ACG∗14] consid-
ered a strategy prioritizing domain coverage. Particles were seeded
along a uniform grid, interpolated for a fixed number of cycles,
i.e., storage interval, and reset to repeat the process until the end
of the simulation. Their study used CPUs on as many as 128 CNs.
Two other works have proposed relevant sampling strategies. First,
Sane et al. [SCB19] proposed tracing longer trajectories, while
storing intermediate particle locations at fixed storage intervals. In
this approach, as particles diverged and clustered, a reconstruction
error-guided sampling strategy added or removed particles. Second,
Rapp et al. [RPD19] applied a statistical sampling strategy based on
the blue noise property to the extraction of particle trajectories. Al-
though these strategies can yield an improved reconstruction com-
pared to uniform or random sampling, they are limited to a single
CN, and they require additional research to keep execution time
and/or memory requirements acceptable in a distributed-memory
setting. Execution time and memory are limited resources when
operating in situ, so the task of efficiently computing a Lagrangian
flow map in distributed-memory remains challenging.

Distributed-Memory Particle Advection. Distributed-memory
particle advection algorithms have historically been proposed
for post hoc analysis. We refer readers to comprehensive sur-
veys [PRN∗11, ZY18] on this topic for steady and unsteady vector
fields in multinode settings. However, the existing post hoc solu-
tions are not directly applicable due to the different constraints and
requirements of computing a Lagrangian flow map in situ. We iden-
tify and list these differences in Table 1.

The most significant challenge associated with distributed-
memory particle advection is scalability. Poor scalability is due to
the frequent and large amount of communication required between
processors as particles continue trajectory integration across rank
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domain boundaries. Most studies in this area have required parti-
cle exchange, but a few have used preprocessing or runtime oper-
ations to address scalability by limiting communication. Notably,
Chen et al. [CXLS11, CS13] and Liao et al. [LMKK19] modify
the data layout as a preprocessing step to propose parallelize-over-
data techniques. Using parallelize-over-particles strategies, Guo
et al. [GHS∗14] and Zhang et al. [ZGY16] moved and dupli-
cated data between processors or used on-demand data loading.
Lastly, as an advection acceleration strategy, Bleile et al. [BSGC17]
computed block-specific flow maps for a single time-slice as a
communication-free preprocess and used the mapping to transport
particles across entire blocks in a single step. Considering in situ
constraints, and the time-varying nature of the data, existing strate-
gies are either not applicable or viable.

In this paper, we consider a communication-free model for ex-
tracting local Lagrangian flow maps. We compare this approach
with the traditional computation of a Lagrangian flow map, which
does incur communication costs. Our comparisons are at scale and
evaluate the respective performance benefits and reconstruction ac-
curacy of the approach. Based on our understanding of existing re-
search in this area, in situ constraints, and practical temporal stor-
age intervals, we believe the communication-free model is viable
for a sampling strategy, and most importantly, intrinsically enables
scalability to a large number of processors.

3. Methods

This section contains four parts. Section 3.1 describes the in situ
infrastructure for our approaches. The next two sections describe
the two Lagrangian flow map extraction approaches: the traditional
approach (3.2) and a new communication-free approach (3.3). Sec-
tion 3.4 describes how post hoc reconstruction, which applies to
both approaches, is performed. Figures 3a, 3b, 3c, and 3d provide
notional examples to compare both approaches. Further, based on
the in situ system classification in [C∗20], the Lagrangian flow map
extraction system is classified as one with a dedicated API integra-
tion, on-node proximity, direct access, a time division of execution,
automatic operation, and a derived output type.

3.1. In Situ Infrastructure

Our study used the Ascent in situ infrastructure [LAA∗17]. The
Ascent API can be used to integrate with a simulation code and
access various in situ analytics capabilities. It can also be used
to create a workflow when loading data sets from disk. The fun-
damental operation of particle advection required to compute the
particle trajectories that form the Lagrangian flow map is imple-
mented using the VTK-m library [MSU∗16]. VTK-m is a platform-
portable scientific visualization library for shared-memory parallel
environments. This library enabled us to easily engage GPUs for
particle advection. Specifically, in situ particle advection is per-
formed using fourth-order Runge-Kutta for interpolation. Ascent
has VTK-h [LAA∗17] as a distributed-memory wrapper around
VTK-m. VTK-h uses MPI and acts as the communication layer.
Figure 2 provides an illustration of the workflow for in situ data re-
duction. Ascent is invoked every cycle of the simulation, and it con-
sequently invoked the relevant calls to the Lagrangian filter (VTK-h
+ VTK-m). The rank-specific Lagrangian filter used the simulation

Figure 2: Workflow of in situ data reduction distributed across n

processes to compute a Lagrangian flow map.

vector field data to advect particles every cycle, and triggered the
storage of trajectories that comprise the Lagrangian flow map. La-
grangian analysis modules are available in the latest releases of the
open-source Ascent [LAA∗17] and VTK-m [MSU∗16] libraries.

3.2. Traditional Computation of Lagrangian Flow Maps

Conceptually, a Lagrangian representation encodes the behavior of
a time-varying flow using particle trajectories. Given the early na-
ture of investigations into the use of Lagrangian flow maps, the
best ways to seed, represent in memory, communicate, and store
flow maps are open questions. Section 2 noted three prior sampling
strategies; however, none of these were evaluated at scale. As a
baseline, our work implemented the technique described by Agra-
novsky et al. [ACG∗14] and is referred to as LagrangianDist .

For LagrangianDist , we defined the overall strategy for flow map
computation by considering four aspects:

• Sampling: For each data block, seeds are placed along a uniform
grid. As particles are advected, they may diverge or cluster. To
maintain domain coverage, particles are terminated after a fixed
number of cycles, i.e., storage interval, and their end locations
are saved, followed by a new set of particles uniformly seeded
at the original starting locations. Thus, sets of temporally non-
overlapping particle trajectories are calculated that span the full
duration of the simulation.

• In-memory Representation: Adopting a minimal approach,
only the current location and the validity of the particle are stat-
ically stored in memory.

• Communication: Ranks communicated every cycle to check for
particles (incoming/outgoing) crossing rank boundaries to con-
tinue trajectory integration. Control is returned to the simulation
after all communication is completed.

• Storage: Agranovsky et al. did not specify how particles that ex-
ited the domain before the end of the storage interval are saved,
which is problematic for post hoc reconstruction. In our imple-
mentation, we stored the end location and a Boolean indicating
validity, i.e., whether the particle remained within the domain for
the entirety of the storage interval.

3.3. Computation of Local Lagrangian Flow Maps

With this work, we propose an optimization to address the increas-
ing cost of communication as the scale increases. Our strategy is a
simple, yet novel and scalable, approach: skip all the communica-
tion and compute only local Lagrangian flow maps in situ. We re-
fer to this implementation as LagrangianLocal and define the overall
strategy as follows:

• Sampling: Similar to LagrangianDist , we used a uniform seed
placement and a fixed storage interval. Additionally, seeds can be
placed redundantly along domain boundaries in adjacent ranks,
and although our study does not consider ghost zones, we believe
these would serve to strengthen our proposed optimization.
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Figure 3: Figures 3a and 3c notionally illustrate the in situ computation of LagrangianDist and LagrangianLocal flow maps, respectively.

Figures 3b and 3d show the corresponding global Delaunay triangulations (see Section 3.4 for details of post hoc reconstruction). Figure 3e

illustrates a case of early termination, which is discussed in Section 3.3.

• In-memory representation: Similar to LagrangianDist , we
stored the current location and validity of a particle.

• Communication: We eliminated all particle information ex-
change and synchronization. Particles that required communica-
tion to continue trajectory integration were discarded. Thus, all
ranks operated independently.

• Storage: For a uniform grid, we stored the end location (3 dou-
ble) and validity (1 Boolean). Particles that were discarded were
marked as invalid.

An interesting consideration was whether to store the particle
termination time and boundary location. Figure 3e illustrates the
problem with this approach. Three particle trajectories (P1, P2, P3)
start at time tstart . Two of the particle trajectories (P1, P3) remain in
their domain until tend , i.e., for the entire storage interval, and one
particle (P2) reaches the domain boundary at tint . During post hoc
reconstruction, using the information of P2 to transport a new par-
ticle from tstart to tint requires knowing the location of neighboring
particles (P1, P3) at tint . Only the particle start and end locations are
known in our case, so this approach would require linearly interpo-
lating (depicted using the dotted brown line) the locations of the
neighboring particles at tint . However, these interpolated locations
are often erroneous (orange particles).

The benefits of computing local Lagrangian flow maps are re-
duced execution time and improved scalability characteristics. Fur-
ther, for storage intervals that are used in practice, we hypothesize
only a small percentage of particles will be discarded. However,
the loss of information in the form of discarded particle trajectories
could reduce the quality of flow reconstruction. Our study evalu-
ates this trade-off. Lastly, we believe this performance optimiza-
tion could be applied adaptively, i.e., communication can be turned
on/off when appropriate. Our study assumed an “always off” ap-
proach, which we view as invaluable for future adaptive designs.

3.4. Post Hoc Flow Field Reconstruction

We used a Lagrangian-based advection scheme similar to prior
work [ACG∗14, BJ15]. New particles interpolate temporally
nonoverlapping sets of particle trajectories. For a specific storage
interval, the starting positions of all valid trajectories are treated
as points in an unstructured mesh. To calculate the trajectory of a
particle P, the neighborhood, i.e., the containing cell of the unstruc-
tured mesh, is first identified. We computed the cells of the unstruc-
tured mesh by performing Delaunay triangulation. The identified
neighborhood forms a convex hull around the particle P. Next, P

“follows” the neighborhood until the end of the specific storage in-
terval. To compute the next location of P, we used the end locations

of the neighborhood particles and barycentric coordinate interpola-
tion. This process can continue for several steps, with each advec-
tion step advancing the particle forward in time by the length of the
storage interval.

4. Theoretical Error Analysis

Although our main contribution is an empirical evaluation, for gen-
erality, this section provides a theoretical error analysis of our strat-
egy to compute local Lagrangian flow maps.

We used a one-dimensional linear interpolation L of a function
f : R→ R for x ∈ [x0,x1]⊂ R

L f (x0), f (x1)
(x) =

x− x0

x1 − x0
f (x1)+

x1 − x

x1 − x0
f (x0). (1)

Higher dimensional results satisfy (1) for each component.

In our approach, a particle starting at x1 that reached the node
boundary before a storage cycle is discarded. Thus, its function
value (the flow map) is not known. However, we can reconstruct
it from its known neighbors L f (x0), f (x2)(x1). Consider a particle
x ∈ [x0,x1]⊂ R whose path is interpolated using this reconstructed
value. We get the same result as if we had used the closest existing
neighbors directly. Let L′ denote L f (x0),L f (x0), f (x2)

(x1)(x), then

L′ (1)
=

x− x0

x1 − x0
L f (x0), f (x2)

(x1)+
x1 − x

x1 − x0
f (x0)

(1)
=

x− x0

x1 − x0
(

x1 − x0

x2 − x0
f (x2)+

x2 − x1

x2 − x0
f (x0))+

x1 − x

x1 − x0
f (x0)

=
x− x0

x2 − x0
f (x2)+

(x2 − x1)(x− x0)+ (x2 − x0)(x1 − x)

(x2 − x0)(x1 − x0)
f (x0)

=
x− x0

x2 − x0
f (x2)+

x2 − x

x2 − x0
f (x0)

(1)
= L f (x0), f (x2)

(x).

(2)

Bujack et al. [BJ15] previously established that the post hoc inter-
polation of pathlines is a numerical one-step integration method.
Its accuracy is bounded by its global truncation error at stitching
step n ∈ N of

en ≤
d2

8
(tn − t0)h

2
x max

τ∈[t0 ,tn ]
max
ζ∈Rd

‖HḞτ
t j−1

(ζ)‖∞eL(tn−t0) (3)

with dimension d, start time t0, end time tn, spatial Lipschitz con-
stant L, Hessian H of the temporal derivative of the flow map Ḟ ,
and spatial distance hx between the flow map trajectories. A de-
tailed derivation of equation (3) can be found in [BJ15]. As a re-
sult, the interpolation error is O(h2

x) if the flow map has bounded
second derivatives in space and first derivatives in time, which is a
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reasonable assumption for a differentiable vector field, because the
solutions of an initial value problem depend smoothly on the initial
conditions and time [Har02].

Equation (2) shows that the error bound O(h̃2
x) still holds but

with a larger h̃x > hx. Its size is determined by the size of miss-
ing information, which is limited by the maximum distance par-
ticles can move in one time interval. If a particle is seeded further

than maxxi∈Rd max j=1..n ‖F
j
j−1(xi)‖ away from the node boundary,

it cannot reach it and must therefore have the correct flow map in-
formation. In the worst case, we can have missing information on
both sides of the boundary, and therefore it follows from the mean
value theorem that

h̃x ≤ 2hx +2 max
xi∈Rd

max
j=1..n

‖F
j
j−1(xi)− xi‖

≤ 2hx +2ht max
x∈Rd

max
t∈[t j−1 ,t j ]

‖v(x, t)‖
(4)

with the underlying velocity field v : Rd ×R→ R
d and the tempo-

ral step size ht , which is the interval time between storing data to
disk, usually around one-thousandth of the total integration time.
The future increase of the global truncation error of a particle that
traverses this region can continue even after it has left the region,
but for all particles that never enter the region close to the boundary,
the original error bound holds.

5. Study Overview

This section describes our data sets (5.1), experiments (5.2), evalu-
ation considerations (5.3), and runtime environment (5.4).

5.1. Data Sets

We computed Lagrangian flow maps for four data sets.

Cloverleaf3D. This mini ECP application solves compressible
Euler equations in a hydrodynamics setting on a Cartesian grid us-
ing an explicit second-order method [MBG∗13]. Cloverleaf3D has
been used in several studies to evaluate emerging architectures and
various techniques targeting large-scale applications. The simula-
tion is initially relatively stable and begins with an energy bar ex-
panding from the center. Configurations for the Cloverleaf3D sim-
ulation varied from 643 (≈ 262k cells) to 8123 (≈ 535M cells).

Arnold-Beltrami-Childress (ABC) Flow. This popular turbu-
lent velocity field is a solution of Euler’s equations in 3D for in-
compressible, inviscid fluid flows and is parameterized using three
variables (we use A = B = C = 1). We considered a grid size of
2563 (≈ 16.5M cells) and generated 400 cycles of a time-dependent
variant [BCT01] with a time step of 0.001.

Nyx. The Nyx simulation is a N-body and gas dynamics code
for large-scale cosmological simulations [ABL∗13]. We used a test
executable named TurbForce and generated 400 cycles of a 1283

data set (≈ 2M cells) with a time step of 0.002.

Jet Flow. This data set is a simulation of a jet of high-velocity
fluid entering a medium at rest. It was created using the Gerris Flow
Solver [Pop03]. The vector field is defined over a 128×256×128
grid (≈ 4.1M cells) and 300 cycles with a step size of 0.001.

5.2. Experiment Setup

For this study, we conducted experiments in two phases.

Phase-I. The first phase of the experiments was conducted by
directly integrating Ascent with the Cloverleaf3D simulation code.
We conducted a weak scaling study on a modern supercomputer
and considered the impact of the number of ranks and GPUs en-
gaged per CN on execution time. Additionally, we performed two
comparisons referred to as C-I and C-II using the Cloverleaf3D
simulation code:

• C-I. We compared LagrangianLocal to LagrangianDist when the
number of ranks for a fixed grid size, i.e., the degree of domain
decomposition, varied.

• C-II. We compared LagrangianLocal to the Eulerian technique to
verify accuracy-storage benefits observed in prior works remain.

The results of Phase-I are presented in Section 6.1.

Phase-II. For the second phase of experiments, we worked with
the ABC, Nyx, and Jet time-varying data sets. We created a work-
flow using Ascent and loaded files from disk for every cycle. A
fixed number of resources (1 GPU/rank, 4 ranks/CN, 16 CNs) were
used for these experiments. Here, the number of particles used to
sample the domain was controlled by a data reduction factor (de-
noted by 1:X, i.e., one particle for every X grid points). We also
considered multiple values for the storage interval. These tests pro-
vided insight into reconstruction accuracy, especially as vector field
and configuration parameters varied, as well as computational per-
formance. The results of Phase-II are presented in Section 6.2.

5.3. Evaluation

Execution Time. We measured different types of execution time —
particle advection, communication, and total time — and reported
the average per cycle across the entire run. To simplify compar-
isons, we excluded cycles at the end of a storage interval. These cy-
cles included a communication cost incurred by LagrangianDist to
return all particles to the respective origin nodes. In this paper, we
do not analyze the parallel I/O times because (1) I/O times on su-
percomputers can be highly variable and lead to difficult interpreta-
tions, (2) infrequently performed I/O write times for our tests were
less than the corresponding advection cost for a single step, and (3)
local flow maps consistently led to fewer bytes stored, meaning we
would expect I/O costs to not increase.

For post hoc reconstruction, a Delaunay triangulation was per-
formed using CGAL [CGA20] on a single-node workstation. In
our experiments, the number of points for both LagrangianLocal

and LagrangianDist were of the same magnitude, and thus, required
similar reconstruction times.

Reconstruction Accuracy. We quantitatively measured accu-
racy in two contexts: (1) reconstruction of any discarded particle
trajectories and (2) full pathlines. In both cases, we measured Eu-
clidean distances and represented error as a percentage of the grid
cell side (GCS) to provide a perspective relative to the simulation
domain. An error under 100% of GCS indicates a particle trajectory
end point within one grid cell side of the ground truth.

The first priority was understanding how accurately we could
reconstruct the flow map. Since LagrangianLocal discards particle
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trajectories, potentially leaving a void of samples in the domain
near boundaries, we reconstructed these trajectories by interpolat-
ing the stored flow map. We compared the reconstructed particle
trajectories to the ground truth by measuring the Euclidean distance
between the end points. The statistics do not include all the parti-
cle trajectories of the flow map that were successfully computed
and stored since these are already accurate. Including these trajec-
tories would skew the overall result. Therefore, for each test, the
percentages of both stored (accurate) and discarded (reconstruction
error measured) particle trajectories are presented. The measured
reconstruction error is presented using violin plots and heatmaps
(2D histograms) to emphasize the distribution of error.

Second, for C-I and C-II we measured the accuracy of new path-
lines. In this case, pathlines were computed for the entire duration
of the simulation run, and we reported the average L2-norm over
all interpolated locations for each particle.

5.4. Runtime Environment

We tested the Lagrangian analysis techniques by running the ex-
periments on Summit (a supercomputer at ORNL). Each CN of
Summit has two IBM Power9 CPUs, each with enhanced on-chip
acceleration via NVLink to 3 GPUs; the total GPUs per CN is 6.
Each GPU is a NVIDIA Tesla V100 with 5120 CUDA cores and
16 GBytes of HBM2 memory.

6. Results

We organize our results into two subsections, with each subsection
focusing on results from a phase of experiments.

6.1. Phase-I Results Using Cloverleaf3D Simulation Code

We report the results of Phase-I experiments that include a weak
scaling study, C-I, and C-II.

6.1.1. Weak Scaling Study

We considered 17 configurations of the Cloverleaf3D simulation
in our weak scaling Phase-I study. Our experiment configurations
span 813 cells across 2 MPI ranks on 1 CN to 8123 cells across
2048 MPI ranks on 512 CNs, with each MPI rank operating on
an approximately 643 grid. In each case, one GPU was assigned
to every MPI rank, and we varied the number of ranks per CN.
With respect to the number of MPI ranks on each CN, we ran 1
test using 2 ranks, 10 tests using 4 ranks, and 6 tests using 6 ranks.
For each run, we terminated the simulation after 500 cycles. Given
the variation in grid size, each test reached a different stage of the
simulation. As the simulation grid size increased, the step size used
by the simulation decreased. With respect to parameterization of
the Lagrangian flow map computation, we used a storage interval
of 25 cycles and a data reduction of 1:8 (≈ 32,768 particles seeded
per MPI rank) for every test.

Execution Time. Figure 4 compares the average total time
required per step by LagrangianDist and LagrangianLocal . As
the scale of the simulation increased, the cost of communica-
tion dominated the execution time for LagrangianDist . In com-
parison, LagrangianLocal scaled better because each MPI rank
operated independently. For the range of configurations con-
sidered, LagrangianLocal demonstrated up to 4x speed-up over
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Figure 4: Results of the weak scaling study on the Cloverleaf3D

data set, which shows the poor scalability of LagrangianDist as the

number of MPI ranks increases.

LagrangianDist . Further, we expect this speed-up would increase
even more as the scale of the simulation increases. The cost of par-
ticle advection (for both techniques) increased as the scale of the
simulation increased. However, this increase in particle advection
cost was attributed to the difference in each test domain and the
RK4 kernel that performed velocity field interpolation. Further, use
of a faster particle advection kernel would result in greater speed-
ups for LagrangianLocal .

The “sawtooth” nature of the line curves in Figure 4 is the re-
sult of a series of test configurations alternating between 4 and 6
ranks per CN. Varying the number of ranks (each using 1 GPU)
on each CN impacted both particle advection and communication
costs. Figure 5 isolates these costs to show the weak scaling trends.
From Figure 5a, particle advection performed better with 4 GPUs
per CN versus 6. Use of shared memory by multiple GPUs on a
single CN and saturation of the NVLink by the VTK-m particle
advection kernel caused this effect. In contrast, the MPI communi-
cation cost showed a reduction when using 6 ranks versus 4 per CN
as seen in Figure 5b. On-node MPI communication optimizations
contributed to better performance when grouping a larger number
of MPI ranks on each CN. However, the communication cost of
inter-node remained high in comparison to intra-node. Configura-
tions using 4 ranks per CN showed particularly poor scalability as
the number of CNs increased.

Reconstruction Accuracy. We calculated the reconstruction ac-
curacy for 8 of the LagrangianLocal weak scaling Phase-I config-
urations, which we labeled T1 through T8 (see Figure 6). Config-
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(a) Costs of particle advection.
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(b) Costs of communication.

Figure 5: Results for weak scaling the number of GPUs or ranks

(4 or 6) per compute node. LagrangianLocal particle advection

costs are plotted in 5a and LagrangianDist communication costs

are in 5b. While particle advection performed better with fewer

GPUs sharing memory on a single compute node (5a), communi-

cation benefitted from MPI optimizations when more ranks execute

on a single compute node (5b).
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Figure 6: The distribution of the reconstruction error for eight

Cloverleaf3D tests (labeled T1 through T8). The grid dimensions

increase l-r from 813 to 2043 over 500 cycles.

urations terminated 2%-5% of particles and consequently stored
95%-98% of all initially seeded trajectories. We measured the ac-
curacy of reconstructing the discarded trajectories only and present
the results using violin plots in Figure 6. As the simulation grid res-
olution increased, the grid cell size and particle advection step size
decreased, while the total number of particles sampling the domain
increased. Over 75% of discarded trajectories have reconstruction
error under 25% of a GCS from the ground truth. Further, this trend
was observed across all the 8 test configurations we reconstructed.

Overall, using LagrangianLocal with a storage interval of 25 cy-
cles and 1:8 data reduction factor, the complete Lagrangian flow
map was reconstructed accurately (under 100% of GCS) while pro-
viding speed-ups of 2x-4x for the Cloverleaf3D data set.

6.1.2. C-I Results

Multiphysics HPC simulations typically have millions of grid
points per rank and increase grid resolution as the number of ranks
increases. To identify limitations, we evaluated LagrangianLocal in
situations where this was not the case, i.e., when the number of
processes operating over a fixed grid size increased.

Since the LagrangianLocal strategy was to discard trajectories ex-
iting the rank-specific domain, this approach was susceptible to
low-resolution data blocks (i.e, sampling would use a small num-
ber of particles per rank) and longer storage intervals (i.e., inte-
gration times). This experiment measured the error of 1,000 new
pathlines generated for 800 cycles compared to the ground truth.
Further, three parameter options were considered for domain de-
composition, storage interval, and data reduction factor. Figure 7

Figure 7: Average error of new pathlines traced using

LagrangianDist and LagrangianLocal for varying domain decom-

position, storage interval, and data reduction factor. Here, a 643

Cloverleaf3D data set defined over 800 cycles is used. Accuracy

measurements are compared to the ground truth.

shows the pathline error when interpolating the flow maps gen-
erated by LagrangianDist and LagrangianLocal . The accuracy of
LagrangianLocal remained close to LagrangianDist until the domain
decomposition was at its highest (643 grid decomposed across 32
ranks). Although the overall accuracy of the interpolated pathlines
was high (within a single GCS on average for all tests), both tech-
niques lost some accuracy as the storage interval and data reduc-
tion factor increased, with LagrangianLocal performing worse under
greater domain decomposition. These results highlight the limita-
tions of the LagrangianLocal technique as is.

6.1.3. C-II Results

Here, we compared LagrangianLocal to an Eulerian representation
with temporal subsampling. Table 2 shows the results of C-II.
We considered three storage intervals: 20, 40, and 60. We used
96 MPI ranks distributed across 16 CNs and a grid size of 5863.
LagrangianLocal used a data reduction of 1:8, whereas for the Eu-
lerian technique we stored the full spatial resolution. To compare
accuracy, we reconstructed 100,000 randomly seeded pathlines for
600 cycles. Overall, LagrangianLocal was increasingly accurate (6x
to 11x) compared to the Eulerian approach as the interval size in-
creased, but required less data storage. These results aligned with
findings in prior works [ACG∗14,SBC18] that compared the use of
Lagrangian representations to the traditional approach under sparse
temporal settings.

Table 2: Comparison of LagrangianLocal and the traditional ap-

proach, i.e., the Eulerian representation with temporal subsam-

pling, for the Cloverleaf3D dataset. The error is the average per-

centage of grid cell side and is computed for 100,000 pathlines over

600 cycles. The unit for storage is GB.

Storage LagrangianLocal Eulerian
Interval Avg % of GCS Storage Avg % of GCS Storage

20 18.8 34 115.4 267
40 25.2 17 269.0 133
60 37.5 12 424.8 95

6.2. Phase-II Results Using ABC, Nyx, Jet Data Sets

This section presents results for three time-varying data sets. We
considered a fixed amount of compute resources and varied con-
figuration parameters that impact both execution time and recon-
struction accuracy. Figure 8 contains the computation costs for all
Phase-II experiments. Additionally, we derived, visualized, and
compared the finite-time Lyapunov exponent (FTLE) scalar field
using select LagrangianLocal flow maps for each of these data sets
to the ground truth FTLE field.

6.2.1. ABC Flow

Table 3 lists all the ABC Phase-II test configurations.

Execution Time. Using 64 MPI ranks across 16 CNs, each with
1 GPU, LagrangianLocal required up to 2.8x less execution time as
LagrangianDist . Figure 8 shows particle advection and communi-
cation costs are directly proportional to the particle count. Further,
particle advection for up to 2M particles (32k particles per GPU)
was performed in under 0.004 seconds per step for all data sets.

Reconstruction Accuracy. Figure 9’s violin plots indicate the
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Figure 8: Execution time per step of LagrangianDist and

LagrangianLocal grouped by data set and ordered by the number of

particles for Phase-II experiments. Overall, most LagrangianLocal

tests required under 0.005 seconds per step and showed small vari-

ance. In contrast, LagrangianDist tests showed higher cost per step

as well as more variability.

Table 3: Specifications for 9 ABC tests. In most cases, over 90% of

the complete flow map was stored.

Test Interval Reduction Particles Stored Discarded

T1 25
1:1 16700k

96.9% 3.1%
T2 50 94.3% 5.7%
T3 100 89.7% 10.3%
T4 25

1:8 2098k
97.7% 2.3%

T5 50 95.2% 4.8%
T6 100 90.4% 9.6%
T7 25

1:27 621k
98.6% 1.4%

T8 50 95.9% 4.1%
T9 100 91.8% 8.2%
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Figure 9: Violin plots of reconstruction error for the ABC data set

tests labeled T1-T9. The plots show the error remained within a

consistent range across tests, with only small increases as the data

reduction factor and storage interval increase.

ABC data set showed shifts in reconstruction error distribution
when varying the storage intervals and sampling resolution. The
error range for all configurations, however, was similar. The dis-
carded trajectories from the ABC data set Lagrangian flow map
were reconstructed accurately, with trajectories interpolated to the
same grid cell as the ground truth. Specifically, for all 9 tests, the
mean reconstruction error was between 2.5% and 5% of GCS from
the ground truth. Figure 11 visualizes the FTLE field derived from
the reduced LagrangianLocal test T6. Although reconstruction near
extrema is similar to the ground truth, the FTLE is overestimated
in other regions and artifacts are visible along node boundaries.

Impact of Varying Storage Interval. Figure 10 shows heatmaps
of the reconstruction error across all intervals for tests T4 and T6.
For a straightforward comparison, the figures show the absolute
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Figure 10: Heatmap of reconstruction error for the ABC data set

as a function of interval. These plots show that the majority of re-

constructed trajectories are within a grid cell side of the ground

truth, despite the larger of number of discarded particles resulting

from the larger storage interval (10b).

Figure 11: 3D colormapped surfaces of the FTLE field for the ABC

data set. Although extrema of the FTLE field derived using the re-

duced LagrangianLocal flow map (right) are preserved, other re-

gions are overestimated.

number of particles reconstructed for each storage interval. Com-
paring these heatmaps, the effect of increasing the storage interval
was that a larger number of particles were terminated in a single
interval, and thus reconstruction error increased.

6.2.2. Nyx Cosmology

Table 4 lists all the Nyx Phase-II test configurations.

Table 4: Specifications for 8 Nyx tests. Nyx tests had the largest

percentage of discarded particles among all our experiments.

Test Interval Reduction Particles Stored Discarded

T1 10

1:1 2097k

96% 4%
T2 20 92.1% 7.9%
T3 40 85.7% 14.3%
T4 50 83% 17%
T5 10

1:8 262k

97.4% 2.6%
T6 20 93.7% 6.3%
T7 40 88.2% 11.8%
T8 50 85.8% 14.2%

Execution Time. Across our 8 tests using the Nyx data set,
LagrangianLocal computed a flow map up to 5.2x faster than the cor-
responding LagrangianDist flow map. Additionally, Figure 8 shows
the standard deviation was greater for the LagrangianDist tests and
was caused by the larger number of particles exchanges between
ranks for this data set.
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Figure 12: Violin plots of reconstruction error for the Nyx data set

tests labeled T1-T8. For most tests (T1-T6), the majority of parti-

cles can be reconstructed within a grid cell side of the ground truth.

However, for tests with increased storage interval and data reduc-

tion (T7, T8) we found the error can be higher.

Figure 13: 2D colormapped slices (top row) and isolines of a sub-

set region (bottom row) of the FTLE field for the Nyx data set. Here,

we visualize the impact of propagating error via interpolation of

consecutive flow maps. Using the flow maps of the LagrangianLocal

T3 test, a single interval is interpolated and the reconstructed

FTLE field is similar to the ground truth. Using the flow maps of

T1, we interpolated 4 intervals to calculate the FTLE over 40 cy-

cles. In this case, although the slice visualization shows the overall

structure well, the isolines reveal the noise introduced locally by

“stitching” LagrangianLocal flow maps together.

Reconstruction Accuracy. As a consequence of a large number
of particles being discarded by LagrangianLocal , the accuracy of re-
construction was impacted for tests with longer storage intervals.
7 of 8 tests showed up to the third quartile reconstructing under
100% of a GCS. Comparing tests T3 and T4 (1:1 data reduction fac-
tor) to tests T7 and T8 (1:8 data reduction factor), although T3 and
T4 discarded a greater percentage of samples, they remained more
accurate due to the absolute number of particles used to sample
the domain. For shorter storage interval lengths (T1, T2, T5, T6),
the reconstruction quality was high for both data reduction factors.
Figure 13 compares the FTLE field derived by interpolating a sin-
gle longer interval (T3) to interpolating multiple intervals (T1) of
LagrangianLocal flow maps. Interpolating multiple intervals leads
to error propagation. The consequence of the error propagation was
the noise introduced in the FTLE derived using T1 flow maps. In
contrast, interpolating the single longer interval of T3 flow maps
generated an FTLE field closer to the ground truth.

6.2.3. Jet Flow

Table 5 lists all the Jet Phase-II test configurations.

Table 5: Specifications for 8 Jet tests. In most cases, under 2%

of particle trajectories are discarded. Accurate reconstruction of

these trajectories (see Figure 14) was dependent on the absolute

number of stored particles.

Test Interval Reduction Particles Stored Discarded

T1 5
1:1 4194k

99.4% 0.6%
T2 10 97.9% 2.1%
T3 5

1:8 524k
99.6% 0.4%

T4 10 98.9% 1.1%
T5 5

1:27 155k
99.7% 0.3%

T6 10 99.1% 0.9%
T7 5

1:64 65k
99.8% 0.2%

T8 10 99.3% 0.7%

Execution Time. For the Jet data set, LagrangianLocal computed
a flow map up to 3.9x faster than the corresponding LagrangianDist

flow map. For this data set, we considered shorter storage inter-
vals, and thus a smaller percentage of particles required particle ex-
change to continue trajectory integration. However, Figure 8 shows
the variability in the cost of communication as it was suscepti-
ble to network usage and bandwidth contention. A single outlier
LagrangianLocal test showed a higher computation cost.

Reconstruction Accuracy. The Jet data set presented an adver-
sarial case for our proposed optimization of computing local flow
maps. The data set contained regions with high velocity magnitude.
Across the range of configurations in Figure 14, both the storage in-
terval and the data reduction factor impacted the reconstruction ac-
curacy. 6 of 9 tests had a mean reconstruction error under 100% of
GCS. Further investigation into the distribution of T2 revealed that
the longer storage interval and 1:1 sampling resulted in several par-
ticles terminating in easy-to-reconstruct areas of the domain at the
start of the simulation (most other configurations showed particle
termination only after cycle 30). For tests using a storage interval
of 10 (T2, T4, T6, T8), the reconstruction accuracy is reduced.

Impact of Varying Data Reduction Factor. Figure 15 com-
pares the distribution of reconstruction error as the data reduction
factor increases. Each cell in the heatmap shows a percentage of
particles to enable comparison between tests. For test T1 using a 1:1
sampling, reconstruction accuracy was high and a larger percent-
age of particles were reconstructed with error under 100% of GCS.
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Figure 14: Violin plots of reconstruction error for the Jet data set

tests labeled T1-T8. The plots show that error increased signifi-

cantly with increased data reduction factor and storage interval.

Reconstruction error was low only when no data reduction (1:1)

was used (T1, T2).
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Figure 15: Heatmaps of reconstruction error for the Jet data set.

These plots highlight the low tolerance for data reduction for this

data set — a high data reduction factor resulted in an increase in

the percentage of particles reconstructed up to a few grid cell sides

away from the ground truth.

As the number of particles used to sample the domain reduced,
a higher percentage of particles were reconstructed multiple cells
away from the ground truth. In Figure 15b, test T7 used a 1:64 data
reduction factor and there are more red/orange cells with higher er-
ror during the later stages of the simulation. Figure 16 visualizes an
FTLE field derived using the T1 (1:1) and T3 (1:8) LagrangianLocal

flow maps. Although for both tests the overall FTLE ridge structure
can be visualized, for T3 using fewer particles, the loss of accuracy
due to discarded trajectories is more evident.

7. Limitations and Discussion

While scalability is the major benefit of local Lagrangian flow
maps, this benefit comes with certain limitations as shown in our
evaluation. While both LagrangianDist and LagrangianLocal show
error (as shown in Figure 7), the error of LagrangianLocal increases
faster if the storage interval is too large or if too few sampled are
stored. Lastly, although our strategy relies on spatiotemporal coher-
ance, discarding a large number of particles could introduce biases
in the extracted flow map and misrepresent regions.

We briefly discuss two solutions to these challenges. The first
potential solution is adapt execution to adopt some local com-
munication with spatially adjacent ranks. The second solution is
to stop discarding trajectories that hit the domain boundary, and
instead utilize them for reconstruction. In this case, Lagrangian
analysis could remain communication-free but would need en-
hancements not only for how to represent trajectories (termina-
tion location and time, number of points stored along pathline),
but also would require a novel post hoc interpolation scheme. For
example, extensions of recent works on in situ sampling strate-
gies [SCB19, RPD19] and post hoc reconstruction leveraging deep
learning [JGG20] offer potential solutions.

Another challenge for Lagrangian analysis is adaptively deter-
mining the appropriate storage interval. Additionally, motivated by
our results and to limit uncertainty, we believe it would be worth-
while to investigate flow visualization techniques that utilize indi-
vidual intervals of flow maps. Lastly, our paper presented a study
that considered the entire flow field without an analysis of specific

Figure 16: 2D colormapped slices of the FTLE field computed over

5 cycles for the Jet data set. In both cases (b, c), flow maps over a

single interval of LagrangianLocal are interpolated.

features. Research understanding the uncertainty of specific fea-
tures of interest introduced by various reduced representations (Eu-
lerian, Lagrangian, ZFP, etc.) would be valuable to the visualiza-
tion community. We believe these challenges should be pursued for
future work. That said, we believe a number of use cases for La-
grangian analysis in practice today could benefit from flow maps
extracted using a communication-free model.

8. Conclusion

Lagrangian analysis is increasingly being considered as a solu-
tion to reduce memory footprint while providing high accuracy for
time-varying vector fields under sparse temporal settings. In this
paper, we presented a study computing in situ Lagrangian flow
maps using GPUs at scale on a modern supercomputer with a fo-
cus on scalability. We proposed the computation and use of local
Lagrangian flow maps and evaluated the benefits and limitations of
a simple strategy using multiple time-varying vector field data sets.
Our study evaluated the impact of the number of particles and test
configuration parameters (GPUs, rank, compute nodes) on the to-
tal, particle advection, and communication time during in situ anal-
ysis. The largest configuration we considered computed 67M par-
ticle trajectories over 500 cycles of a 8123 grid using 2048 GPUs
across 512 compute nodes. We empirically showed that for several
practical configurations local Lagrangian flow maps can be inter-
polated with a minimal loss of accuracy, while requiring a fraction
of the execution time. Finally, the computation of local Lagrangian
flow maps demonstrated scalability and offered greater predictabil-
ity for in situ analysis costs.
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