
Dax: Data Analysis at Extreme
Kenneth Moreland
Sandia National Laboratories

Utkarsh Ayachit
Kitware, Inc.

Berk Geveci
Kitware, Inc.

Kwan-Liu Ma
University of California at Davis

Abstract
Experts agree that the exascale machine will comprise processors that 
contain many cores.  Furthermore, physical limitations will prevent data 
movement in and out of the chip (that is, between main memory and 
the processing cores) from keeping pace with improvements in overall 
compute performance.  To use these processors to their fullest capabil-
ity, it is essential to carefully consider �ne grained concurrency and 
memory access.

This project investigates a new type of visualization framework that 
exhibits a pervasive parallelism necessary to run on exascale machines.  
Our framework achieves this by de�ning algorithms in terms of localized 
stateless functions.  These functions can be connected in much the 
same way as �lters in the visualization pipeline.  But our framework’s 
design allows functions to be concurrently running on massive amounts 
of lightweight threads.  Only with such �ne-grained concurrency can we 
hope to �ll the billions of threads we expect will be necessary for e�-
cient computation on an exascale computer.

Current Visualization Pipeline
Most of today’s visualization libraries and applications are based o� 
what is known as the visualization pipeline.  In the visualization pipeline 
model, algorithms are encapsulated as �lter components with inputs 

and outputs.  These �lters can be com-
bined by connecting the outputs of one 
�lter to the inputs of another.

The most successful way of achieving 
concurrency is to use a data-parallel ap-
proach.  The input mesh is partitioned, 
and the partitions are divided amongst 
distributed memory nodes.  The pipeline 
is replicated on all nodes, and the same 
operations are done on each partition.

Jaguar – XT5

Concurrency
Memory

Cores
224,256 way
300 TB

224,256 100 M – 1 B
10 billion way

Exascale

128 PB
~50,000×
~1,000×

~500×

Increase
Scaling to Extreme

According to the Interna-
tional Exascale Software 
Project Roadmap, we 
expect an exascale computer to require 50,000 times more concur-
rent threads and provide only 500 times the memory.

Will current visualization scale?  Implementations of tools like 
ParaView and VisIt rely on MPI for most of their concurrency.  Using 
MPI to generate the requisite threads will require more memory 
than available on the system.  Even ignoring this problem, an 
extreme-scale computer will require the data to be partitioned on 
too �ne a level to e�ectively run a visualization pipeline.

Revisiting the Pipeline
We need a visualization framework that performs on 
the �nest level of concurrency possible.  Consider a 
�lter-type object that operates on a single element of 
a mesh.  In order for this unit to be executed concur-
rently over all elements of the mesh, it must be com-
pletely stateless and have memory access limited to 
the “safe” locations given to it.  The solution is remark-
ably basic: a function.  This stateless serial function is 
the basic building block in the Dax Toolkit and the 
unit the visualization algorithm developer creates.

The Dax Toolkit provides a unit called an executive 
that accepts a mesh, iterates over all elements in the 
mesh, invokes one or more of these stateless func-
tions on each element, and collects the resulting 
values for each element.  Conceptually we can think 
of this iteration as a serial operation, but of course in 
practice the executive will schedule the operation on 
multiple threads.  Because the function is con-
strained to be stateless and operate on the single el-
ement it is given, the execution can be scheduled 
concurrently without danger of pitfalls such as race 
conditions and deadlock.

Dax Algorithm Execution

Dax Toolkit Features
Algorithms are expressed as serial functions.  Thus, a developer be-
comes more e�cient with the Dax Toolkit by focusing on the details of 
the algorithm rather than the intricacies of the parallel system.

By applying di�erent Dax executives, a single algorithm implementa-
tion can be adapted to multiple execution environments such as a serial 
loop (for debugging purposes), on multiple CPU cores, or a GPU-type ac-
celerator.

An executive of the Dax Toolkit can chain 
multiple functions together within a single it-
eration of the data.  Consequently, an entire 
chain of operations can be performed for a 
single memory read/write.  Such execution 
behavior maximizes the instruction-to-
memory-fetch ratio.  In comparison, each 
�lter in a traditional visualization pipeline 
must independently iterate over an entire 
data set.

Using the Dax Toolkit
The Dax Toolkit provides a rich API that a developer can use when writ-
ing functions.  This C-based API makes it possible to port to di�erent de-
vices including GPUs.  The C-API provides accessors to mesh geometry 
and topology.  By providing abstractions, the Dax API keeps the user 
code isolated of platform related dependencies.

// A functor that processes attribute arrays e.g. array calculator.
__functor__ void UnaryCalculator(
  const daxWork work, const daxArray* input, daxArray* output)
{
  float in_value = daxGetArrayValue(work, input);
  float result = <operation>(in_value);
  daxSetArrayValue(work, output);
}

// Functor that computes cell-scalars based on point-scalars.
__functor__ void CellAverage(
  const daxWork work,
  const daxArray* __positions__ in_positions,
  const daxArray* __and__(__connections__, __ref__(in_positions)) in_connections,
  const daxArray* __dep__(in_positions) inputArray,
  daxArray* __dep__(in_connections) outputArray)
{
  // Get the connected-components using the connections array.
  daxConnectedComponent cell;
  daxGetConnectedComponent(work, in_connections, &cell);

  float sum_value = 0.0;
  for (int cc=0; cc < daxGetNumberOfElements(&cell); cc++)
    {
    // Generate a "work" for the point of interest.
    daxWork point_work;
    daxGetWorkForElement(&cell, cc, &point_work);

    sum_value += daxGetArrayValue(point_work, inputArray);
    }
  sum_value /= daxGetNumberOfElements(&cell);
  daxSetArrayValue(work, outputArray, sum_value);
}

daxElevationModule elevation;
daxCellAverageModule cellAverage;

daxExecutive executive;
executive.Connect(elevation, elevation->GetOutputPort("output"),
 cellAverage, cellAverage->GetInputPort("input_array"));
...
executive.Execute();

Algorithm functions are built into modules.  Modules can be connected 
together to form pipelines.  Once the pipeline is set up, one can sched-
ule an execution by using the executive.

Acknowledgements
For more information, please visit us at http://daxtoolkit.org.

The Dax Toolkit is funded by a DOE ASCR grant for Scienti�c Data 
Management and Analysis at Extreme Scale.

Sandia National Laboratories is a multi-program laboratory managed 
and operated by Sandia Corporation, a wholly owned subsidiary of 
Lockheed Martin Corporation, for the U.S. Department of Energy’s Na-
tional Nuclear Security Administration under contract DE-AC04-
94AL85000.


