
Today’s PC-based graphics accelerators
achieve better performance—both in cost

and in speed. A cluster of PC nodes where many or all
of the nodes have 3D hardware accelerators is an attrac-
tive approach to building a scalable graphics system.
We can also use this approach to drive a variety of dis-
play technologies—ranging from a single workstation
monitor to multiple projectors arranged in a tiled con-
figuration—resulting in a wall-sized ultra high-resolu-
tion display. The main obstacle in using cluster-based
graphics systems is the difficulty in realizing the full
aggregate performance of all the individual graphics
accelerators, particularly for very large data sets that
exceed the capacity and performance characteristics of
any one single node.

Based on our efforts to achieve higher performance,
we present results from a parallel
sort-last implementation that the
scalable rendering project at Sandia
National Laboratories generated.
Our sort-last library (libpglc) can be
linked to an existing parallel appli-
cation to achieve high rendering
rates. We ran performance tests on a
64-node PC cluster populated with
commodity graphics cards. Applica-
tions using libpglc have demon-
strated rendering performance of
300 million polygons per second—
approximately two orders of magni-

tude greater than the performance on an SGI Infinite
Reality system for similar applications.

Achieving performance
The Department of Energy’s Accelerated Strategic

Computing Initiative (DOE ASCI) is producing compu-
tations of a scale and complexity that are unprecedent-
ed.1,2 High-fidelity simulations, at high spatial and
temporal resolution, are necessary to achieve confi-
dence in simulation results. The ability to visualize the
enormous data sets produced by such simulations is
beyond the current capabilities of a single-pipe graph-
ics machine. Parallel techniques must be applied to
achieve interactive rendering of data sets greater than
several million polygons. Highly scalable techniques will
be necessary to address projected rendering perfor-
mance targets, which are as high as 20 billion polygons
per second in 20042 (see Table 1).

ASCI’s Visual Interactive Environment for Weapons
Simulations (Views) program is exploring a breadth of
approaches for effective visualization of large data.
Some approaches use multiresolution and/or data
reduction to simplify data to enable real-time viewing
and/or a better match between data complexity and tar-
get display (for example, the number of pixels). Such
approaches generally require special preparation of the
data prior to rendering, which can be computationally
intensive. While such approaches prove useful, they also
can raise concerns regarding the possible loss of infor-
mation as data becomes simplified. An alternative is to
increase the raw power of our rendering systems, elim-
inating the need for special data preparation. In fact,
Views is exploring the combination of these approach-
es to address the large data visualization problem.

To develop scalable rendering technology, Views has

0272-1716/01/$10.00 © 2001 IEEE

Large-Scale Visualization

62 July/August 2001

Sandia National

Laboratories use PC clusters

and commodity graphics

cards to achieve higher

rendering performance on

extreme data sets.

Brian Wylie, Constantine Pavlakos, Vasily Lewis,
and Ken Moreland
Sandia National Laboratories

Scalable Rendering
on PC Clusters

Table 1. The ASCI/Visual Environment for Weapons Simulation (Views) visualization needs.

Today’s High-end Technology 2004 Needs

Surface Rendering About 2.5 million polygons per second 20 billion polygons per second
per SGI/Infinite Reality pipe (aggregate)

Volume Rendering About .1 Gpixel per SGI/Infinite reality 200 Gpixels (aggregate)
raster manager

Display Resolution 16 Mpixels 64 Mpixels

undertaken a collaborative effort,
involving the three DOE ASCI labo-
ratories (Lawrence Livermore
National Laboratory, Los Alamos
National Laboratory, and Sandia
National Laboratories), university
partners (including Stanford Uni-
versity and Princeton University),
and various industrial partners, to
explore the use of cluster-based ren-
dering systems to address these
extreme data sets. The intent is to
leverage widely available commodi-
ty graphics cards and workstations
in lieu of traditional, expensive, spe-
cialized graphics systems. While the
scope of this overall scalable render-
ing effort is broad, this article
emphasizes work and early results
for polygonal rendering at Sandia
National Laboratories (SNL).

A variety of approaches can be
taken, and are being considered, for
rendering polygonal data in paral-
lel. Molnar3 first proposed a classifi-
cation scheme of parallel rendering
algorithms based on the order of
transformation, rasterization, and
distribution of the polygons. Mol-
nar’s taxonomy of rendering algo-
rithms consists of three categories:
sort first, sort middle, and sort last
(see Figure 1). Currently, our visu-
alization group at Sandia is working
on libraries in the sort-last category
(See “Related Work” sidebar for
other research on this topic).

PC clusters
Many institutions in the past few

years have built a wide variety of
clusters; people use these clusters
for various tasks, including database
manipulation, computation, and of
course, parallel rendering.

Researchers at Sandia performed
their earliest efforts on a cluster of
16 SGI 320s known as Horizon. The
cluster’s interconnect is a Gigabit
Ethernet comprised of Alteon net-
work interface cards (NICs) and a
Foundry Big Iron 8000 switch. Hori-
zon’s nodes each have one Intel 450-
MHz Pentium III processor with 512
Mbytes RAM, running the Windows
2000 operating system. The SGI
320s use the Cobalt graphics chip
set, and a unified memory architec-
ture (UMA) that’s unique for a PC
product (see http://www.sgi.com/
Products/PDF/1352.pdf). The total
cost for Horizon at the time of pro-

IEEE Computer Graphics and Applications 63

Sort middleSort first Sort last

4 x 4
transform

Clipping Rasterizaton
and texture

Frame buffer

Image output
1 Polygon
rendering
pipeline show-
ing the three
sorting based
classifications.

Related Work
A substantial amount of work preexists in this area, especially with regard to software

implementations on parallel computers.1-5 As with our work, these efforts have been
largely motivated by visualization of big data, with an emphasis on demonstrating
scalability across significant numbers of computer processors. However, these software-
based efforts have yielded relatively modest raw performance results when compared to
hardware rendering rates.

Others have designed highly specialized parallel graphics hardware—such as the
PixelFlow system6—that scales and is capable of delivering extensive raw
performance, but such systems haven’t been commercially viable. At the same time,
certain architectural features of these systems may be realizable on clustered-graphics
machines, especially as interconnect performance rises.

The desire to drive large, high-resolution tiled displays has recently become an
additional motivation for building parallel rendering systems. ASCI partners, including
Princeton University7 and Stanford University8,9—as well as the ASCI labs
themselves10—are pursuing the implementation of such systems. Both Stanford and
Princeton implemented a scalable display system using PC-based graphics clusters.

Efforts to harness the aggregate power of such commodity-based clusters for more
general-purpose scalable, high-performance graphics are now also underway. One
such effort proposes the use of special compositing hardware to reduce system
latencies and accelerate image throughput.11

References
1. S. Whitman, “A Task Adaptive Parallel Graphics Renderer,” 1993 Parallel Rendering Symp. Proc.,

IEEE CS Press, Los Alamitos, Calif., Oct. 1993, pp. 27-34.
2. T.W. Crockett and T. Orloff, “A MIMD Rendering Algorithm for Distributed Memory Architectures,”

1993 Parallel Rendering Symp. Proc., IEEE CS Press, Los Alamitos, Calif., Oct. 1993, pp. 35-42.
3. T. Lee et al., “Image Composition Methods for Sort—Last Polygon Rendering on 2-D Mesh

Architectures,” 1995 Parallel Rendering Symp. Proc., IEEE CS Press, Los Alamitos, Calif., Oct.
1995, pp 55-62.

4. S. Whitman, “A Load Balanced SIMD Polygon Renderer,” 1995 Parallel Rendering Symp. Proc.,
IEEE CS Press, Los Alamitos, Calif., Oct. 1995, pp. 63-69.

5. T. Mitra and T. Chiueh, Implementation and Evaluation of the Parallel Mesa Library, tech. report, State
Univ. of New York, Stonybrook, N.Y., 1998.

6. S. Molnar et al., “PixelFlow: High-Speed Rendering Using Image Composition,” Proc. Siggraph
‘92, ACM Press, New York, July 1992, pp. 231-240.

7. R. Samanta et al., “Load Balancing for Multi-Projector Rendering Systems,” Proc. Siggraph/Euro-
graphics Workshop on Graphics Hardware, ACM Press, New York, Aug. 1999, pp. 107-116.

8. G. Humphreys, and P. Hanrahan, “A Distributed Graphics System for Large Tiled Displays,”
Proc. Visualization, ACM Press, New York, Oct. 1999, pp. 215-227.

9. G. Humphreys et al., “Distributed Rendering for Scalable Displays,” Proc. IEEE/ACM Supercom-
puting Conf. (SC 2000), CD-ROM, ACM Press, New York, Nov. 2000.

10. D. Schikore et al., “High-Resolution Multiprojector Display Walls and Applications,” IEEE Com-
puter Graphics and Applications, vol. 20, no. 4, July/Aug. 2000, pp. 38-44.

11. A. Heirich and L. Moll, “Scalable Distributed Visualization Using Off-the-Shelf Components,”
1999 IEEE Parallel Visualization and Graphics Symp. Proc., IEEE CS Press, Los Alamitos, Calif., Oct.
1999, pp. 55-59.

curement was approximately $190,000.
More recently, Sandia constructed a 64-node graph-

ics cluster known as Ric (Figure 2), comprised of Com-
paq 750 nodes. Sandia equipped each of these nodes
with a Pentium III 800-MHz processor, 512 Mbytes of
main memory, and 4X accelerated graphics port (AGP)
versions of Nvidia’s Geforce 256 graphics chip set. The
graphics cluster is actually part of a larger 136-node clus-
ter known as Vicky, which includes data manipulation
nodes used for supporting the complete data analysis
and visualization process. Switched fast Ethernet inter-
faces on each node in Vicky provide an administrative
and general purpose TCP/IP channel to the cluster. The
message passing and parallel communications inter-
connect between the nodes consists of a high-speed sys-
tem area network (SAN). As of spring 2001, this network
has Compaq/Tandem’s Servernet II Virtual Interface
Architecture (VIA)-based hardware. We’ll also investi-
gate other emerging scalable SAN technology on Vicky.
The total cost for the 64-node graphics cluster is approx-
imately $500,000 (approximately $350,000 for nodes

and racks; approximately $150,000
for switches and network interface
cards).

High-fidelity simulations, of
course, require high-fidelity dis-
plays. Sandia is currently construct-
ing a second generation Views data
visualization corridor that includes
a 4 × 4, 16-tile display, expandable
up to 48 tiles (12 × 4). The tiled dis-
play(s) will use rear projection and
be coupled with the new graphics
cluster.

Sort-last approach
Our sort-last approach statically

distributes the 3D model data only
once before any viewing transfor-
mations or rendering occur. For
each new viewing transformation,
every node performs the transfor-
mations and rasterization of its sub-
set of triangles. A user-specified
algorithm reads the frame buffer
and the corresponding z-buffer data
from each node and performs a
pixel-by-pixel z-buffer comparison
in parallel according to a user-spec-
ified composition algorithm. The
composition algorithm gathers the
final composited image onto a sin-
gle node (Figure 3). Because the sin-
gle node now has the image in
memory, it isn’t tied to displaying
the image locally. It can, if desired,
instead send the data to an alternate
display.

Libpglc, a sort-last library for par-
allel OpenGL composition, origi-
nates from the Parallel Mesa
library4 software, developed joint-

ly by the State University of New York (SUNY) and San-
dia. The goal of libpglc is to provide arbitrary
composition operations (z-buffer compare, XOR, and
so on) through arbitrary patterns of communication
(tree, binary swap, and so on) among nodes in a paral-
lel environment. To this end, libpglc includes an imple-
mentation of the communication algorithms found in
Parallel Mesa but at the same time abandons any
dependencies on Mesa and will work with any OpenGL
compliant environment. This allows for exploiting
OpenGL hardware acceleration where available. We
wrote libpglc in C and it uses the message passing inter-
face (MPI) for interprocess communication. It runs
under X11 (usually Unix) and Win 32 windowing envi-
ronments. Minor modifications would be needed to run
on any other OpenGL-capable environment that has an
MPI implementation. It’s possible to link libpglc into an
existing parallel application and the application pro-
gram interface (API) is extremely simple. The API seen
below are also shown in context in the example C code
that follows.

Large-Scale Visualization

64 July/August 2001

Composition
algorithm

3 Parallel
composition
with libpglc, a
sort-last library
for parallel
OpenGL
composition.

2 Ric in SNL’s
computation
annex.

int pglc_init(int width,int height);

unsigned char* pglc_flush(int

display_type, int com_type);

int pglc_finalize (void);

#include <pglc.h>

void main(int argc, char *argv[])

{

pglc_init(1024, 768);

while(unfinished) {

Computation

.

.

.

OpenGL Calls

.

.

.

pglc_flush(COMPRESSED_TREE);

}

pglc_finalize();

}

With these three API functions, libpglc lets the call-
ing application create its own rendering context and
enable any platform-specific extensions. This gives the
application control over the actual rendering process
while leaving libpglc free to work with the rendered
object. This provides flexibility to the application, let-
ting it take advantage of hardware-specific optimiza-
tions, such as triangle-strip display lists for SGI Infinite
Reality pipes, or compiled vertex arrays for Nvidia
Geforce. The only argument to pglc_flush() specifies
which compositing algorithm to use. We currently pro-
vide both the binary-tree and binary-swap composit-
ing methods.5 Hooks provided in the source of libpglc
let users implement custom compositing algorithms
beyond those supplied with libpglc. This allows for
algorithms that match local network topologies and
the performance characteristics of unique environ-
ments beyond those anticipated with the libpglc dis-
tribution. Each call to pglc_flush() performs the
specified parallel composition and then returns a mem-
ory pointer to the address of the fully composited
frame buffer on the root node. The frame buffer can
then display locally or pass to an arbitrary, alternate
display system.

Data decomposition
A benefit of the sort-last approach is that we can use

relatively simple strategies to partition data for parallel
rendering. The application can distribute an arbitrary
subset at initialization and, as long as the model data
remains unchanged, no additional retransmitting or
repartitioning is necessary. As the size of the data set
grows, the ability to do static decomposition becomes
increasingly important. The application can assign each
rendering node an arbitrary set of T/N triangles where
T is the total number of triangles and N is the number
of rendering nodes. In practice, this scheme demon-
strates excellent load-balancing characteristics; as the

number of polygons increase, the rasterization imbal-
ances tend to become relatively small.

A drawback of sort-last is in the handling of trans-
parency. To do proper transparency, polygons must ren-
der and/or accumulate in precise order for each pixel in
the final image. In the case of sort-last across multiple
hardware-rendering pipelines, the model data would
need to partition spatially in a manner that lets the
resulting partial image contributions, once they’ve been
rendered properly, blend together in a predetermined
order that’s view dependent.

Note that libpglc doesn’t impose any particular data
decomposition on the application. The application can
freely partition data as it chooses. At the same time, our
current implementation doesn’t support transparency.

Optimizations
The three principal operations associated with the sort-

last approach are color and depth read-back, color and
depth communication, and z-buffer compositing. Our
team looked into the three principal operations to deter-
mine what optimizations could be made on each step.

Frame read-back. The rate at which libpglc
retrieves image data depends on the acceleration paths
provided by the graphics card manufacturer. For our
tests on the Elsa Gloria 2 (Geforce) cards, the read-back
requires 17 ms for RGBA and 17 ms for the depth buffer.
The only optimization for read-back is the avoidance of
unnecessary format conversions; for instance, reading
back the color channels in float format gives a 30X per-
formance decrease. Below we show the fast path for-
mats for the OpenGL glReadPixels() function.

Color GL_BGRA_EXT

GL_UNSIGNED_BYTE

24-depth GL_DEPTH_COMPONENT

GL_UNSIGNED_INT

16-depth GL_DEPTH_COMPONENT

GL_UNSIGNED_SHORT

Network communication. The next optimization
focus was on the communication phase. All of our tests
involved 1024 × 768 images. At this resolution the color
and depth information is 4.5 Mbytes for each image. For
a 64-node run this translates into 288 Mbytes of image
data that must be transferred across the network. To
reduce the size of the image data, we first applied a run-
length encoding (RLE) algorithm6 to both the color and
depth buffers before transmitting. On further investiga-
tion we realized that the RLE was compressing the back-
ground and not much else. The complexity of the images
were such that most active pixels had run lengths of one,
and storing all the run lengths was inefficient in the final
stages of composition where almost all pixels were active.
Our solution was to replace the RLE with an active pixel
encoded (APE) data structure. The data structure stores
indexes and run lengths for active pixel sequences. The
active pixels are then stored in native form with no addi-
tional overhead. This approach follows the SL-sparse
model described by Molnar3, effectively compresses out

IEEE Computer Graphics and Applications 65

any inactive pixels, and has minimal overhead (8 bytes
for a fully active image). The amount of compression
with APE varies, based on the data distribution and view-
ing parameters. However, because each node only ren-
ders a small fraction of the data (approximately 1.5
percent on a 64-node run) a 10 to 15 times reduction is
common for initial stages in the composition.

The APE format also greatly reduces the time to com-
press and decompress images. In initial testing, the com-
press–decompress overhead of RLE actually nullified
the network savings of sending less data. As part of our
conversion to APE, we no longer adhered to traditional
strategies used by RLE. Instead of splitting the RGBA
channels and compressing separately, we left them
interleaved and treated each 4-tuple as a single 4-byte
quantity. The four-component aggregation means the
algorithm requires no format conversions, performs four
times fewer operations, and word-aligns all data. The
current compression time for color and depth on a
1024 × 768 image is about 10 ms.

Image composition. Combining the rendered
images requires a depth comparison and color assign-
ment for each pixel. The composition operation
requires 786,000 comparison operations for a 1024 ×
768 image. For a 64-node run, libplgc must perform 50
million comparisons.

Generally the application compresses the color and
z-buffers while sending them to the receiving node, then
it decompresses and composites the images. The
sequence of decompression followed by composition is
wasteful in two aspects. The decompression involves
expanding a low-redundancy format into a high-
redundancy format. The composition algorithm, which
could have taken advantage of the run length informa-
tion, now performs more operations to traverse the
expanded data. A solution is to run the compositing
algorithm directly on the incoming compressed data
and skip the decompression altogether.

To efficiently perform composition on the APE image,
we combined the RGBA and z channels into the same
compressed data structure. Any active pixels will mod-
ify both the color and depth channels so that aggregat-
ing the two channels doesn’t affect compression. In
addition, the overhead of storing indexes and run
lengths will now amortize over both channels.

The algorithm to compose the incoming image with
the existing local image is straightforward. The incom-
ing APE image is merged into a local uncompressed
image. As active pixel segments are processed from the
incoming APE image, the following actions are taken:

1. Any nonoverlapping active pixel segments are sim-
ply block copied into the uncompressed destination
image.

2. Any overlapping segments are handled in the nor-
mal manner. Each of the incoming pixels is depth-
compared to the existing image and then merged
accordingly.

The APE composition algorithm reduces the number
of memory references in direct proportion to the com-

pression ratio. It also reduces the number of depth com-
parisons to only those pixels that are active in both
images. The merging of APE images also means that the
compression step is now part of the composition. Our
experiments have shown that composition using APE
images provides a large performance benefit: it elimi-
nates the decompression time—the composition is, on
average, 50 percent faster—and it also eliminates
recompression. Composition time for color and depth
on a 1024 × 768 image is about 12 ms.

Combined results. The following list categorizes
the main optimizations applied to our sort-last library:

� Initial RLE image compression. This greatly reduces
the network bandwidth at the cost of increased CPU
time for data reformatting and operating on off-word
boundaries.

� Color component aggregation and conversion to APE.
These dramatically minimize CPU time by leaving data
in native format, working only on word boundaries
and reducing the number of operations by a factor of
4. The use of component aggregation significantly
minimizes the overhead associated with dense images.

� Composition directly on compressed data. This
improved composition time by an average of 50 per-
cent and completely eliminated the decompression
for both the color and depth channels.

After combining the above optimizations, the perfor-
mance benefits are substantial; we reduce compositing
overheads associated with our sort-last library by 64 per-
cent (500 ms to 180 ms for 64 nodes at an image reso-
lution of 1024 × 768).

Performance evaluation
We gathered all of our performance results from runs

using our 64-node cluster. Each of our Compaq 750 ren-
dering nodes contains one 800-MHz Intel Pentium III.
Our current interconnect is ServerNet II with a peak
throughput of 95 Mbps from point-to-point using VIA pro-
tocols. In tests using the MPIPro software, our rates drop
to 68 Mbps over MPI. In practice, the single point-to-point
rate is extremely hard to achieve when running a large
job and can vary based on communication topology, mes-
sage sizes, and switch traffic. The graphics performance
of the nodes, using vertex arrays in OpenGL, is about 5.5
million triangles per second on our applications.

Although our compositing optimizations are inde-
pendent of rendering performance, we feel a brief dis-
cussion of rendering issues is informative. Several factors
affected our serial rendering performance and could
increase performance by addressing the following issues.

� The large sizes of our vertex arrays excluded the use
of locked vertex array extensions such as wglAllo-
cateMemoryNV.

� The isosurfaces used for testing gave relatively short
triangle strips (strips 5 to 6 triangles long were
common).

� The noncontiguous indices lead to poor vertex cache
coherency.

Large-Scale Visualization

66 July/August 2001

With the large isosurfaces and desktop image sizes, our
hardware pipelines became bottlenecked in the trans-
lation; lighting stages and rasterization wasn’t a con-
tributing factor. (Note that the system even considers
subpixel triangles for rasterization based on point sam-
pling as described in the OpenGL specification.)

Sort-last library
To evaluate the performance of libpglc, we wrote a

parallel application that links to libpglc. The program
reads in arbitrary fractions of the data set from disk and
then makes function calls as demonstrated in the
“Description” section. During the performance evalua-
tions we used data provided by Lawrence Livermore
National Laboratories7 from a large turbulence simula-
tion. The data included a range of isosurfaces, the largest
being 469 million triangles (see Figures 4 and 5).

The performance numbers we obtained from an
application using libpglc appear in Figures 6 through 9
(next page). Figure 6 shows that with a smaller data set,
the inherent overhead associated with the image com-
positition starts to hinder performance as the number
of processors increases. Figures 7 and 8 demonstrate
that as the size of the data set increases, the fixed over-
head of composition becomes relatively small compared
to rendering times, and we see dramatic performance
improvements. In Figure 9 the application reached an
average performance of 300 million triangles per sec-
ond with 64 nodes.

The missing data points in Figures 8 and 9 result
from the fact that the larger data sets didn’t fit in mem-
ory when using fewer processors. The 469 million tri-
angle data set only ran on 32- and 64-node
configurations (32 nodes required heavy use of virtu-
al memory).

We can see in Figure 10 (on page 69) that the total
compositing overhead remains basically constant and
is independent of the data size. The relatively fixed over-
head—around .2 second for 64 nodes—means an upper
frame rate of approximately 5 Hz. Figure 11 (page 69)
shows that we’re getting excellent scalability as the size
of the data increases. The maximum cumulative ren-
dering rate of our 64 graphics cards is 352 million tri-
angles per second (5.5 million triangles per second for
each card). Our application achieves 90 percent uti-
lization of the total aggregate performance when run-
ning on 32 nodes with 235 million triangles and 85
percent utilization when running on 64 nodes with 469
million triangles. For extremely large data sets, the use
of a sort-last library has the following advantages:

� Image composition incurs a fixed overhead that
doesn’t vary with data set size.

� The polygonal data doesn’t have to be moved from
node to node when changing viewpoints.

� Data partitioning is static and provides excellent load
balancing in the rendering phase.

� Memory use is maximized. Because no dynamic
memory requirements exist, as with view-dependent
algorithms, the library needs no extra memory
buffers. Each node can fully load all available RAM
with polygonal data.

IEEE Computer Graphics and Applications 67

4 Lawrence
Livermore
isosurface data
(7 million trian-
gles).7 Image
covered by
LLNL: UCRL-MI-
142527.

5 Various views
of the Lawrence
Livermore
isosurface data
(469 million
triangles).7 We
show the center
section in more
detail as we
zoom in (bot-
tom image).
Image covered
by LLNL: UCRL-
MI-142527.

Open issues
One drawback to the sort-last approach is that, nom-

inally, each graphics node must compute a full-size

image. This becomes problematic when the intent is to
drive a high-resolution display, such as a display wall.
The sort-last approach has at least a couple of problems:

� commodity graphics cards can only generate images
up to conventional pixel resolutions (for example,
1280 × 1024), and

� communications overhead associated with the com-
positing step grows with the image size.

We’re considering variations to sort-last that would
overcome these limitations.

While sort-first approaches prove useful for driving
tiled displays, the strict association of a dedicated ren-
derer per tile presents load-balancing issues. In the worst
case, for example, the current view might be such that all
of the data projects onto a single tile, in which one ren-
derer has to do all the work. Clearly, we need some mech-
anism for separating the rendering function from the
display. We’re working with our ASCI collaborators to
explore such solutions, as well as applications of sort-first.

We’ve shown that cluster-based systems have a lot of
promise for rendering large data. But can they
ultimately compete with more specialized, tightly inte-
grated graphics systems for high frame-rate applica-
tions, such as visual simulation? This remains to be seen
and is certainly tied to the performance of interconnect
technologies. An overall objective, however, for such
systems is to somehow ensure that the system’s parallel
resources can be dynamically allocated according to
data size in such a way that applications experience
monotonically increasing (or at least nondecreasing)
performance as we apply more and more resources.

Certain pragmatic challenges also exist. Administer-
ing cluster-based systems is nontrivial, and we need
mechanisms for ensuring that such systems appear to
be robust enough and reliable enough to support pro-
duction work. In this sense, graphics clusters are no dif-
ferent than other clusters. However, graphics clusters
also place an additional demand on accessibility as a
dynamically shared resource to support highly interac-
tive work, presenting some unique challenges for
resource management.

An interesting issue has arisen from the complexity
of our largest data sets, relating to image quality, cor-
rectness, and the precision of commodity-graphics
hardware, especially with regard to z-buffer depth. Typ-
ically, hardware-rendering algorithms use a z buffer.
As data sets increase in size and complexity, the 24-bit
precision provided by commodity graphics cards can
be insufficient for global depth comparisons. We’ve
observed this phenomenon. (To guarantee correct ren-
dering of extremely complex data sets, we need addi-
tional techniques for ensuring exact depth sorting.)

Conclusions and future work
We’ve demonstrated the use of a sort-last architec-

ture on a PC cluster. We’ve developed optimizations
that have enhanced the performance of our sort-last
implementation. Our work provides promising results
toward the viability of graphics clusters in the area of
large-scale, high-performance rendering. The efficient

Large-Scale Visualization

68 July/August 2001

40

30

20

10

0Tr
ia

ng
le

s
p

er
 s

ec
on

d
(m

ill
io

ns
)

0 8 16 24 32 40 48 56 64
Number of processors

6 Results for a 7 milion triangle data set (10 percent utilization at 64
nodes).

320

280

240

200

160

120

0Tr
ia

ng
le

s
p

er
 s

ec
on

d
(m

ill
io

ns
)

0 8 16 24 32 40 48 56 64
Number of processors

7 Results for a 30 milion triangle data set (28 percent utilization at 64
nodes).

240
200
160
120

80
40

0Tr
ia

ng
le

s
p

er
 s

ec
on

d
(m

ill
io

ns
)

0 8 16 24 32 40 48 56 64
Number of processors

8 Results for a 117 milion triangle data set (67 percent utilization at 64
nodes).

320
280
240
200
160
120

80
40

0Tr
ia

ng
le

s
p

er
 s

ec
on

d
(m

ill
io

ns
)

0 8 16 24 32 40 48 56 64
Number of processors

9 Results for a 469 milion triangle data set (85 percent utilization at 64
nodes).

use of 64 commodity graphics cards enabled us to
establish pace-setting rendering performance of 300
million triangles per second on extremely large data.
We believe that extensions of this work will be an essen-
tial part of the technology used to address the render-
ing performance targets set by the ASCI program. We’re
also participating in an effort, together with some of
our ASCI collaborators, to deliver a common OpenGL-
based API for parallel rendering and an open-source
reference implementation.

We expect to continue to explore the use of com-
modity-based graphics clusters for high-performance
graphics. In so doing, we expect to investigate many, if
not all, of the issues discussed in the previous section.
Other work we anticipate includes

� continued optimization of our current software;
� the consideration of hybrid sorting schemes and, per-

haps, other more novel architectural approaches to
rendering;

� performing scalability assessments on larger graphics
clusters;

� processing time-dependent data and addressing
issues related to feeding data to the parallel rendering
system; and

� integrating graphics clusters into our end-to-end
high-performance computing environments.

We’re already leveraging the approaches presented
in the “Optimizations” section to accelerate the use of
sort-last techniques on high-resolution, multiple-tile dis-
plays.8 We’re targeting display resolutions of 64 million
pixels as early as 2002. We aim to provide techniques
for rendering images on tiled displays with frame rates
comparable to those for a single display.

Please visit our Web site for the latest developments
and information on libpglc and other scalable render-
ing work at http://www.cs.sandia.gov/VIS/SR. �

Acknowledgments
Funding was provided by the Accelerated Strategic

Computing Initiative’s Visual Interactive Environment for
Weapons Simulations (ASCI/Views) program. Thanks to
Milt Clauser and Steve Monk for their work on the visu-
alization and data manipulation clusters. Thanks to LLNL
for the large isosurface data (particularly Randy Frank
and Dan Schikore, now with CEI). Thanks to Pat Crossno
for her vast technical library and extremely helpful sug-
gestions, Dan Zimmerer for his research and development
on cluster support, Phil Heermann for his inspiration and
motivation, and Lisa Ice for her work on ParallelMesa
(PMesa). The US Department of Energy supported this
work under contract DE-AC04-94AL85000.

References
1. P. Heermann, “Production Visualization for the ASCI One

TeraFLOPS Machine,” Proc. Visualization 98, IEEE CS
Press, Los Alamitos, Calif., Oct. 1998, pp. 459-462.

2. P.H. Smith and J. van Rosendale, Data and Visualization
Corridors, tech. report, 1998 DVC Workshop Series, Cali-

fornia Inst. of Technology, Pasadena, Calif., 1998.
3. S. Molnar et al., “A Sorting Classification of Parallel Ren-

dering,” IEEE Computer Graphics and Applications, vol. 14,
no. 4, July 1994, pp. 23-32.

4. T. Mitra and T. Chiueh, Implementation and Evaluation of
the Parallel Mesa Library, tech. report, State Univ. of New
York, Stonybrook, N.Y., 1998.

5. K.L. Ma et al., “Parallel Volume Rendering Using Binary-
Swap Image Composition,” IEEE Computer Graphics and
Applications, vol. 14, no. 4, July 1994, pp. 59-68.

6. J. Ahrens and J. Painter, “Efficient Sort-Last Rendering
Using Compression-Based Image Compositing,” Proc. Sec-
ond Eurographics Workshop Parallel Graphics and Visual-
ization, Univ. of Bristol, Bristol, United Kingdom, 1998,
pp. 145-151.

7. A. Mirin, “Performance of Large-Scale Scientific Applica-
tions on the IBM ASCI Blue-Pacific System,” Proc. Ninth
SIAM Conf. Parallel Processing for Scientific Computing, CD-
ROM, Soc. for Industrial and Applied Mathematics,
Philadelphia, Mar. 1999.

8. K. Moreland, B. Wylie, and C. Pavalakos, “Sort-Last Tiled
Rendering for Viewing Extremely Large Data Sets on Tiled
Displays,” submitted to IEEE Symp. Parallel and Large Data
Visualization and Graphics, 2001.

IEEE Computer Graphics and Applications 69

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0

Se
co

nd
s

30 million7 million 117 million 469 million

Data set size

Rendering time
Total compositing overhead

10 A breakdown of the total time for runs on 64 nodes.

Sort-last library
Perfect scalability

360

300

240

180

120

60

0Tr
ia

ng
le

 p
er

 s
ec

on
d

(m
ill

io
ns

)

0 16 32 48 64
Number of processors

11 Demonstration of scalability. As the data size doubles we double the
number of processors. Data size ranges from 7 to 469 million triangles.

Brian Wylie is a senior member of
the technical staff at Sandia Nation-
al Laboratories. He’s currently work-
ing on the visual environment for the
weapons simulation visualization
project. His interests include scientif-
ic visualization, scalable rendering,

and information visualization. He received a BS in com-
puter engineering and an MS in computer science from the
University of New Mexico.

Constantine Pavlakos is a senior
member of the technical staff at San-
dia National Laboratories, working
in computer graphics, scientific visu-
alization, and data analysis for
approximately 20 years. He’s cur-
rently Sandia’s principal investiga-

tor for ASCI/Views-related research and development. His
research interests include scalable visualization, large data
visualization, data services, and visualization environ-
ments in support of high-performance computing. He
received his BS in mathematics in 1976 and his MS degree
in computer science in 1978, both from the University of
New Mexico. He is a member of the ACM Siggraph. Fur-
ther information about Pavlakos is available at
http:/www.cs.sandia.gov/VIS/dino.html).

Vasily Lewis is a seasoned under-
graduate working on contract for
Sandia National Laboratories. He’s
currently working on the visual envi-
ronment for the weapons simulation
visualization project. His interests
include distributed parallel comput-

ing, real-time photorealistic graphics, and network intru-
sion detection.

Kenneth Moreland is a member
of the technical staff at Sandia
National Laboratories. He’s current-
ly working on the visual environment
for weapons simulation visualiza-
tion project. He received BS degrees
in electrical engineering and com-

puter science from the New Mexico Institute of Mining and
Technology and an MS in computer science from the Uni-
versity of New Mexico. His research interests include high-
performance parallel rendering, desktop delivery for
cluster computing, and large-scale data services.

Readers may contact Wylie at Sandia National Labo-
ratories, PO Box 5800, MS 0318, Albuquerque, NM 87185,
email bnwylie@sandia.gov.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

Large-Scale Visualization

70

January/February
Feature issue
CiSE magazine receives
articles throughout the year
that don’t apply to a specific
theme but explore new
directions and technologies
related to scientific computing.
This issue features five articles
that cover a variety of themes
in this dynamic field.

March/April
Quantum Computing
Can a digital computer model
quantum phenomena to arbitrary
precision? No, but the reasons why
have led to a dramatic
breakthrough in our understanding
of both quantum mechanics and
computational chemistry. The
most exciting development has
been the realization that a
machine based on quantum-level
phenomena could make hard
problems rather easy.

May/June
Tomorrow's Hardest Problems
In the tradition of last year's
popular issue on the top 10
algorithms of the past century,
George Cybenko
(gvc@dartmouth.edu, Dartmouth
College) and Francis Sullivan
(fran@super.org, IDA Center for
Computing Sciences) pull together
articles that describe tomorrow's
top 10 unsolved computational
problems.

July/August
Nanotechnology: Computational
Modeling
The “nano” in nanometer means
one billionth—in this case, one
billionth of a meter. That’s the
scale of some very, very tiny
machines now being built. The
possible applications are fantastic,
including the possibility of carrying
out medical treatments at the
molecular level.

September/October
Bioengineering and Biophysics
Can modern engineering
techniques be applied in biological

C
g

EDITORIAL
C A L E N D A R

2001
Exploring new
d

irection
s

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

