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In situ visualization is the coupling of visualiza-
tion software with a simulation or other data 
producer to process the data “in memory” be-

fore they are of� oaded to a storage system. This is 
in contrast to the more traditional work� ow where 
the writing of simulation data from memory to 
disk completes before the visualization starts and 
reads the data from disk back into memory.

In situ visualization is a critical technology for 
scienti� c discovery with exascale computing.1,2

There are numerous advantages to in situ visual-
ization, but the most pressing feature is the abil-
ity to remove the bottleneck of disk-based I/O. As 
Figure 1 illustrates, the bandwidth of a modern 
supercomputer’s storage system is a tiny fraction 
of the compute bandwidth, and this discrepancy 
is expected to grow. Although the amount of data 
that can be stored is limited by the storage system 
capacity, its bandwidth also limits how much data 
can feasibly be written (and read later during in-
teractive visualization).

Consequently, in situ visualization is an active 
R&D topic for high-performance visualization, as 
the images in Figure 2 show. Although in situ vi-
sualization provides superior analysis, it has imple-
mentation tradeoffs resulting from con� icts with 
some traditional expected requirements. Numerous 
con� icting requirements create tensions that lead 
to dif� cult implementation tradeoffs. This article 
takes a look at the most prevailing tensions of in 
situ visualization.

Batch Versus Interactive
One of the biggest limitations of in situ visualiza-
tion is that the data are transient. Data are avail-
able during a limited window in time, and after 
that, the data are lost. This is in contrast to tra-
ditional visualization where all the available data 
can be loaded from disk storage at will.

This makes interaction and exploratory visu-
alization challenging in an in situ environment. 

Large-scale simulations can run for days, and it is 
likely not feasible for someone to be interactively 
visualizing that entire time. Furthermore, even if 
someone is actively analyzing the data, there is no 
assurance that that person will � nd all salient in-
formation during the time the data are available.

Consequently, much in situ visualization fo-
cuses on automated batch processing. In this case, 
the visualization is predetermined; it is automati-
cally executed whenever appropriate, and the re-
sults are stored for later analysis. Although batch 
processing allows visualization to occur at a � ne 
temporal � delity, it is restricted to analysis speci-
� ed a priori. Because neither batch nor interactive 
modes satisfy all use cases, both are commonly 
used with in situ visualization, and production 
packages like ParaView Catalyst and VisIt libsim 
support using both simultaneously.

Because neither batch nor interactive in situ vi-
sualization is fully satisfactory, a fruitful area of 
research is using in situ processing to make the 
most of the data that are stored on the � le system 
for post hoc analysis. One approach is to � nd a 
more compact representation of the data. Extract-
ing regions of interest, subsetting, contouring, and 
compressing are all straightforward examples of 
compacting the representation. Feature extraction 
techniques, which � nd abstract representations of 
data that require less memory to characterize, are 
also effective.3 An alternate (and perhaps comple-
mentary) technique to transforming the data is to 
� nd important or representative samples in space 
and time to maximize the uniqueness of the data 
that does get stored.4

Another approach to bridging the gap between 
batch in situ processing and interactive post hoc 
analysis is the generation of visualization artifacts 
that are interactive content rather than static im-
agery. For example, explorable images5,6 use special 
rendering techniques that allow the images to be 
later manipulated as if the original data were still 
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available, as Figure 3 shows. Another project, titled 
Cinema, collects visualization results with varying 
parameters and places them in a database that can 
be interactively explored like that shown in Figure 
4.7 The approach recognizes that it is not always 
possible to specify a priori what may be of inter-
est in a visualization so the possible visualization 
parameters space is sampled to capture unforeseen 
areas of interest and insight. 

Tight Coupling Versus Loose Coupling
With the exception of small, custom visualization 
systems, different software teams develop the sim-
ulation code and the visualization code. As such 

the coupling of these two software systems can lead 
to cultural clashes as well as technical challenges. 
This leads to tension in how tightly simulation and 
visualization should be integrated. A tightly coupled 
visualization will be embedded in the simulation 
process sharing all the same resources. A looser 
coupling will have the simulation and visualization 
as two separate communicating processes. The sim-
ulation and visualization may share the same cores, 
use separate cores on the same computer nodes, 
or communicate across separate nodes. Loosely 
coupled in situ visualization often has middleware 
managing the connection.8 (A purist might argue 
that only a tight coupling meets the “in place data” 
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Figure 1. The relative theoretical aggregate bandwidth of different system components on the Titan 
supercomputer at the Oak Ridge Leadership Computing Facility. The widths of the blue boxes are proportional 
to the bandwidth of the identified components. The bandwidth of the storage system is dramatically slower 
than the interconnect, which is dramatically slower than the bandwidth of the on-board memory, which is 
dramatically slower than the cache and registers.

(a) (c)
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Figure 2. Examples of in situ visualization. (a) A CTH shock physics simulation (courtesy of Nathan Fabian, 
Sandia National Laboratories), (b) a Hydra-TH thermal hydraulics simulation (courtesy of Mark A. Christon, Los 
Alamos National Laboratory), and (c) a PHASTA CFD simulation run and visualized on 256,000 MPI processes 
(courtesy of Michel Rasquin and Kenneth Jansen, University of Colorado Boulder).
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meaning of in situ, but for the purposes of this ar-
ticle, we consider any visualization before the data 
are written to disk storage as in situ.)

Tightly coupled in situ visualization is generally 
the most efficient. Shared resources give the fast-
est access to data (as Figure 1 demonstrates) with 
the minimum amount of replication, and reduced 
communication can even lead to power savings.9 
Also, tightly coupled visualization has the poten-
tial to access simulation metadata that is difficult 
to share in loose coupling but can greatly improve 
performance.10

However, tight coupling has its costs. A fail-
ure in one component is almost certain to bring 
down other tightly coupled components, so tight 
coupling can make development teams more wary. 
The visualization’s use of memory and the network 
can potentially negatively affect the simulation’s 
performance. Also, the visualization algorithm 
may perform better at a smaller scale than the 
simulation, and separating the two can sometimes 
lead to better overall performance.10,11

The upshot is that although visualization tools 
like Catalyst and libsim are designed for tight in-
tegration, they also can be used in more loosely 
coupled ways that should also be considered. It is 
also a good practice to leverage an I/O middleware 
library such as ADIOS, GLEAN, or HDF5 to facili-
tate the loose coupling.8,11

Simple Versus Expressive
Mature visualization packages like VTK, ParaView, 
and VisIt contain hundreds of visualization op-
erations that can be combined in numerous ways. 
ParaView Catalyst and VisIt libsim both provide 
extensive scripting capabilities to establish and 
manage the visualization. Although a powerful 
and expressive way to specify a visualization pro-
cess, writing scripts can be challenging for users. 
Also, because the underlying visualization system 
does not know what components are needed until 
the script is parsed at runtime, the visualization 
system tends to load unnecessary components.

In contrast, if the simulation results can be 
communicated through a small set of “precanned” 
visualizations or through a limited number of pa-
rameters, then the visualization can be specified 
in a much more user-friendly way, usually as a 
short specification in the simulation’s input deck. 
Of course, a simplified interface limits the visu-
alization system’s abilities, and feature creep will 
eventually lead to a more complicated interface.

As with all of these tensions, there is no per-
fect answer. ParaView Catalyst tries to be flexible 
enough to support whatever level of complexity 

and expressiveness is appropriate for a given sim-
ulation. In addition to the fully expressive script-
ing that allows any configuration to be specified 
at runtime, the Catalyst library also features a 
C++ interface on which a simulation can build a 
much simpler interface. Catalyst Editions allow 
developers to subselect features appropriate for a 
particular simulation, and the ParaView GUI has 
a tracing capability that can automatically build 
scripts based on the simpler GUI interaction. 

Small, Custom Versus Large, Feature-Rich
Over the past two decades there has been a large 
investment in scientific visualization for high-
performance computing. This R&D has led to fea-
ture-rich visualization systems such as ParaView 
and VisIt that contain hundreds of visualization 
operations. As such, there is a strong motivation 
to leverage this software development for in situ 
usage, and libraries such as Catalyst for ParaView 
and libsim for VisIt do just that.

The trouble is that these large visualization li-
braries come with a lot of baggage. Because they 
are so feature rich, the libraries can add hundreds 
of megabytes to a simulation’s executable alone. 
Because the instructions in the executable must 
be replicated for each process in a message pass-
ing interface (MPI) job (hundreds of thousands 
or more for large jobs), this adds to a substantial 

Figure 3. Example use of an explorable image of path tracing. This 
specially rendered image can later be manipulated to change material 
properties like color, remove some features, and make limited camera 
movements.
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amount of memory usage. Also, both Catalyst and 
libsim have complicated build systems that can be 
challenging for simulation developers, particularly 
when compiling for bleeding-edge computers. The 
complexity of these large software packages is also 
intimidating to software teams intent on robust-
ness. Therefore, simulation groups may be hesitant 
to adopt these existing feature-rich libraries. 

On the opposite end of the spectrum is a small, 
custom, single-purpose routine embedded in sim-
ulation code. This simple code has a low overhead 
and is easy to maintain. However, in addition to 
the obvious problem of code duplication, this sim-
ple visualization function can suffer from feature 
creep as users continually demand more from the 
visualization.

Our team for the Catalyst library helps alleviate 
this tension with what we call Catalyst Editions. 
An Edition consists of a subset of the overall Cata-
lyst software, which can be customized to contain 
only the features needed by the simulation. Using 
a smaller Edition reduces the amount of memory 
needed for the program instructions and can greatly 
simplify the build process. Of course, the abilities 
of the in situ visualization are limited to what is 
included in the Edition, but new features can be 
added without duplicating the implementation. Al-

though an Edition will not be as small and simple 
as a custom-built routine can be, it provides a good 
compromise to alleviate some of this tension.

Effective in situ visualization is not achieved 
by simply mashing together simulation and 

visualization software. Rather, there is a delicate 
balance of tradeoffs between mutually exclusive 
design goals and constraints, which creates ten-
sions in the design and execution of in situ visu-
alization systems.

It is often easy to see only one side or the other 
of these opposing requirements, but to design a 
successful in situ visualization system, it is impor-
tant to understand all the concerns and be flex-
ible. Rarely does one size fit all, so when providing 
a general-purpose utility, it is necessary to account 
for different use cases and operating modes.�

Acknowledgments
This article draws on great work from many more in-
dividuals than I can possibly thank here. I would par-
ticularly like to thank W. Alan Scott, Nathan Fabian, 
Jeffrey Mauldin, and David Karelitz from Sandia 
National Laboratories; Andy Bauer, Utkarsh Ayachit, 
Berk Geveci, and Patrick O’Leary from Kitware; and 
James Ahrens and John Patchett from Los Alamos 
National Laboratory. This material is based in part 
on work supported by the US Department of Energy, 
Office of Science, Office of Advanced Scientific Com-
puting Research, under award numbers 14-017566 
and 12-015215. This work was also funded by the 
US Department of Energy, National Nuclear Security 
Administration, Advanced Simulation and Computing 
Program. Sandia National Laboratories is a multi-
program laboratory managed and operated by Sandia 
Corporation, a wholly owned subsidiary of Lockheed 
Martin, for the US Department of Energy’s National 
Nuclear Security Administration under contract DE-
AC04-94AL85000.

References
	 1.	 S. Ahern et al., Scientific Discovery at the Exascale: 

Report from the DOE ASCR 2011 Workshop on Exascale 
Data Management, Analysis, and Visualization, 
Office of Advanced Scientific Computing Research, 
2011; http://science.energy.gov/~/media/ascr/pdf/ 
program-documents/docs/Exascale-ASCR-Analysis 
.pdf.

	 2.	 K. Moreland, “Oh, $#*@! Exascale! The Effect of 
Emerging Architectures on Scientific Discovery,” 
Proc. 2012 SC Companion: High Performance 

Figure 4. Example of using a Cinema image database. Each image is 
annotated with visualization parameters, so the Cinema application can 
browse images by manipulating visualization parameters like isovalues, 
camera position, and time in a manner similar to post hoc visualization. 
(Courtesy of Patrick O’Leary, Kitware)

g2vis.indd   8 2/22/16   10:23 PM



IEEE Computer Graphics and Applications 9

Computing, Networking Storage and Analysis (SCC), 
2012, pp. 224–231.

 3. A.G. Landge et al., “In-Situ Feature Extraction 
of Large Scale Combustion Simulations Using 
Segmented Merge Trees,” Proc. Int’l Conf. High 
Performance Computing, Networking, Storage and 
Analysis (SC), 2014, pp. 1020–1031.

 4. B. Nouanesengsy et al., “ADR Visualization: A 
Generalized Framework for Ranking Large-Scale 
Scienti� c Data Using Analysis-Driven Re� nement,” 
Proc. 4th IEEE Symp. Large Data Analysis and 
Visualization, 2014, pp. 43–50.

 5. A. Tikhonova, C.D. Correa, and K.-L. Ma, 
“Visualization by Proxy: A Novel Framework for 
Deferred Interaction with Volume Data,” IEEE Trans. 
Visualization and Computer Graphics, vol. 16, no. 6, 
2010, pp. 1551–1559.

 6. Y. Ye, R. Miller, and K.-L. Ma, “In Situ Pathtube 
Visualization with Explorable Images,” Proc. 13th 
Eurographics Symp. Parallel Graphics and Visualization 
(EGPGV), 2013, pp. 9–16.

 7. J. Ahrens et al., “An Image-Based Approach to Extreme 
Scale In Situ Visualization and Analysis,” Proc. Int’l 
Conf. High Performance Computing, Networking, 
Storage and Analysis (SC), 2014, pp. 424–434. 

 8. K. Moreland et al., “Examples of In Transit 

Visualization,” Proc. 2nd Int’l Workshop Petascale 
Data Analytics: Challenges and Opportunities, 2011, 
pp. 1–6.

 9. M. Gamell et al., “Exploring Power Behaviors and 
Trade-offs of In-situ Data Analytics,” Proc. Int’l 
Conf. High Performance Computing, Networking, 
Storage and Analysis (SC), 2013, article no. 77.

 10. R. Old� eld et al., “Evaluation of Methods to 
Integrate Analysis into a Large-Scale Shock Physics 
Code,” Proc. 28th ACM Int’l Conf. Supercomputing
(ICA), 2014, pp. 83–92.

 11. J.C. Bennett et al., “Combining In-situ and In-
transit Processing to Enable Extreme-Scale Scienti� c 
Analysis,” Proc. Conf. High Performance Computing, 
Networking, Storage and Analysis (SC), 2012, article 
no. 49.

Kenneth Moreland is a principal member of the techni-
cal staff at Sandia National Laboratories. Contact him at 
kmorel@sandia.gov.

Contact department editor Theresa-Marie Rhyne at 
theresamarierhyne@gmail.com.

Selected CS articles and columns are also available 

for free at http://ComputingNow.computer.org.

Stay relevant with the IEEE Computer Society

More at www.computer.org/publications

Stay Informed

Access to Computer Society books, 
technical magazines and research 
journals arm you with Industry 
intelligence to keep you ahead of the 
learning curve.

• 3,000 technical books included 
with membership from books 24 x 
7 and Safari Books Online

• 13 technical magazines
• 20 research journals

Learn something new. Check out 
Computer Society publications 
today!

Stay Informed

Access to Computer Society books, 
technical magazines and research 
journals arm you with Industry 
intelligence to keep you ahead of the 
learning curve.

• 3,000 technical books included 
with membership from books 24 x 
7 and Safari Books Online

• 13 technical magazines
• 20 research journals

Learn something new. Check out 
Computer Society publications 
today!

Keeping  
YOU at the 

Center  
of Technology
IEEE Computer Society 
Publications

g2vis.indd   9 2/22/16   10:23 PM


