
 Published by the IEEE Computer Society 0272-1716/16/$33.00 © 2016 IEEE IEEE Computer Graphics and Applications 5

Editor:
Theresa-Marie RhyneVisualization Viewpoints

The Tensions of In Situ Visualization
Kenneth Moreland
Sandia National Laboratories

In situ visualization is the coupling of visualiza-
tion software with a simulation or other data
producer to process the data “in memory” be-

fore they are of� oaded to a storage system. This is
in contrast to the more traditional work� ow where
the writing of simulation data from memory to
disk completes before the visualization starts and
reads the data from disk back into memory.

In situ visualization is a critical technology for
scienti� c discovery with exascale computing.1,2

There are numerous advantages to in situ visual-
ization, but the most pressing feature is the abil-
ity to remove the bottleneck of disk-based I/O. As
Figure 1 illustrates, the bandwidth of a modern
supercomputer’s storage system is a tiny fraction
of the compute bandwidth, and this discrepancy
is expected to grow. Although the amount of data
that can be stored is limited by the storage system
capacity, its bandwidth also limits how much data
can feasibly be written (and read later during in-
teractive visualization).

Consequently, in situ visualization is an active
R&D topic for high-performance visualization, as
the images in Figure 2 show. Although in situ vi-
sualization provides superior analysis, it has imple-
mentation tradeoffs resulting from con� icts with
some traditional expected requirements. Numerous
con� icting requirements create tensions that lead
to dif� cult implementation tradeoffs. This article
takes a look at the most prevailing tensions of in
situ visualization.

Batch Versus Interactive
One of the biggest limitations of in situ visualiza-
tion is that the data are transient. Data are avail-
able during a limited window in time, and after
that, the data are lost. This is in contrast to tra-
ditional visualization where all the available data
can be loaded from disk storage at will.

This makes interaction and exploratory visu-
alization challenging in an in situ environment.

Large-scale simulations can run for days, and it is
likely not feasible for someone to be interactively
visualizing that entire time. Furthermore, even if
someone is actively analyzing the data, there is no
assurance that that person will � nd all salient in-
formation during the time the data are available.

Consequently, much in situ visualization fo-
cuses on automated batch processing. In this case,
the visualization is predetermined; it is automati-
cally executed whenever appropriate, and the re-
sults are stored for later analysis. Although batch
processing allows visualization to occur at a � ne
temporal � delity, it is restricted to analysis speci-
� ed a priori. Because neither batch nor interactive
modes satisfy all use cases, both are commonly
used with in situ visualization, and production
packages like ParaView Catalyst and VisIt libsim
support using both simultaneously.

Because neither batch nor interactive in situ vi-
sualization is fully satisfactory, a fruitful area of
research is using in situ processing to make the
most of the data that are stored on the � le system
for post hoc analysis. One approach is to � nd a
more compact representation of the data. Extract-
ing regions of interest, subsetting, contouring, and
compressing are all straightforward examples of
compacting the representation. Feature extraction
techniques, which � nd abstract representations of
data that require less memory to characterize, are
also effective.3 An alternate (and perhaps comple-
mentary) technique to transforming the data is to
� nd important or representative samples in space
and time to maximize the uniqueness of the data
that does get stored.4

Another approach to bridging the gap between
batch in situ processing and interactive post hoc
analysis is the generation of visualization artifacts
that are interactive content rather than static im-
agery. For example, explorable images5,6 use special
rendering techniques that allow the images to be
later manipulated as if the original data were still

g2vis.indd 5 2/22/16 10:23 PM

6	 March/April 2016

Visualization Viewpoints

available, as Figure 3 shows. Another project, titled
Cinema, collects visualization results with varying
parameters and places them in a database that can
be interactively explored like that shown in Figure
4.7 The approach recognizes that it is not always
possible to specify a priori what may be of inter-
est in a visualization so the possible visualization
parameters space is sampled to capture unforeseen
areas of interest and insight.

Tight Coupling Versus Loose Coupling
With the exception of small, custom visualization
systems, different software teams develop the sim-
ulation code and the visualization code. As such

the coupling of these two software systems can lead
to cultural clashes as well as technical challenges.
This leads to tension in how tightly simulation and
visualization should be integrated. A tightly coupled
visualization will be embedded in the simulation
process sharing all the same resources. A looser
coupling will have the simulation and visualization
as two separate communicating processes. The sim-
ulation and visualization may share the same cores,
use separate cores on the same computer nodes,
or communicate across separate nodes. Loosely
coupled in situ visualization often has middleware
managing the connection.8 (A purist might argue
that only a tight coupling meets the “in place data”

Interconnect (largest cross-sectional bandwidth)
24 TB/s

Storage
1.4 TB/s

Post Hoc
visualization

Tightly coupled
visualization Node memory

4.5 PB/s

Computation
125 PB/s

Loosely coupled
visualization

Figure 1. The relative theoretical aggregate bandwidth of different system components on the Titan
supercomputer at the Oak Ridge Leadership Computing Facility. The widths of the blue boxes are proportional
to the bandwidth of the identified components. The bandwidth of the storage system is dramatically slower
than the interconnect, which is dramatically slower than the bandwidth of the on-board memory, which is
dramatically slower than the cache and registers.

(a) (c)

(b)

Figure 2. Examples of in situ visualization. (a) A CTH shock physics simulation (courtesy of Nathan Fabian,
Sandia National Laboratories), (b) a Hydra-TH thermal hydraulics simulation (courtesy of Mark A. Christon, Los
Alamos National Laboratory), and (c) a PHASTA CFD simulation run and visualized on 256,000 MPI processes
(courtesy of Michel Rasquin and Kenneth Jansen, University of Colorado Boulder).

g2vis.indd 6 2/22/16 10:23 PM

	 IEEE Computer Graphics and Applications� 7

meaning of in situ, but for the purposes of this ar-
ticle, we consider any visualization before the data
are written to disk storage as in situ.)

Tightly coupled in situ visualization is generally
the most efficient. Shared resources give the fast-
est access to data (as Figure 1 demonstrates) with
the minimum amount of replication, and reduced
communication can even lead to power savings.9
Also, tightly coupled visualization has the poten-
tial to access simulation metadata that is difficult
to share in loose coupling but can greatly improve
performance.10

However, tight coupling has its costs. A fail-
ure in one component is almost certain to bring
down other tightly coupled components, so tight
coupling can make development teams more wary.
The visualization’s use of memory and the network
can potentially negatively affect the simulation’s
performance. Also, the visualization algorithm
may perform better at a smaller scale than the
simulation, and separating the two can sometimes
lead to better overall performance.10,11

The upshot is that although visualization tools
like Catalyst and libsim are designed for tight in-
tegration, they also can be used in more loosely
coupled ways that should also be considered. It is
also a good practice to leverage an I/O middleware
library such as ADIOS, GLEAN, or HDF5 to facili-
tate the loose coupling.8,11

Simple Versus Expressive
Mature visualization packages like VTK, ParaView,
and VisIt contain hundreds of visualization op-
erations that can be combined in numerous ways.
ParaView Catalyst and VisIt libsim both provide
extensive scripting capabilities to establish and
manage the visualization. Although a powerful
and expressive way to specify a visualization pro-
cess, writing scripts can be challenging for users.
Also, because the underlying visualization system
does not know what components are needed until
the script is parsed at runtime, the visualization
system tends to load unnecessary components.

In contrast, if the simulation results can be
communicated through a small set of “precanned”
visualizations or through a limited number of pa-
rameters, then the visualization can be specified
in a much more user-friendly way, usually as a
short specification in the simulation’s input deck.
Of course, a simplified interface limits the visu-
alization system’s abilities, and feature creep will
eventually lead to a more complicated interface.

As with all of these tensions, there is no per-
fect answer. ParaView Catalyst tries to be flexible
enough to support whatever level of complexity

and expressiveness is appropriate for a given sim-
ulation. In addition to the fully expressive script-
ing that allows any configuration to be specified
at runtime, the Catalyst library also features a
C++ interface on which a simulation can build a
much simpler interface. Catalyst Editions allow
developers to subselect features appropriate for a
particular simulation, and the ParaView GUI has
a tracing capability that can automatically build
scripts based on the simpler GUI interaction.

Small, Custom Versus Large, Feature-Rich
Over the past two decades there has been a large
investment in scientific visualization for high-
performance computing. This R&D has led to fea-
ture-rich visualization systems such as ParaView
and VisIt that contain hundreds of visualization
operations. As such, there is a strong motivation
to leverage this software development for in situ
usage, and libraries such as Catalyst for ParaView
and libsim for VisIt do just that.

The trouble is that these large visualization li-
braries come with a lot of baggage. Because they
are so feature rich, the libraries can add hundreds
of megabytes to a simulation’s executable alone.
Because the instructions in the executable must
be replicated for each process in a message pass-
ing interface (MPI) job (hundreds of thousands
or more for large jobs), this adds to a substantial

Figure 3. Example use of an explorable image of path tracing. This
specially rendered image can later be manipulated to change material
properties like color, remove some features, and make limited camera
movements.

g2vis.indd 7 2/22/16 10:23 PM

8	 March/April 2016

Visualization Viewpoints

amount of memory usage. Also, both Catalyst and
libsim have complicated build systems that can be
challenging for simulation developers, particularly
when compiling for bleeding-edge computers. The
complexity of these large software packages is also
intimidating to software teams intent on robust-
ness. Therefore, simulation groups may be hesitant
to adopt these existing feature-rich libraries.

On the opposite end of the spectrum is a small,
custom, single-purpose routine embedded in sim-
ulation code. This simple code has a low overhead
and is easy to maintain. However, in addition to
the obvious problem of code duplication, this sim-
ple visualization function can suffer from feature
creep as users continually demand more from the
visualization.

Our team for the Catalyst library helps alleviate
this tension with what we call Catalyst Editions.
An Edition consists of a subset of the overall Cata-
lyst software, which can be customized to contain
only the features needed by the simulation. Using
a smaller Edition reduces the amount of memory
needed for the program instructions and can greatly
simplify the build process. Of course, the abilities
of the in situ visualization are limited to what is
included in the Edition, but new features can be
added without duplicating the implementation. Al-

though an Edition will not be as small and simple
as a custom-built routine can be, it provides a good
compromise to alleviate some of this tension.

Effective in situ visualization is not achieved
by simply mashing together simulation and

visualization software. Rather, there is a delicate
balance of tradeoffs between mutually exclusive
design goals and constraints, which creates ten-
sions in the design and execution of in situ visu-
alization systems.

It is often easy to see only one side or the other
of these opposing requirements, but to design a
successful in situ visualization system, it is impor-
tant to understand all the concerns and be flex-
ible. Rarely does one size fit all, so when providing
a general-purpose utility, it is necessary to account
for different use cases and operating modes.�

Acknowledgments
This article draws on great work from many more in-
dividuals than I can possibly thank here. I would par-
ticularly like to thank W. Alan Scott, Nathan Fabian,
Jeffrey Mauldin, and David Karelitz from Sandia
National Laboratories; Andy Bauer, Utkarsh Ayachit,
Berk Geveci, and Patrick O’Leary from Kitware; and
James Ahrens and John Patchett from Los Alamos
National Laboratory. This material is based in part
on work supported by the US Department of Energy,
Office of Science, Office of Advanced Scientific Com-
puting Research, under award numbers 14-017566
and 12-015215. This work was also funded by the
US Department of Energy, National Nuclear Security
Administration, Advanced Simulation and Computing
Program. Sandia National Laboratories is a multi-
program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed
Martin, for the US Department of Energy’s National
Nuclear Security Administration under contract DE-
AC04-94AL85000.

References
	 1.	 S. Ahern et al., Scientific Discovery at the Exascale:

Report from the DOE ASCR 2011 Workshop on Exascale
Data Management, Analysis, and Visualization,
Office of Advanced Scientific Computing Research,
2011; http://science.energy.gov/~/media/ascr/pdf/
program-documents/docs/Exascale-ASCR-Analysis
.pdf.

	 2.	 K. Moreland, “Oh, $#*@! Exascale! The Effect of
Emerging Architectures on Scientific Discovery,”
Proc. 2012 SC Companion: High Performance

Figure 4. Example of using a Cinema image database. Each image is
annotated with visualization parameters, so the Cinema application can
browse images by manipulating visualization parameters like isovalues,
camera position, and time in a manner similar to post hoc visualization.
(Courtesy of Patrick O’Leary, Kitware)

g2vis.indd 8 2/22/16 10:23 PM

IEEE Computer Graphics and Applications 9

Computing, Networking Storage and Analysis (SCC),
2012, pp. 224–231.

 3. A.G. Landge et al., “In-Situ Feature Extraction
of Large Scale Combustion Simulations Using
Segmented Merge Trees,” Proc. Int’l Conf. High
Performance Computing, Networking, Storage and
Analysis (SC), 2014, pp. 1020–1031.

 4. B. Nouanesengsy et al., “ADR Visualization: A
Generalized Framework for Ranking Large-Scale
Scienti� c Data Using Analysis-Driven Re� nement,”
Proc. 4th IEEE Symp. Large Data Analysis and
Visualization, 2014, pp. 43–50.

 5. A. Tikhonova, C.D. Correa, and K.-L. Ma,
“Visualization by Proxy: A Novel Framework for
Deferred Interaction with Volume Data,” IEEE Trans.
Visualization and Computer Graphics, vol. 16, no. 6,
2010, pp. 1551–1559.

 6. Y. Ye, R. Miller, and K.-L. Ma, “In Situ Pathtube
Visualization with Explorable Images,” Proc. 13th
Eurographics Symp. Parallel Graphics and Visualization
(EGPGV), 2013, pp. 9–16.

 7. J. Ahrens et al., “An Image-Based Approach to Extreme
Scale In Situ Visualization and Analysis,” Proc. Int’l
Conf. High Performance Computing, Networking,
Storage and Analysis (SC), 2014, pp. 424–434.

 8. K. Moreland et al., “Examples of In Transit

Visualization,” Proc. 2nd Int’l Workshop Petascale
Data Analytics: Challenges and Opportunities, 2011,
pp. 1–6.

 9. M. Gamell et al., “Exploring Power Behaviors and
Trade-offs of In-situ Data Analytics,” Proc. Int’l
Conf. High Performance Computing, Networking,
Storage and Analysis (SC), 2013, article no. 77.

 10. R. Old� eld et al., “Evaluation of Methods to
Integrate Analysis into a Large-Scale Shock Physics
Code,” Proc. 28th ACM Int’l Conf. Supercomputing
(ICA), 2014, pp. 83–92.

 11. J.C. Bennett et al., “Combining In-situ and In-
transit Processing to Enable Extreme-Scale Scienti� c
Analysis,” Proc. Conf. High Performance Computing,
Networking, Storage and Analysis (SC), 2012, article
no. 49.

Kenneth Moreland is a principal member of the techni-
cal staff at Sandia National Laboratories. Contact him at
kmorel@sandia.gov.

Contact department editor Theresa-Marie Rhyne at
theresamarierhyne@gmail.com.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

Stay relevant with the IEEE Computer Society

More at www.computer.org/publications

Stay Informed

Access to Computer Society books,
technical magazines and research
journals arm you with Industry
intelligence to keep you ahead of the
learning curve.

• 3,000 technical books included
with membership from books 24 x
7 and Safari Books Online

• 13 technical magazines
• 20 research journals

Learn something new. Check out
Computer Society publications
today!

Stay Informed

Access to Computer Society books,
technical magazines and research
journals arm you with Industry
intelligence to keep you ahead of the
learning curve.

• 3,000 technical books included
with membership from books 24 x
7 and Safari Books Online

• 13 technical magazines
• 20 research journals

Learn something new. Check out
Computer Society publications
today!

Keeping
YOU at the

Center
of Technology
IEEE Computer Society
Publications

g2vis.indd 9 2/22/16 10:23 PM

