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Abstract 
The U.S. Department of Energy established leadership-computing facilities in 2004 to 

provide scientists with capability computing for high-profile science. Since inception, the 
system capacity has grown from 14 TF to 1.8 PF, an increase of more than a factor of 100, 
and it will increase by another factor of 100 in the next five years. This growth, along with 
computing policies that enable users to run at scale for long periods, has allowed scientists to 
write unprecedented amounts of data to the file system. At the same time, the effective speed 
of the I/O system (time to write full system memory to the file system) has decreased, going 
from 350 seconds on ASCI Purple (49 TB at 140 GB/s) to 1500 seconds on Jaguar (300 TB 
at 200 GB/s). Because future systems will further intensify this imbalance, we need to extend 
the definition of I/O to include that of I/O pipelines, which blend together self-describing file 
formats, staging methods with visualization and analysis “plugins,” and new techniques to 
multiplex outputs using a novel service-oriented architecture approach—all in an easy-to-use 
I/O componentization framework that can add resiliency to large-scale calculations. Our 
approach to this has been via the community-created ADIOS system, which is driven by 
many of the leading-edge application teams and the top I/O researchers. 
1 Introduction 

Over the past decade the capability of leadership-computing systems has increased 
substantially, with the Top500 machines seeing a many-fold increase from a few teraflops to 
more than a petaflop for the current generation of high-performance computing (HPC) 
systems. This increase in compute power has not been mirrored in I/O performance, which 
instead has suffered by comparison and even decreased in absolute terms. This imbalance, 
coupled with the increase in data volumes produced by applications, has resulted in a new 
bottleneck in the performance of these systems.  

Conventional methods for addressing this bottleneck, such as increasing I/O backend 
capability by adding more disks with higher speeds, are unlikely to keep up with the 
performance issues due to the costs associated with storage. Because I/O performance has 
little effect on procurement for next-generation machines, the performance of the I/O system 
is unlikely to match the growth of compute capability in the future. The problem is further 
exacerbated by the inefficiency of I/O performance; most applications are unable to achieve a 
significant fraction of the peak performance of the storage system [1]. This is due mostly to 
the complexity of traditional I/O methods, where the developer must make a heroic effort to 
optimize the application I/O. This limit on usability directly impacts the possible 
performance of the application.  

Extended memory hierarchies will once again further complicate the I/O performance for 
many applications. The conventional wisdom will be to simply write data to the nonvolatile 



memory, thereby creating a buffer for the application from the actual file system. The 
problems that arise are numerous if one simply does the “easy” thing, which is to write the 
data and forget about it. For one thing, the data must eventually end up on the file system, 
and this data movement will be shared with other data movement on the HPC, including 
other applications writing and reading from the file system. Another problem is that overall 
application performance can suffer if the data movement is not scheduled properly with the 
applications. Applications will need to learn different “tricks” to attain acceptable levels of 
I/O performance. Additionally, applications will become increasingly reliant on in situ 
visualization techniques in order to reduce the penalties associated with storage and retrieval 
of data.  

In this paper we introduce a conceptual shift in addressing I/O performance bottlenecks by 
addressing the needs of extreme-scale computing. To achieve appropriate performance, we 
propose a multipoint approach to handling some of the biggest concerns and demonstrate a 
framework that has been developed with the following design guidelines: 

1. Service-oriented architecture (SOA). The overarching framework should be easy for 
new programmers to write individual “plugins” that can be compiled and either run 
independently, by reading data from the file system, or work in situ, where users can 
introduce their services at run time. In this way, developers have the flexibility to 
independently develop their executable, such as a visualization program. Furthermore, 
by creating a separate executable, applications are not littered with extra lines of code 
for extending the functionality of the code through these services. Services should be 
discoverable to one another and allow for efficient communication (either memory-to-
memory or one-sided memory transfers).  

2. In situ processing. The increasing volume of data generated by the applications has 
added constraints on how easily and efficiently it can be processed. Requiring that the 
application move the data to disk before process completion is not a viable mechanism 
at extreme scale. Instead, in situ or in-place processing has become an important tool for 
dealing with data. By processing data using domain-specific services or plugins without 
incurring any additional data movement, we can start to manage the costs of I/O.  

3. Data staging. Staging is quickly becoming an important foundation of extreme-scale 
I/O by providing both a staging point for data on its way to storage and the computing 
resources to initiate in-transit and in situ operations on the data. Data staging 
complements both the service-oriented architecture for I/O pipelines and in situ 
processing plugins. The use of staging resources for processing the data in preparation 
for analysis (as demonstrated in PreData [2]) or for in situ visualization provides a 
powerful platform for managing I/O at extreme scale.  

4. Data management. The volume of data projected from exascale applications cannot 
efficiently be sent to disk without incurring a large performance overhead. Reduction 
methods such as compression and multiresolution output can decrease this volume to 
manageable levels without impacting either data viability or application performance. In 
one such effort, ISABELA [3], which deals with data compression for high-entropy 
particle data, we envision that data will need to be output and stored through a 
multiresolution method to expedite the in situ processing of high-resolution scientific 
data. In addition, data retrieval has become a concern for scientists, especially as the 
data sets grow to petascale and beyond. Efficient access to data will increasingly require 
the aid of indices not only to speed up access but also to reduce the volume of the input 



data. Techniques such as adding characteristics to the data at output time, using bitmap 
indexing as in FastBit [4], are required to retrieve the data efficiently for analysis and 
visualization.  

5. Monitoring. The above goals are complemented by low-overhead, near-real-time 
monitoring of the application, allowing users to be aware of the changing landscape of 
the simulation and make decisions on how the data is handled by the system. We 
present the eSiMon [5] system for easy monitoring and control of applications.  

6. Usability of optimizations. In addition to the above, the I/O framework is responsible 
for providing an easy-to-use interface. The complexity of past interfaces has provided a 
counterpoint that forces us to rethink how the interface is designed. Instead of tightly 
integrating the optimizations into the application, we propose the idea of component I/O 
methods that deal with system-level optimizations in which only the data description 
and output routines are placed in the application source. This also lets us gain a measure 
of portability for the application. Moving between different architectures simply 
requires switching to the appropriate method.  

7. Data formats. Dealing with extreme-scale data requires a new generation of data 
formats optimized for massively parallel machines and specifically targeted for 
scientific data. File formats should be self-describing and provide resiliency and 
performance at extreme scale. Furthermore, the file format must be amenable to 
optimizations for both read and write performance. By understanding many of the 
common reading patterns, we can optimize the file format for the majority of patterns, 
reducing the typical optimization bias to which some file formats fall prey. In this paper 
we present the ADIOS-BP file format, which exemplifies these goals. 

With the aforementioned concerns in mind, we designed the ADIOS [6] I/O framework 
not only to address the system I/O issues but also to provide an easy-to-use mechanism that 
allows scientific developers to work from I/O skeleton applications. Through the use of an 
optional metadata file, which describes the output data and enables automatic generation of 
the output routines, the burden on the user is reduced substantially. ADIOS componentizes 
different methods of I/O, allowing the user to easily select the optimal method. In concert 
with data staging, this work exemplifies what the next generation of I/O frameworks should 
look like.  
2 Application use cases  

Large-scale simulations run on the leadership-computing facilities by application 
scientists, such as those of the Center for Plasma Edge Simulation (CPES), the Sandia 
Combustion Research Facility, the Gyrokinetic Simulation of Energetic Particle Turbulence 
and Transport, and the Pixie3D code, are already generating enormous amounts of data. 
These simulations are solving complex PDEs to unravel many of the mysteries in science, 
and they are writing large datasets frequently for postprocessing and for checkpoint-restart 
capabilities. Typically, these simulations need to write over 100 TB of data per 24 hours of 
wall-clock time, but often they are limited by severe constraints on the I/O, visualization, and 
analysis systems. By working directly with the aforementioned application teams and many 
others, we have learned that as these simulations increase in their spatiotemporal resolution, 
the scientists will be severely limited in their understanding of the data they produce. This 
realization forces our community to look for revolutionary changes in the way scientists 
interact with their data. 



Today, data exploration mostly occurs through postprocessing tools, such as VisIt and 
ParaView, and quite often I/O is the bottleneck. In fact, many visualization scientists have 
documented that over 50% of the time spent in real-time visualization is spent in I/O, and 
these numbers are worsening exponentially because of the dramatic changes brought about 
by employing powerful acceleration technologies such as GPGPUs. Reducing the I/O 
bottleneck requires the integration of the application and the visualization library, a technique 
that may not scale and introduces concerns for resiliency.  

Application scientists are also constrained with respect to I/O on today’s machines by data 
management and visualization issues, such as the variability of I/O performance, as well as 
by the lack of optimizations for typical reading patterns used during analysis and 
visualization. Because ad hoc techniques are often used to determine when to produce output 
and where to store output data, and because the data volume is overwhelming, researchers 
never examine much of the data in many spatiotemporal regions. Therefore, new techniques 
are needed to gain insight into the data and to reduce the total amount of data generated 
without reducing the quality of the output. 

One typical use case comes from PIC codes such as XGC1, GTC, and GTS, which contain 
hundreds of billions of particles that need to be processed to gain new insights into the data. 
Scientists may output only a much smaller subset of the data at uniform frequency for post-
processing. The problem is that these reductions in both time and space are often determined 
by user selection, and not by scientific criterion or real-time monitoring of the data. Even so, 
by writing out 1/100 of the data at 1/10 of the time steps, over 10 TB of data can be 
generated in one day. After the simulation, the data needs to be archived and analyzed. By 
using visualization techniques in VisIt and by querying the particles, the scientists can start to 
determine interesting new physics from their data. However, as we increase the resolution of 
the data and move to the exascale, the total amount of data quickly becomes unmanageable.  

Similarly with Pixie3D [7–9], the scientist sees that the I/O time in the code can become a 
significant portion of the total time. Previously, Pixie3D would write data, one file per 
process, and concatenate the data for each time step in each separate file. After the 
simulation, the Pixplot code would read in these files and write new files in HDF5, which 
would then be read in by VisIt for analysis and post-processing. Typically, VisIt expressions 
would allow less data to be written, so that new quantities were generated while they were 
being read in. The problem with this approach was that the initial files were not self-
describing and they took a substantial amount of time to write. The original Pixplot code 
would later run on either the same number of processors as Pixie3D or in serial to create 
HDF5 files, which would also take a very long time, although these steps were automated by 
our team via the Kepler workflow system so that the user could allow the workflow system to 
manage the data.  

In the foreseeable future, our data needs will continue to climb beyond the ability of 
current tools to cope with them. Simulations from some of the most important science areas 
in the DOE portfolio are continuing to push the boundaries of the HPC systems, and it has 
become clear that scientists will need to more carefully monitor and manage the data flowing 
from their simulations and into their post-processing systems. We envision that the scientists 
will be placing more in situ analysis and visualization techniques into their simulations, not 
by drastically modifying their simulations, but rather by using advanced I/O 
componentization frameworks such as ADIOS, so that their I/O pipelines can be managed. 
Once these techniques are incorporated into the code, we find that scientists do not want 



possible bugs in the analysis and visualization codes to cripple or slow their simulation. They 
also need to discover ways to automate the in situ workflows, to allow for more dynamic 
execution of their expensive calculations, and to record and manage the provenance of their 
simulations in a resilient and power-efficient manner. 
3 Service-oriented architecture 
3.1 Next-generation I/O and file system 

A key challenge for the exascale is the efficient organization and management of the large 
data volumes ingested and produced by scientific simulations, which are analyzed and 
visualized to support scientific investigations. The challenge exists (1) at the architecture or 
node level, to efficiently use increasingly deep memory hierarchies coupled with new 
memory properties like the persistence properties offered by NVRam or Memristors; (2) at 
the system level, to cope with I/O rates and volumes that by stressing the interconnect can 
severely limit application performance and/or consume unsustainable levels of power; and 
(3) at the exascale machine level, where immense aggregate I/O needs with potentially 
uneven loads are placed on underlying resources, resulting in data hotspots, interconnect 
congestion, and similar issues.  

For future I/O systems at the exascale, we envision an environment at the node level in 
which multiple memory sockets, multiple coherence domains (i.e., “clusters” on a chip), 
multiple types of memory including persistent RAM, and disaggregation of memory with 
certain noncoherent memory are reachable via on-chip PCI or similar interconnects. In 
addition, caps on power consumption will limit power resources. This environment creates 
tradeoffs between data movement on-chip and on-node and the location of analysis and 
visualization computations on the data. We can move analysis code to where data currently 
resides, but doing so may introduce substantial variations in code execution times that can 
degrade the speedup of parallel codes. A more power-efficient solution may be one in which 
subsets of data are moved to other on-node memory, including persistent memory, before 
analysis is performed. In such cases, there exist both the necessity and opportunity to apply 
operations to data as it is being moved. Thus, even on-chip and on-node, tradeoffs will exist 
as to where and when analysis or visualization operations can or should be performed. For 
the I/O system, the overwhelming requirement is that there must be flexibility in (1) which 
operations are applied where on-node and (2) when they are applied, either synchronously 
with the application (potentially affecting its execution time) or asynchronously during on-
node data movement. 

Beyond individual nodes, operations that require use of the system interconnect are 
expensive in performance and power. As a result, analyses requiring more global data may 
preferably be carried out, in terms of both power and performance, by first moving data to 
some smaller number of nodes—in situ staging—and then analyzing it. Data staging also 
offers opportunities for hardware differentiation by endowing staging nodes with 
substantially more memory, with large persistent RAM, and with extensive flash-based 
storage. For I/O systems, this results in a need for multitier solutions for I/O, where analysis 
or visualization actions can be associated with I/O on-core, on-node, and in-staging. 
Analyses that occur in-staging can be substantially more complex than those on-node 
because of their inherently more asynchronous nature—that is, in-staging computations 
(especially for “fat memory” staging nodes) can operate on multiple output steps and will be 
bound by timing requirements determined by output frequencies. 



The final memory tier for I/O is large-scale disk storage. We expect such storage to be 
attached to the exascale machine’s periphery and/or to ancillary network-connected 
machines, and it will offer levels of throughput far less than that of the aggregate I/O actions 
of which the machine’s cores are capable. As a result, for data analysis and visualization, a 
paramount requirement is to bring code to data and to do so dynamically, at the important 
output steps or simulation iterations and at specific cores and nodes.  
3.2 SOA approach to I/O pipelines 

The goal for SOA is to create a series of collaborating services that are published and 
available for invocation on the service bus. Most enterprises have adopted SOA to deliver the 
business agility and IT flexibility promised by web services. The benefits delivered by this 
approach come from its manner of coping with the increased complexity from the services 
themselves, from the service developers, and from the support and maintenance of each 
individual service. The SOA approach requires the creation of a service-oriented 
environment governed by three basic elements: (1) services can be published, discovered, 
and used in a technology-neutral standard form; (2) the SOA encompasses the policies, 
practices, and framework to ensure that the correct services are provided and consumed; and 
(3) at least two distinct processes are created for the provider and the consumer.  

HPC changes the way we develop the SOA for the enterprise, in that it reduces the role of 
the discoverability of services over the WAN but places constraints on the performance and 
reliability of the services on the HPC platform. One example of using the SOA approach in 
HPC comes from our team’s involvement with the CPES project. One of the goals of the 
project was to be able to both loosely and tightly couple multiple simulations. Each of the 
simulations, including the XGC code and the M3D code, is developed by an independent 
team and has dramatically different requirements on both the computational resources and 
the libraries used. These simulations can be coupled in two fundamental ways: (1) use a 
framework similar to MCT/ESMF, and compile the framework and codes together into a 
single executable, or (2) use the SOA approach, letting the I/O layer act as the 
communication mechanism for multiple executables to communicate with one another. The 
first approach has many advantages. For example, one controller code can enforce which 
simulation code executes on which processors, and MPI communication (which has been 
highly optimized on most HPC platforms) can be used between the codes. The advantages of 
the second approach are that each group can maintain the codes separately and we can easily 
switch from a file-based coupling to a memory-to-memory coupling if provided by the data 
transport method inside the I/O componentization.  

In our previous work using ADIOS as the SOA interface layer, we developed a managed 
data staging transport, DataTap, that uses distributed predictive scheduling for perturbation 
avoidance. We also developed the Dataspaces method, which allows physics application 
services to interact at run time with each other and with services for data monitoring, data 
analysis and visualization, and data archiving. Dataspaces creates a semantically specialized, 
virtual shared-space abstraction that can be associatively accessed by all components and 
services in the application workflow.  

In creating an SOA layer that can allow multiple components/services to interact 
efficiently with one another, several ingredients are essential. First, we use a semantically 
specialized, virtual shared space. This allows us to use a distributed set of nodes with a 
distributed hash table (DHT) that supports fast data-lookup operations as well as fast 
metadata propagation for data stores. Specifically, for multidimensional geometric domains, 



we use a Hilbert space-filling curve (SFC) to generate the DHT index. Second, we allow for 
on-the-fly construction of a staging resource; and by using an RDMA layer such as DataTap, 
we provide asynchronous coordination and interaction between the services. Furthermore, we 
allow for complex, geometry-based queries and in-space transformations and manipulations 
of the data as it is being moved from one service to another. 

By employing a SOA layer we can think about new paradigms for HPC to remotely debug 
and monitor the data. By using techniques such as ActiveSpaces and SmartTap for dynamic 
code deployment, we can provide programming support for data kernels to operate on data of 
interest. This allows us to dynamically deploy binary code to Dataspaces, execute it on the 
relevant data objects in parallel, and then return the results. Such ability is critical for SOA 
acceptance by the HPC community. 

In the SOA approach, we allow plugins to be run statically on separate staging resources. 
As the number of services available to application teams continues to grow, workflow 
technologies must be deployed to schedule the services and the data movement from one 
service to another. Workflow technologies allow for defining a workflow of plugins, using 
limited resources to execute them, separating the definition given by the user from the 
execution framework, describing flexible resource requirements of plugins, dynamically 
starting and stopping plugins with a scheduler, and recording the provenance of actions and 
data lineage. 

Previously, we worked with the Kepler workflow system for postprocessing scientific data 
and for real-time simulation monitoring on large-scale systems. Currently, we are creating a 
workflow system to work in situ that will be simplified compared to Kepler, since it needs to 
fulfill the requirements of high-performance computing—that is, it must use very little 
memory and be efficient in scheduling services with respect to resiliency and energy cost. 
The simplified workflows will form a directed acyclic graph based on the dependencies 
between their input and output data.  

In summary, the essential ingredients needed for an SOA approach for HPC are to create a 
very lightweight interface that will look like an I/O interface and to schedule the data 
movement, binary kernels, and services to minimize energy cost and maximize productivity 
for the application teams. This realization must be easy to use and must default back to 
extremely reliable mechanisms for coupling the services. We have placed novel methods into 
the ADIOS framework, using DataTap, DataSpaces, SmartTap, and Activespaces to realize 
this vision. We have used this technology to couple the Pixie3D code to the Pixplot code for 
post-processing, Visit and ParaView for data visualization, and eSiMon for real-time 
monitoring. Once ADIOS was placed inside the code, no other changes were necessary for 
the codes to use either file-based coupling or memory-based coupling. 
4 Next-generation frameworks for I/O pipelines 

To take full advantage of the rapidly developing I/O technologies, a framework must 
provide a componentized architecture that can easily, without additional burden on the 
application developer, exploit the staging resources. This can be accomplished by a vertical 
partitioning of responsibilities in the framework stack. Thus, at the highest level the 
application developer should need to utilize only the data I/O APIs and metadata 
descriptions. Below this level, the framework should incorporate data management services 
that enhance the data output, such as data compression and indexing. Specific targeted 
optimizations for different architectures and data models should be encapsulated into a 
distinct layer of the I/O framework, allowing a multitude of applications and data 



management services to work in concert with data transport. Additionally, the framework 
should not only utilize multiple data formats for output but also partition the complexity of 
optimizing each data format from the application developer. Finally, the framework should 
support the addition of schedulers who can manage the movement of data to reduce 
interference [10] and also manage the provisioning of resources to plugins in the staging 
area. 

Of particular note is the addition of 
visualization to the stack, both as stand-alone 
applications that utilize framework APIs to access 
the data and as plugins that can be scheduled 
alongside other I/O pipeline operations, as shown 
in Figure 1. 

Coupled with the goal of providing efficient 
data management through I/O pipelines, the 
framework must also be responsible for providing 
services for visualization and analysis, as well as 
preparatory tasks that aid the analysis operations 
such as sorting and binning [2]. Furthermore, to 
allow easy adoption, the application should not 
require significant modifications when switching 
between multiple data output and management 
services. By maintaining a partition between the 
data output API (which is part of the application 
source) and the control plane (which is responsible for describing the output data and 
selecting how it is output and what services are included in the pipeline), we can expose the 
users to only those parts of the framework that they require.  
5  In situ data processing 

The cost of data movement, both from the application to storage and from storage to 
analysis or visualization, is a deterrent to effective data use. The output costs increase the 
overall application running time and often force the user to reduce the total volume of data 
being produced by outputting data less frequently. Input costs, especially to visualization, can 
make up 80% [11, 12] of the total running time for scientific workflows, often increasing the 
time required to extract information from the simulation data. For many workflows, some of 
the operations can be performed without moving the data to and from storage; these 
operations are thus performed in situ or in place.  

The advantage of in situ processing is that it allows the I/O pipeline to bypass a large 
portion of the input and output overheads associated with accessing the storage backend. The 
most common in situ processing technique is in situ visualization, where the data is prepared 
and visualized without I/O to disk. By holding the data on the node where it is generated and 
producing the visualization at the same node, the potential bottlenecks that arise from data 
movement are alleviated. This can be achieved without the use of an in situ data processing 
framework such as the one proposed here. However, tight integration of the visualization 
functionality into the application introduces a potential concern for resiliency, where errors in 
the visualization will cause application failures. With a service-oriented approach to 
visualization, the visualization operators can be functionally isolated from the application, 
thus allowing for resiliency.  

Figure 1: The I/O framework is partitioned 
vertically into distinct layers that improve both 

usability and manageability of I/O tasks. 



Alongside in situ operations that require no data movement (i.e., the data is processed on 
the same node on which it is generated), a slightly looser form of this technique is operations 
that take advantage of the staging area. Instead of disk, the data is moved to the staging 
nodes, where additional processing is performed before output to disk. These in-transit 
operations see some of the benefits of in situ operations, such as reduced overhead from I/O, 
without suffering some of the problems, such as an increased duration for memory 
occupancy for the data. Such operations do require additional data movement compared to 
true in situ operations, possibly resulting in additional performance overhead. Because of the 
nature of asynchronous data movement, however, the perceived overhead for the application 
may actually be lower than for synchronous in situ operations. The development of an I/O 
framework for extreme-scale data processing should utilize a combination of both in situ and 
in-transit operations through the staging area. 
6 Data staging 

The complexities of the memory hierarchy described 
in Section 3.1 and the performance gains possible 
through proper utilization of this hierarchy have forced 
developers of I/O frameworks to strongly consider a shift 
in the paradigm of I/O processing. One such shift that has 
gained traction in the domain of scientific computing is 
the idea of data staging. Data staging extends the typical 
I/O system to include additional system nodes closely 
connected to the application nodes (see Figure 2). These 
“staging” nodes provide a transient buffer for the 
application to output data, allowing a decoupling of the application from the I/O resources. 
The user-level control on these nodes, in comparison with more traditional I/O nodes on 
many leadership-class computing systems, is an additional advantage allowing the 
development of processing plugins that utilize the available compute capabilities of these 
nodes. Thus, the staging architecture not only provides a high-performance data extraction 
mechanism but also allows the development of in-transit processing I/O pipelines. The 
design of the staging area is now being extended beyond just the allocation of entire physical 
nodes to encompass finer-grained resource partitioning, such as individual cores on the 
application nodes and GPUs.  

Our team’s experience with data staging has also identified management and control of 
data movement as a major area of performance optimization. Without managing transfers, the 
movement of data to the staging area can interfere with intra-application communication, 
especially as we start scaling applications to very large numbers of cores. Introducing 
scheduling techniques into the control plane allows us to minimize this perturbation. 
Similarly, because of the constraints on resources available to the staging area, mechanisms 
are required to address the provisioning, allocation, and preemption of resources associated 
with staging area processing. 

Once the data is extracted to the staging area, a variety of in-transit operations can be 
performed on the data, such as complex analysis, sorting, and in situ visualization. At 
Supercomputing 2010 we demonstrated the capability for in situ visualization, using the 
fusion application Pixie3D [7–9] to generate data that is visualized through ParaView [13] 
while also producing diagnostic information that is fed to eSiMon [14]. 

Figure 2: Staging area. 



7 Data management 
Data management challenges at the extreme scale require a rethinking of the underlying 

principle of data movement. As we approach exascale, it will become increasingly infeasible 
to output the entire data set to storage with no additional processing. Not only will the impact 
on the run time of the application be extensive, but a very large input overhead also will be 
incurred on the analysis and visualization components of the scientific workflow. Even today 
input costs dominate the performance of visualization systems, with some estimates placing 
them as high at 80% [11]. In order to efficiently handle the volume, data must be prepared 
before it hits the disk through techniques such as compression, multiresolution sampling, and 
indexing.  
7.1 Data compression techniques  

Given the growing volume of data that a storage system must handle, as well as such costs 
as moving these large volumes of data to the staging area, data compression provides a 
compelling case for in situ processing and I/O pipelines. However, scientific data has very 
high entropy, often resulting in small lossless compression ratios at the expense of additional 
computation. Inorder to address the specific concerns of scientific data, ISABELA [3] was 
introduced. ISABELA allows high compression of scientific data and also guarantees user-
specified accuracy for the compressed data. First, the scientific data is linearized and divided 
into fixed-size chunks, each of which is called a compression window. Currently, ISABELA 
sets the window size at 256 data elements. This leads to a 2 kB window size for double-
precision data. However, the window size is configurable. Within each window, the data is 
sorted based on their values by some permutation functions. Thus, for a window consisting of 
N data elements, each index value requires log2N bits, and the total storage for indices is N 
*log2N bits. Therefore, the vector length N is the only factor that determines the storage 
requirements for the indices. By sorting the data, the original highly irregular data becomes a 
monotonic curve, which can be more accurately modeled by using curve fitting. ISABELA 
applies B-spline to the sorted data values and records the coefficients. As any curve-fitting 
function inevitably introduces error, ISABELA additionally computes the relative errors 
between the actual data and the B-spline modeled data. Error values are also stored at 
compression time. Since the values within the windows are monotonically increasing, the 
vast majority of points have very small errors and are thus highly compressible. After the 
compression, the original data is no longer needed, and ISABELA stores three data 
structures: the per window B-spline coefficients; the permuted indices for each sorted 
window, each of size dlog(W)e bits; and the compressed quantized error values. These are 
then combined with an EQ-calibrator for error adjustment, allowing for a fourfold to fivefold 
data reduction. The accuracy of the reconstructed data is guaranteed to be within 0.1% point-
by-point relative error, lower than 0.01 normalized RMSE, and higher than 0.99 Pearson 
correlation.  

The availability of domain-aware compression in a service-based pipelined approach 
provides an interesting example of the challenges we will be facing. For example, it may be 
advantageous to perform data compression at the individual application nodes before data is 
moved into the pipeline, or it may be better to transmit uncompressed data from the 
application and perform data compression farther along in the pipeline. This decision will 
depend on factors such as the cost (both time and energy) of compression and 
decompression, cost of network data movement, and whether other operations will require 
uncompressed data. 



7.2  Multiresolution technique 
For very large regular meshes, the data can be organized by using 

techniques described in [15]. These multiresolution techniques 
describe the data at multiple levels of granularity, allowing the 
downstream processing tasks to select coarser granularities to reduce 
the data volume. One method of organizing data in a multiresolution 
stream is Z-indexing. For 3D block decompositions, for example, Z-
indexing reduces the volume of data to 1/8th its size with each 
decrease in the resolution.  

The use of multiresolution data formats is another technique we 
are exploring to reduce the data load on the pipeline. We envision there being certain tasks for 
which a full resolution dataset is unnecessary. By reorganizing outgoing data into a series of 
increasingly higher resolution subsets, a consumer of that data can choose to discontinue use of 
the data once it has reached a sufficiently high resolution for the task at hand. An example of this 
is a visualization task, where a large data set might be halted once a sufficient resolution is 
reached to identify a particular simulation feature or to determine that such a feature is not 
present. 

Different approaches to multiresolution are possible depending on the requirements of the 
application. For instance, a simple approach is shown in Figure 3. Here, a 2D data set is shown, 
with its multiresolution decomposition indicated by the blue points (coarsest resolution), red 
points (medium granularity), and black points (finest resolution). We note that while reading a 
coarser resolution will exclude the finer resolutions, reading the finer resolution requires reading 
all resolutions with coarser granularities. Thus, reading the black points requires reading the 
entire data set, while reading the blue points requires reading only 1/9 of the data. Data from 
each resolution level is stored in the same order (e.g., column-major) as the full data set. This 
format allows data to be loaded progressively, beginning with a coarser view and becoming more 
refined as additional levels of resolution are loaded.  
7.3  Data indexing and characteristics 

As file sizes grow in complexity from the increased degrees of freedom and increased 
physics, efficient methods must be devised for querying data either “in-transit” or on the file 
system. These queries must be made efficient both in the energy they consume to produce the 
metadata necessary to quickly locate the data and in the total size of the data that it ultimately 
will consume on the file systems. These indices and characteristics can be stored and computed 
in multiple ways. The first is to compute simple statistics “communication-free” and then save 
them along with the data. As described previously, we store the data in chunks, and each chunk 
contains its own indices and characteristics. We start with a basic set, min/max/average/std. 
deviation, and allow the method builder to extend these without increasing the file size by more 
than 0.1% of the raw data. 

Each data chunk can be compressed and stored in a multiresolution format, and each chunk 
can then be indexed and characterized. This approach allows complex queries to be performed 
on the basic index, and then the data is accessed if it meets the criteria of the query. One example 
comes from the GTS code, which is used in order to understand the turbulence intensity flux at 
each radial zone and their time correlations. This metadata can be stored by using FastBit [4] or 
ISABELA-QA plugins from the framework with no changes by the GTS scientist. By 
performing a query, the only data that is read in is the data that meets these criteria.  

Figure3: Simple 
multiresolution format. 



8 Monitoring 
As simulation teams continue to grow, multiple scientists need to monitor their simulation 

when they run at scale. Scientists who will monitor a large-scale simulation come from different 
backgrounds. For example, in CPES we have performance and optimization experts monitoring 
simulations, along with I/O experts, computational physicists, and experimental and theoretical 
physicists. These scientists generally look for different pieces of the output and require different 
levels of simplicity in the technology. We developed the eSiMon collaborative portal [14] to 
monitor large-scale simulations from OLCF and NERSC and to provide a way for scientists to 
visualize their data during the run and to postprocess their data via a simple point-and-click 
mechanism. The eSiMon portal links users’ activity on the front end to the corresponding raw 
simulation data using recorded data lineage information. By saving the provenance of the data, 
code, and environment, scientists can access information such as the performance of the code or 
compiler options used to build the code. Users can also perform built-in analysis on original data 
files or use fast data movers [16] for WAN data movement. 

Previously, scientists had to run the Kepler workflow system in concert with their simulation; 
as data was written from the simulation to the file system, Kepler would direct new actors to read 
the data and process it to produce images and movies that could then be seen on eSiMon. Today, 
we have integrated eSiMon APIs into the ADIOS framework as a method. Scientists can now 
annotate their data to indicate to the system which variables will be visualized and how they are 
visualized. The data moves from the HPC machine to an external cluster to be transformed into a 
visualization, which can be shared during the simulation and displayed on eSiMon. 

Since eSiMon provides the gateway for a diverse group of scientists to interact with their data, 
eSiMon must be able to attach to powerful analysis and visualization packages on the back end. 
It must also be able to submit jobs on HPC machines, move data and executables, and maintain 
the provenance from all the users. This enables many scientists to interact, collectively monitor 
their simulation, take notes, and share these with their collaborators. It also helps scientists 
maintain a repository of simulation runs, as well as associated inputs, notes, and visualizations. 

A natural and desirable feature for the next-generation eSiMon should be to give scientists a 
“control” aspect of the run, including (1) starting and stopping the simulation; (2) maintaining a 
database of all the runs that a group submitted for the application, including all of the input 
parameters of the run when possible; and (3) providing the ability to get statistics for the input 
parameters for the runs (e.g., min/max of an input parameter). Such a system will ultimately 
allow us to educate new scientists, transferring expertise as our knowledge grows. 
9 Usability for performance optimizations 

Although new HPC technology is driven primarily by the performance requirements of 
application scientists, the adoption of new technologies is usually constrained by the lack of 
usability in extracting that same performance. For example, the penetration of the Cell 
architecture in HPC has been bogged down because of difficulties in writing applications 
optimized specifically for the architecture. Learning from this lesson, GPU technology is being 
promoted alongside infrastructure for more usable transformation of application kernels to GPU 
code using technologies such as CUDA [17,18] or OpenCL [19].  



Similarly, for I/O an important challenge facing 
scientists today is to drive adoption of new technological 
innovations in the space by real application users. A failure 
in the usability of I/O optimizations in many I/O libraries 
has caused actual I/O performance to be severely deficient 
compared with potential peak throughput. Further 
optimizations in I/O are often targeted to specific 
architectures and may not translate to other systems, 
limiting portability and further constraining usage.  

The next generation of proposed I/O frameworks must 
address this concern by clearly partitioning the task of 
optimizations for I/O from the actual description of the I/O. 
The latter is the responsibility of the application developer 
alone, while the former can be delegated to specialists for each of the systems concerned. 
Additionally, the selection of the I/O techniques should be deferred at least to job submission 
time or even later to run time. This approach allows the application to be optimized across 
multiple platforms and architectures, and similarly the optimization can be used for multiple 
applications. In this section, we describe a sample optimization developed by our team for 
significant improvements to write performance on the Cray XT5 Jaguar at ORNL.  

Achieving write performance requires consideration of many factors. These include the 
number of writers and distribution of data in memory, type and configuration of file system, 
number and performance characteristics of disks, interconnect bandwidth, and current utilization 
of available I/O resources.  

One technique that has been developed by our team utilizes write aggregations. Two levels of 
write aggregations are used. At the first level, the scheme aggregates local process data in a 
procedure known as write behind, allowing smaller writes to be amalgamated into more optimal-
sized write requests. At the second level, processors act as aggregators across subsections or 
groups of the entire parallel application. Once the aggregation is under way, the data is output to 
a subfile that serves as a stripe on a single storage target to minimize write-based lock contention 
in the file system. In order to maintain a global view of the data, a corresponding metadata file is 
also written out. 

The complexity of this technique, as well as the specific parameters that depend on the 
characteristics of the execution platform (in this case, the Cray XT5 Jaguar), makes it unlikely to 
be directly incorporated into more than a handful of leadership-class computing applications. 
However, because of the support provided by the ADIOS framework for pluggable methods and 
run-time selection of output methods, any application using ADIOS for I/O, as shown in Figure 
4, can easily apply this method, resulting in substantial performance gains without requiring any 
additional effort by the application developer.  
9.1 Next-generation file formats using an elastic data organization  

As file systems increase in complexity due to high levels of concurrency, we need to 
understand how to place data on the file system and how to decrease the overhead of both 
writing and reading data to and from these complex file systems. The file system at the OLCF, 
for example, is shared among many machines and provides over 670 object storage targets 
(OSTs), where each OST has a RAID set associated with it. To gain performance in writing and 
reading, we have found that data must be “chunked” and that each chunk must be placed on 
individual storage targets. Furthermore, we need to manage/schedule the communication of data 

Figure 0: ADIOS methods show high 
performance across multiple applications. 



from the individual processors to the OSTs, rather than just having the file system take care of 
the writing. We have found [20] that by carefully managing and scheduling these, and using 
techniques such as subfiles, we can attain low overhead synchronous writes. For example, a 
recent S3D [21] calculation running on 96K cores, writing 1.9 MB of data per core, can take 
0.6% of the wall-clock time in I/O. Recent advances in HDF5 [22] also show dramatic increases 
in I/O performance by chunking the data, rather than by writing logically contiguous files.  

File formats should be easy to use, easy to program, high performance, portable, self-
describing, and able to work efficiently on parallel file systems and simple file systems. They 
should also allow for simple queries into the data, as described in this paper. A major challenge 
has always been in the understanding of the performance of I/O for both reading and writing, and 
in trying to optimize for both of these cases. 

When we systematically examined the read performance of scientific applications such as 
S3D on large-scale supercomputers, we saw a huge disparity of performance from many of the 
common access patterns that scientists use to read data [23]. The six most common access read 
patterns are as follows: (1) all data is written and read from the same or a different number of 
processors, (2) all of one variable is read from a complete output set, (3) all of a few variables 
using any number of processors are read, (4) a plane in any dimension of data is read for 
postprocessing, (5) an arbitrary rectangular subset is read in from the multidimensional data set 
on an arbitrary number of processors, and (6) an arbitrary area on an orthogonal plane is read in 
on an arbitrary number of processors. Much to our surprise, file formats that chunk the data 
routinely achieved better read performance than logically contiguous file formats. 

To understand why chunking of data improves read performance for most of the common 
read patterns that occur in data analysis, we can look at a simple example faced by many when 
accessing a multidimensional variable. The first explanation of performance is in the disparity 
between the order of storage and the order of access for data elements in a multidimensional 
variable. Second, there is a lack of data concurrency when a subset of data elements is retrieved 
from a multidimensional variable.  

Using a simple formulation to understand the concurrency, we found that when the subset of 
data elements is not logically contiguous, it is often concentrated on only a few storage devices 
among a large number of total devices that are used to store the entire variable, if the striping 
parameter is not configured in a sophisticated manner. 

We have extended the ADIOS-BP file format with an 
elastic data organization (EDO) that can support flexible 
data organization strategies for different scientific 
applications. EDO provides two levels of data ordering 
algorithms. At the top level, it uses Hilbert space-filling 
curves (SFCs) to balance the distribution of data groups, 
referred to in ADIOS as process groups, across storage 
targets. SFC distributes data elements across parallel 
storage targets to aggregate their bandwidth without file 
system restrictions and improve concurrency for the planar 
reads. At a low level, EDO divides data elements within a 
data group into subchunks, and it balances the cost of 
seeking through subchunks and that of reading data from 
them. Figure 5 shows the performance of reading S3D data 
written from 4,096 cores using the ADIOS-BP file format 

Figure 5: Performance improvements 
from elastic data organization in 

ADIOS.  



(ADIOS-org), compared with using the EDO (ADIOS-sfc) and a conventional file format that 
organizes the data with logically contiguous MPI-IO. We then look at three different 2D planes 
and the I/O performance. Clearly, in this case EDO gives a higher and more consistent level of 
performance compared with other types of file formats.  
10 Conclusions  

The challenges of extreme-scale scientific data processing cannot be efficiently handled by 
using conventional techniques for I/O processing using store/retrieve/process operations that are 
bottlenecked by conventional storage technologies. In this paper we have proposed a shift in the 
paradigm for scientific data processing relying on emerging techniques in data staging, in situ 
data processing, data compression, multi-resolution data streams, fast bitmap indexing, and user 
accessible application monitoring. These techniques, utilized through the already established 
service-oriented approach to building pipelines and elastic data formats to encompass a variety 
of user needs, form the conceptual underpinnings of a next-generation I/O framework that can 
alleviate many of the concerns with I/O as leadership systems begin to scale toward exascale. We 
have also utilized our experience with building a successful I/O stack, ADIOS, to place 
manageability and usability of the framework as a first-class design goal. The goals of the 
framework described in this paper should serve as guidance for the evolution of the extreme-
scale data processing domain.  
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