
 In situ data processing for extreme-scale computing

Scott Klasky1, Hasan Abbasi2, Jeremy Logan1, Manish Parashar6, Karsten Schwan4, Arie
Shoshani3, Matthew Wolf4, Sean Ahern1, Ilkay Altintas9, Wes Bethel3, Luis Chacon1, CS Chang10,

Jackie Chen5, Hank Childs3, Julian Cummings13, Ciprian Docan6, Greg Eisenhauer4, Stephane
Ethier10, Ray Grout7, Sriram Lakshminarasimhan, Zhihong Lin10, Qing Liu2, Xiaosong Ma15, Kenneth
Moreland5, Valerio Pascucci12, Norbert Podhorszki1, Nagiza Samatova15, Will Schroeder8, Roselyne

Tchoua1, Yuan Tian14, Raju Vatsavai1, John Wu3, Weikuan Yu14, Fang Zheng4

1ORNL, 2 U.T. Knoxville, 3LBNL, 4Georgia Tech, 5Sandia Labs, 6 Rutgers, 7NREL, 8Kitware, 9UCSD,
10PPPL, 11UC Irvine, 12U. Utah, 13 Caltech, 14Auburn University, 15NCSU

Abstract
The U.S. Department of Energy established leadership-computing facilities in 2004 to

provide scientists with capability computing for high-profile science. Since inception, the
system capacity has grown from 14 TF to 1.8 PF, an increase of more than a factor of 100,
and it will increase by another factor of 100 in the next five years. This growth, along with
computing policies that enable users to run at scale for long periods, has allowed scientists to
write unprecedented amounts of data to the file system. At the same time, the effective speed
of the I/O system (time to write full system memory to the file system) has decreased, going
from 350 seconds on ASCI Purple (49 TB at 140 GB/s) to 1500 seconds on Jaguar (300 TB
at 200 GB/s). Because future systems will further intensify this imbalance, we need to extend
the definition of I/O to include that of I/O pipelines, which blend together self-describing file
formats, staging methods with visualization and analysis “plugins,” and new techniques to
multiplex outputs using a novel service-oriented architecture approach—all in an easy-to-use
I/O componentization framework that can add resiliency to large-scale calculations. Our
approach to this has been via the community-created ADIOS system, which is driven by
many of the leading-edge application teams and the top I/O researchers.
1 Introduction

Over the past decade the capability of leadership-computing systems has increased
substantially, with the Top500 machines seeing a many-fold increase from a few teraflops to
more than a petaflop for the current generation of high-performance computing (HPC)
systems. This increase in compute power has not been mirrored in I/O performance, which
instead has suffered by comparison and even decreased in absolute terms. This imbalance,
coupled with the increase in data volumes produced by applications, has resulted in a new
bottleneck in the performance of these systems.

Conventional methods for addressing this bottleneck, such as increasing I/O backend
capability by adding more disks with higher speeds, are unlikely to keep up with the
performance issues due to the costs associated with storage. Because I/O performance has
little effect on procurement for next-generation machines, the performance of the I/O system
is unlikely to match the growth of compute capability in the future. The problem is further
exacerbated by the inefficiency of I/O performance; most applications are unable to achieve a
significant fraction of the peak performance of the storage system [1]. This is due mostly to
the complexity of traditional I/O methods, where the developer must make a heroic effort to
optimize the application I/O. This limit on usability directly impacts the possible
performance of the application.

Extended memory hierarchies will once again further complicate the I/O performance for
many applications. The conventional wisdom will be to simply write data to the nonvolatile

memory, thereby creating a buffer for the application from the actual file system. The
problems that arise are numerous if one simply does the “easy” thing, which is to write the
data and forget about it. For one thing, the data must eventually end up on the file system,
and this data movement will be shared with other data movement on the HPC, including
other applications writing and reading from the file system. Another problem is that overall
application performance can suffer if the data movement is not scheduled properly with the
applications. Applications will need to learn different “tricks” to attain acceptable levels of
I/O performance. Additionally, applications will become increasingly reliant on in situ
visualization techniques in order to reduce the penalties associated with storage and retrieval
of data.

In this paper we introduce a conceptual shift in addressing I/O performance bottlenecks by
addressing the needs of extreme-scale computing. To achieve appropriate performance, we
propose a multipoint approach to handling some of the biggest concerns and demonstrate a
framework that has been developed with the following design guidelines:

1. Service-oriented architecture (SOA). The overarching framework should be easy for
new programmers to write individual “plugins” that can be compiled and either run
independently, by reading data from the file system, or work in situ, where users can
introduce their services at run time. In this way, developers have the flexibility to
independently develop their executable, such as a visualization program. Furthermore,
by creating a separate executable, applications are not littered with extra lines of code
for extending the functionality of the code through these services. Services should be
discoverable to one another and allow for efficient communication (either memory-to-
memory or one-sided memory transfers).

2. In situ processing. The increasing volume of data generated by the applications has
added constraints on how easily and efficiently it can be processed. Requiring that the
application move the data to disk before process completion is not a viable mechanism
at extreme scale. Instead, in situ or in-place processing has become an important tool for
dealing with data. By processing data using domain-specific services or plugins without
incurring any additional data movement, we can start to manage the costs of I/O.

3. Data staging. Staging is quickly becoming an important foundation of extreme-scale
I/O by providing both a staging point for data on its way to storage and the computing
resources to initiate in-transit and in situ operations on the data. Data staging
complements both the service-oriented architecture for I/O pipelines and in situ
processing plugins. The use of staging resources for processing the data in preparation
for analysis (as demonstrated in PreData [2]) or for in situ visualization provides a
powerful platform for managing I/O at extreme scale.

4. Data management. The volume of data projected from exascale applications cannot
efficiently be sent to disk without incurring a large performance overhead. Reduction
methods such as compression and multiresolution output can decrease this volume to
manageable levels without impacting either data viability or application performance. In
one such effort, ISABELA [3], which deals with data compression for high-entropy
particle data, we envision that data will need to be output and stored through a
multiresolution method to expedite the in situ processing of high-resolution scientific
data. In addition, data retrieval has become a concern for scientists, especially as the
data sets grow to petascale and beyond. Efficient access to data will increasingly require
the aid of indices not only to speed up access but also to reduce the volume of the input

data. Techniques such as adding characteristics to the data at output time, using bitmap
indexing as in FastBit [4], are required to retrieve the data efficiently for analysis and
visualization.

5. Monitoring. The above goals are complemented by low-overhead, near-real-time
monitoring of the application, allowing users to be aware of the changing landscape of
the simulation and make decisions on how the data is handled by the system. We
present the eSiMon [5] system for easy monitoring and control of applications.

6. Usability of optimizations. In addition to the above, the I/O framework is responsible
for providing an easy-to-use interface. The complexity of past interfaces has provided a
counterpoint that forces us to rethink how the interface is designed. Instead of tightly
integrating the optimizations into the application, we propose the idea of component I/O
methods that deal with system-level optimizations in which only the data description
and output routines are placed in the application source. This also lets us gain a measure
of portability for the application. Moving between different architectures simply
requires switching to the appropriate method.

7. Data formats. Dealing with extreme-scale data requires a new generation of data
formats optimized for massively parallel machines and specifically targeted for
scientific data. File formats should be self-describing and provide resiliency and
performance at extreme scale. Furthermore, the file format must be amenable to
optimizations for both read and write performance. By understanding many of the
common reading patterns, we can optimize the file format for the majority of patterns,
reducing the typical optimization bias to which some file formats fall prey. In this paper
we present the ADIOS-BP file format, which exemplifies these goals.

With the aforementioned concerns in mind, we designed the ADIOS [6] I/O framework
not only to address the system I/O issues but also to provide an easy-to-use mechanism that
allows scientific developers to work from I/O skeleton applications. Through the use of an
optional metadata file, which describes the output data and enables automatic generation of
the output routines, the burden on the user is reduced substantially. ADIOS componentizes
different methods of I/O, allowing the user to easily select the optimal method. In concert
with data staging, this work exemplifies what the next generation of I/O frameworks should
look like.
2 Application use cases

Large-scale simulations run on the leadership-computing facilities by application
scientists, such as those of the Center for Plasma Edge Simulation (CPES), the Sandia
Combustion Research Facility, the Gyrokinetic Simulation of Energetic Particle Turbulence
and Transport, and the Pixie3D code, are already generating enormous amounts of data.
These simulations are solving complex PDEs to unravel many of the mysteries in science,
and they are writing large datasets frequently for postprocessing and for checkpoint-restart
capabilities. Typically, these simulations need to write over 100 TB of data per 24 hours of
wall-clock time, but often they are limited by severe constraints on the I/O, visualization, and
analysis systems. By working directly with the aforementioned application teams and many
others, we have learned that as these simulations increase in their spatiotemporal resolution,
the scientists will be severely limited in their understanding of the data they produce. This
realization forces our community to look for revolutionary changes in the way scientists
interact with their data.

Today, data exploration mostly occurs through postprocessing tools, such as VisIt and
ParaView, and quite often I/O is the bottleneck. In fact, many visualization scientists have
documented that over 50% of the time spent in real-time visualization is spent in I/O, and
these numbers are worsening exponentially because of the dramatic changes brought about
by employing powerful acceleration technologies such as GPGPUs. Reducing the I/O
bottleneck requires the integration of the application and the visualization library, a technique
that may not scale and introduces concerns for resiliency.

Application scientists are also constrained with respect to I/O on today’s machines by data
management and visualization issues, such as the variability of I/O performance, as well as
by the lack of optimizations for typical reading patterns used during analysis and
visualization. Because ad hoc techniques are often used to determine when to produce output
and where to store output data, and because the data volume is overwhelming, researchers
never examine much of the data in many spatiotemporal regions. Therefore, new techniques
are needed to gain insight into the data and to reduce the total amount of data generated
without reducing the quality of the output.

One typical use case comes from PIC codes such as XGC1, GTC, and GTS, which contain
hundreds of billions of particles that need to be processed to gain new insights into the data.
Scientists may output only a much smaller subset of the data at uniform frequency for post-
processing. The problem is that these reductions in both time and space are often determined
by user selection, and not by scientific criterion or real-time monitoring of the data. Even so,
by writing out 1/100 of the data at 1/10 of the time steps, over 10 TB of data can be
generated in one day. After the simulation, the data needs to be archived and analyzed. By
using visualization techniques in VisIt and by querying the particles, the scientists can start to
determine interesting new physics from their data. However, as we increase the resolution of
the data and move to the exascale, the total amount of data quickly becomes unmanageable.

Similarly with Pixie3D [7–9], the scientist sees that the I/O time in the code can become a
significant portion of the total time. Previously, Pixie3D would write data, one file per
process, and concatenate the data for each time step in each separate file. After the
simulation, the Pixplot code would read in these files and write new files in HDF5, which
would then be read in by VisIt for analysis and post-processing. Typically, VisIt expressions
would allow less data to be written, so that new quantities were generated while they were
being read in. The problem with this approach was that the initial files were not self-
describing and they took a substantial amount of time to write. The original Pixplot code
would later run on either the same number of processors as Pixie3D or in serial to create
HDF5 files, which would also take a very long time, although these steps were automated by
our team via the Kepler workflow system so that the user could allow the workflow system to
manage the data.

In the foreseeable future, our data needs will continue to climb beyond the ability of
current tools to cope with them. Simulations from some of the most important science areas
in the DOE portfolio are continuing to push the boundaries of the HPC systems, and it has
become clear that scientists will need to more carefully monitor and manage the data flowing
from their simulations and into their post-processing systems. We envision that the scientists
will be placing more in situ analysis and visualization techniques into their simulations, not
by drastically modifying their simulations, but rather by using advanced I/O
componentization frameworks such as ADIOS, so that their I/O pipelines can be managed.
Once these techniques are incorporated into the code, we find that scientists do not want

possible bugs in the analysis and visualization codes to cripple or slow their simulation. They
also need to discover ways to automate the in situ workflows, to allow for more dynamic
execution of their expensive calculations, and to record and manage the provenance of their
simulations in a resilient and power-efficient manner.
3 Service-oriented architecture
3.1 Next-generation I/O and file system

A key challenge for the exascale is the efficient organization and management of the large
data volumes ingested and produced by scientific simulations, which are analyzed and
visualized to support scientific investigations. The challenge exists (1) at the architecture or
node level, to efficiently use increasingly deep memory hierarchies coupled with new
memory properties like the persistence properties offered by NVRam or Memristors; (2) at
the system level, to cope with I/O rates and volumes that by stressing the interconnect can
severely limit application performance and/or consume unsustainable levels of power; and
(3) at the exascale machine level, where immense aggregate I/O needs with potentially
uneven loads are placed on underlying resources, resulting in data hotspots, interconnect
congestion, and similar issues.

For future I/O systems at the exascale, we envision an environment at the node level in
which multiple memory sockets, multiple coherence domains (i.e., “clusters” on a chip),
multiple types of memory including persistent RAM, and disaggregation of memory with
certain noncoherent memory are reachable via on-chip PCI or similar interconnects. In
addition, caps on power consumption will limit power resources. This environment creates
tradeoffs between data movement on-chip and on-node and the location of analysis and
visualization computations on the data. We can move analysis code to where data currently
resides, but doing so may introduce substantial variations in code execution times that can
degrade the speedup of parallel codes. A more power-efficient solution may be one in which
subsets of data are moved to other on-node memory, including persistent memory, before
analysis is performed. In such cases, there exist both the necessity and opportunity to apply
operations to data as it is being moved. Thus, even on-chip and on-node, tradeoffs will exist
as to where and when analysis or visualization operations can or should be performed. For
the I/O system, the overwhelming requirement is that there must be flexibility in (1) which
operations are applied where on-node and (2) when they are applied, either synchronously
with the application (potentially affecting its execution time) or asynchronously during on-
node data movement.

Beyond individual nodes, operations that require use of the system interconnect are
expensive in performance and power. As a result, analyses requiring more global data may
preferably be carried out, in terms of both power and performance, by first moving data to
some smaller number of nodes—in situ staging—and then analyzing it. Data staging also
offers opportunities for hardware differentiation by endowing staging nodes with
substantially more memory, with large persistent RAM, and with extensive flash-based
storage. For I/O systems, this results in a need for multitier solutions for I/O, where analysis
or visualization actions can be associated with I/O on-core, on-node, and in-staging.
Analyses that occur in-staging can be substantially more complex than those on-node
because of their inherently more asynchronous nature—that is, in-staging computations
(especially for “fat memory” staging nodes) can operate on multiple output steps and will be
bound by timing requirements determined by output frequencies.

The final memory tier for I/O is large-scale disk storage. We expect such storage to be
attached to the exascale machine’s periphery and/or to ancillary network-connected
machines, and it will offer levels of throughput far less than that of the aggregate I/O actions
of which the machine’s cores are capable. As a result, for data analysis and visualization, a
paramount requirement is to bring code to data and to do so dynamically, at the important
output steps or simulation iterations and at specific cores and nodes.
3.2 SOA approach to I/O pipelines

The goal for SOA is to create a series of collaborating services that are published and
available for invocation on the service bus. Most enterprises have adopted SOA to deliver the
business agility and IT flexibility promised by web services. The benefits delivered by this
approach come from its manner of coping with the increased complexity from the services
themselves, from the service developers, and from the support and maintenance of each
individual service. The SOA approach requires the creation of a service-oriented
environment governed by three basic elements: (1) services can be published, discovered,
and used in a technology-neutral standard form; (2) the SOA encompasses the policies,
practices, and framework to ensure that the correct services are provided and consumed; and
(3) at least two distinct processes are created for the provider and the consumer.

HPC changes the way we develop the SOA for the enterprise, in that it reduces the role of
the discoverability of services over the WAN but places constraints on the performance and
reliability of the services on the HPC platform. One example of using the SOA approach in
HPC comes from our team’s involvement with the CPES project. One of the goals of the
project was to be able to both loosely and tightly couple multiple simulations. Each of the
simulations, including the XGC code and the M3D code, is developed by an independent
team and has dramatically different requirements on both the computational resources and
the libraries used. These simulations can be coupled in two fundamental ways: (1) use a
framework similar to MCT/ESMF, and compile the framework and codes together into a
single executable, or (2) use the SOA approach, letting the I/O layer act as the
communication mechanism for multiple executables to communicate with one another. The
first approach has many advantages. For example, one controller code can enforce which
simulation code executes on which processors, and MPI communication (which has been
highly optimized on most HPC platforms) can be used between the codes. The advantages of
the second approach are that each group can maintain the codes separately and we can easily
switch from a file-based coupling to a memory-to-memory coupling if provided by the data
transport method inside the I/O componentization.

In our previous work using ADIOS as the SOA interface layer, we developed a managed
data staging transport, DataTap, that uses distributed predictive scheduling for perturbation
avoidance. We also developed the Dataspaces method, which allows physics application
services to interact at run time with each other and with services for data monitoring, data
analysis and visualization, and data archiving. Dataspaces creates a semantically specialized,
virtual shared-space abstraction that can be associatively accessed by all components and
services in the application workflow.

In creating an SOA layer that can allow multiple components/services to interact
efficiently with one another, several ingredients are essential. First, we use a semantically
specialized, virtual shared space. This allows us to use a distributed set of nodes with a
distributed hash table (DHT) that supports fast data-lookup operations as well as fast
metadata propagation for data stores. Specifically, for multidimensional geometric domains,

we use a Hilbert space-filling curve (SFC) to generate the DHT index. Second, we allow for
on-the-fly construction of a staging resource; and by using an RDMA layer such as DataTap,
we provide asynchronous coordination and interaction between the services. Furthermore, we
allow for complex, geometry-based queries and in-space transformations and manipulations
of the data as it is being moved from one service to another.

By employing a SOA layer we can think about new paradigms for HPC to remotely debug
and monitor the data. By using techniques such as ActiveSpaces and SmartTap for dynamic
code deployment, we can provide programming support for data kernels to operate on data of
interest. This allows us to dynamically deploy binary code to Dataspaces, execute it on the
relevant data objects in parallel, and then return the results. Such ability is critical for SOA
acceptance by the HPC community.

In the SOA approach, we allow plugins to be run statically on separate staging resources.
As the number of services available to application teams continues to grow, workflow
technologies must be deployed to schedule the services and the data movement from one
service to another. Workflow technologies allow for defining a workflow of plugins, using
limited resources to execute them, separating the definition given by the user from the
execution framework, describing flexible resource requirements of plugins, dynamically
starting and stopping plugins with a scheduler, and recording the provenance of actions and
data lineage.

Previously, we worked with the Kepler workflow system for postprocessing scientific data
and for real-time simulation monitoring on large-scale systems. Currently, we are creating a
workflow system to work in situ that will be simplified compared to Kepler, since it needs to
fulfill the requirements of high-performance computing—that is, it must use very little
memory and be efficient in scheduling services with respect to resiliency and energy cost.
The simplified workflows will form a directed acyclic graph based on the dependencies
between their input and output data.

In summary, the essential ingredients needed for an SOA approach for HPC are to create a
very lightweight interface that will look like an I/O interface and to schedule the data
movement, binary kernels, and services to minimize energy cost and maximize productivity
for the application teams. This realization must be easy to use and must default back to
extremely reliable mechanisms for coupling the services. We have placed novel methods into
the ADIOS framework, using DataTap, DataSpaces, SmartTap, and Activespaces to realize
this vision. We have used this technology to couple the Pixie3D code to the Pixplot code for
post-processing, Visit and ParaView for data visualization, and eSiMon for real-time
monitoring. Once ADIOS was placed inside the code, no other changes were necessary for
the codes to use either file-based coupling or memory-based coupling.
4 Next-generation frameworks for I/O pipelines

To take full advantage of the rapidly developing I/O technologies, a framework must
provide a componentized architecture that can easily, without additional burden on the
application developer, exploit the staging resources. This can be accomplished by a vertical
partitioning of responsibilities in the framework stack. Thus, at the highest level the
application developer should need to utilize only the data I/O APIs and metadata
descriptions. Below this level, the framework should incorporate data management services
that enhance the data output, such as data compression and indexing. Specific targeted
optimizations for different architectures and data models should be encapsulated into a
distinct layer of the I/O framework, allowing a multitude of applications and data

management services to work in concert with data transport. Additionally, the framework
should not only utilize multiple data formats for output but also partition the complexity of
optimizing each data format from the application developer. Finally, the framework should
support the addition of schedulers who can manage the movement of data to reduce
interference [10] and also manage the provisioning of resources to plugins in the staging
area.

Of particular note is the addition of
visualization to the stack, both as stand-alone
applications that utilize framework APIs to access
the data and as plugins that can be scheduled
alongside other I/O pipeline operations, as shown
in Figure 1.

Coupled with the goal of providing efficient
data management through I/O pipelines, the
framework must also be responsible for providing
services for visualization and analysis, as well as
preparatory tasks that aid the analysis operations
such as sorting and binning [2]. Furthermore, to
allow easy adoption, the application should not
require significant modifications when switching
between multiple data output and management
services. By maintaining a partition between the
data output API (which is part of the application
source) and the control plane (which is responsible for describing the output data and
selecting how it is output and what services are included in the pipeline), we can expose the
users to only those parts of the framework that they require.
5 In situ data processing

The cost of data movement, both from the application to storage and from storage to
analysis or visualization, is a deterrent to effective data use. The output costs increase the
overall application running time and often force the user to reduce the total volume of data
being produced by outputting data less frequently. Input costs, especially to visualization, can
make up 80% [11, 12] of the total running time for scientific workflows, often increasing the
time required to extract information from the simulation data. For many workflows, some of
the operations can be performed without moving the data to and from storage; these
operations are thus performed in situ or in place.

The advantage of in situ processing is that it allows the I/O pipeline to bypass a large
portion of the input and output overheads associated with accessing the storage backend. The
most common in situ processing technique is in situ visualization, where the data is prepared
and visualized without I/O to disk. By holding the data on the node where it is generated and
producing the visualization at the same node, the potential bottlenecks that arise from data
movement are alleviated. This can be achieved without the use of an in situ data processing
framework such as the one proposed here. However, tight integration of the visualization
functionality into the application introduces a potential concern for resiliency, where errors in
the visualization will cause application failures. With a service-oriented approach to
visualization, the visualization operators can be functionally isolated from the application,
thus allowing for resiliency.

Figure 1: The I/O framework is partitioned
vertically into distinct layers that improve both

usability and manageability of I/O tasks.

Alongside in situ operations that require no data movement (i.e., the data is processed on
the same node on which it is generated), a slightly looser form of this technique is operations
that take advantage of the staging area. Instead of disk, the data is moved to the staging
nodes, where additional processing is performed before output to disk. These in-transit
operations see some of the benefits of in situ operations, such as reduced overhead from I/O,
without suffering some of the problems, such as an increased duration for memory
occupancy for the data. Such operations do require additional data movement compared to
true in situ operations, possibly resulting in additional performance overhead. Because of the
nature of asynchronous data movement, however, the perceived overhead for the application
may actually be lower than for synchronous in situ operations. The development of an I/O
framework for extreme-scale data processing should utilize a combination of both in situ and
in-transit operations through the staging area.
6 Data staging

The complexities of the memory hierarchy described
in Section 3.1 and the performance gains possible
through proper utilization of this hierarchy have forced
developers of I/O frameworks to strongly consider a shift
in the paradigm of I/O processing. One such shift that has
gained traction in the domain of scientific computing is
the idea of data staging. Data staging extends the typical
I/O system to include additional system nodes closely
connected to the application nodes (see Figure 2). These
“staging” nodes provide a transient buffer for the
application to output data, allowing a decoupling of the application from the I/O resources.
The user-level control on these nodes, in comparison with more traditional I/O nodes on
many leadership-class computing systems, is an additional advantage allowing the
development of processing plugins that utilize the available compute capabilities of these
nodes. Thus, the staging architecture not only provides a high-performance data extraction
mechanism but also allows the development of in-transit processing I/O pipelines. The
design of the staging area is now being extended beyond just the allocation of entire physical
nodes to encompass finer-grained resource partitioning, such as individual cores on the
application nodes and GPUs.

Our team’s experience with data staging has also identified management and control of
data movement as a major area of performance optimization. Without managing transfers, the
movement of data to the staging area can interfere with intra-application communication,
especially as we start scaling applications to very large numbers of cores. Introducing
scheduling techniques into the control plane allows us to minimize this perturbation.
Similarly, because of the constraints on resources available to the staging area, mechanisms
are required to address the provisioning, allocation, and preemption of resources associated
with staging area processing.

Once the data is extracted to the staging area, a variety of in-transit operations can be
performed on the data, such as complex analysis, sorting, and in situ visualization. At
Supercomputing 2010 we demonstrated the capability for in situ visualization, using the
fusion application Pixie3D [7–9] to generate data that is visualized through ParaView [13]
while also producing diagnostic information that is fed to eSiMon [14].

Figure 2: Staging area.

7 Data management
Data management challenges at the extreme scale require a rethinking of the underlying

principle of data movement. As we approach exascale, it will become increasingly infeasible
to output the entire data set to storage with no additional processing. Not only will the impact
on the run time of the application be extensive, but a very large input overhead also will be
incurred on the analysis and visualization components of the scientific workflow. Even today
input costs dominate the performance of visualization systems, with some estimates placing
them as high at 80% [11]. In order to efficiently handle the volume, data must be prepared
before it hits the disk through techniques such as compression, multiresolution sampling, and
indexing.
7.1 Data compression techniques

Given the growing volume of data that a storage system must handle, as well as such costs
as moving these large volumes of data to the staging area, data compression provides a
compelling case for in situ processing and I/O pipelines. However, scientific data has very
high entropy, often resulting in small lossless compression ratios at the expense of additional
computation. Inorder to address the specific concerns of scientific data, ISABELA [3] was
introduced. ISABELA allows high compression of scientific data and also guarantees user-
specified accuracy for the compressed data. First, the scientific data is linearized and divided
into fixed-size chunks, each of which is called a compression window. Currently, ISABELA
sets the window size at 256 data elements. This leads to a 2 kB window size for double-
precision data. However, the window size is configurable. Within each window, the data is
sorted based on their values by some permutation functions. Thus, for a window consisting of
N data elements, each index value requires log2N bits, and the total storage for indices is N
*log2N bits. Therefore, the vector length N is the only factor that determines the storage
requirements for the indices. By sorting the data, the original highly irregular data becomes a
monotonic curve, which can be more accurately modeled by using curve fitting. ISABELA
applies B-spline to the sorted data values and records the coefficients. As any curve-fitting
function inevitably introduces error, ISABELA additionally computes the relative errors
between the actual data and the B-spline modeled data. Error values are also stored at
compression time. Since the values within the windows are monotonically increasing, the
vast majority of points have very small errors and are thus highly compressible. After the
compression, the original data is no longer needed, and ISABELA stores three data
structures: the per window B-spline coefficients; the permuted indices for each sorted
window, each of size dlog(W)e bits; and the compressed quantized error values. These are
then combined with an EQ-calibrator for error adjustment, allowing for a fourfold to fivefold
data reduction. The accuracy of the reconstructed data is guaranteed to be within 0.1% point-
by-point relative error, lower than 0.01 normalized RMSE, and higher than 0.99 Pearson
correlation.

The availability of domain-aware compression in a service-based pipelined approach
provides an interesting example of the challenges we will be facing. For example, it may be
advantageous to perform data compression at the individual application nodes before data is
moved into the pipeline, or it may be better to transmit uncompressed data from the
application and perform data compression farther along in the pipeline. This decision will
depend on factors such as the cost (both time and energy) of compression and
decompression, cost of network data movement, and whether other operations will require
uncompressed data.

7.2 Multiresolution technique
For very large regular meshes, the data can be organized by using

techniques described in [15]. These multiresolution techniques
describe the data at multiple levels of granularity, allowing the
downstream processing tasks to select coarser granularities to reduce
the data volume. One method of organizing data in a multiresolution
stream is Z-indexing. For 3D block decompositions, for example, Z-
indexing reduces the volume of data to 1/8th its size with each
decrease in the resolution.

The use of multiresolution data formats is another technique we
are exploring to reduce the data load on the pipeline. We envision there being certain tasks for
which a full resolution dataset is unnecessary. By reorganizing outgoing data into a series of
increasingly higher resolution subsets, a consumer of that data can choose to discontinue use of
the data once it has reached a sufficiently high resolution for the task at hand. An example of this
is a visualization task, where a large data set might be halted once a sufficient resolution is
reached to identify a particular simulation feature or to determine that such a feature is not
present.

Different approaches to multiresolution are possible depending on the requirements of the
application. For instance, a simple approach is shown in Figure 3. Here, a 2D data set is shown,
with its multiresolution decomposition indicated by the blue points (coarsest resolution), red
points (medium granularity), and black points (finest resolution). We note that while reading a
coarser resolution will exclude the finer resolutions, reading the finer resolution requires reading
all resolutions with coarser granularities. Thus, reading the black points requires reading the
entire data set, while reading the blue points requires reading only 1/9 of the data. Data from
each resolution level is stored in the same order (e.g., column-major) as the full data set. This
format allows data to be loaded progressively, beginning with a coarser view and becoming more
refined as additional levels of resolution are loaded.
7.3 Data indexing and characteristics

As file sizes grow in complexity from the increased degrees of freedom and increased
physics, efficient methods must be devised for querying data either “in-transit” or on the file
system. These queries must be made efficient both in the energy they consume to produce the
metadata necessary to quickly locate the data and in the total size of the data that it ultimately
will consume on the file systems. These indices and characteristics can be stored and computed
in multiple ways. The first is to compute simple statistics “communication-free” and then save
them along with the data. As described previously, we store the data in chunks, and each chunk
contains its own indices and characteristics. We start with a basic set, min/max/average/std.
deviation, and allow the method builder to extend these without increasing the file size by more
than 0.1% of the raw data.

Each data chunk can be compressed and stored in a multiresolution format, and each chunk
can then be indexed and characterized. This approach allows complex queries to be performed
on the basic index, and then the data is accessed if it meets the criteria of the query. One example
comes from the GTS code, which is used in order to understand the turbulence intensity flux at
each radial zone and their time correlations. This metadata can be stored by using FastBit [4] or
ISABELA-QA plugins from the framework with no changes by the GTS scientist. By
performing a query, the only data that is read in is the data that meets these criteria.

Figure3: Simple
multiresolution format.

8 Monitoring
As simulation teams continue to grow, multiple scientists need to monitor their simulation

when they run at scale. Scientists who will monitor a large-scale simulation come from different
backgrounds. For example, in CPES we have performance and optimization experts monitoring
simulations, along with I/O experts, computational physicists, and experimental and theoretical
physicists. These scientists generally look for different pieces of the output and require different
levels of simplicity in the technology. We developed the eSiMon collaborative portal [14] to
monitor large-scale simulations from OLCF and NERSC and to provide a way for scientists to
visualize their data during the run and to postprocess their data via a simple point-and-click
mechanism. The eSiMon portal links users’ activity on the front end to the corresponding raw
simulation data using recorded data lineage information. By saving the provenance of the data,
code, and environment, scientists can access information such as the performance of the code or
compiler options used to build the code. Users can also perform built-in analysis on original data
files or use fast data movers [16] for WAN data movement.

Previously, scientists had to run the Kepler workflow system in concert with their simulation;
as data was written from the simulation to the file system, Kepler would direct new actors to read
the data and process it to produce images and movies that could then be seen on eSiMon. Today,
we have integrated eSiMon APIs into the ADIOS framework as a method. Scientists can now
annotate their data to indicate to the system which variables will be visualized and how they are
visualized. The data moves from the HPC machine to an external cluster to be transformed into a
visualization, which can be shared during the simulation and displayed on eSiMon.

Since eSiMon provides the gateway for a diverse group of scientists to interact with their data,
eSiMon must be able to attach to powerful analysis and visualization packages on the back end.
It must also be able to submit jobs on HPC machines, move data and executables, and maintain
the provenance from all the users. This enables many scientists to interact, collectively monitor
their simulation, take notes, and share these with their collaborators. It also helps scientists
maintain a repository of simulation runs, as well as associated inputs, notes, and visualizations.

A natural and desirable feature for the next-generation eSiMon should be to give scientists a
“control” aspect of the run, including (1) starting and stopping the simulation; (2) maintaining a
database of all the runs that a group submitted for the application, including all of the input
parameters of the run when possible; and (3) providing the ability to get statistics for the input
parameters for the runs (e.g., min/max of an input parameter). Such a system will ultimately
allow us to educate new scientists, transferring expertise as our knowledge grows.
9 Usability for performance optimizations

Although new HPC technology is driven primarily by the performance requirements of
application scientists, the adoption of new technologies is usually constrained by the lack of
usability in extracting that same performance. For example, the penetration of the Cell
architecture in HPC has been bogged down because of difficulties in writing applications
optimized specifically for the architecture. Learning from this lesson, GPU technology is being
promoted alongside infrastructure for more usable transformation of application kernels to GPU
code using technologies such as CUDA [17,18] or OpenCL [19].

Similarly, for I/O an important challenge facing
scientists today is to drive adoption of new technological
innovations in the space by real application users. A failure
in the usability of I/O optimizations in many I/O libraries
has caused actual I/O performance to be severely deficient
compared with potential peak throughput. Further
optimizations in I/O are often targeted to specific
architectures and may not translate to other systems,
limiting portability and further constraining usage.

The next generation of proposed I/O frameworks must
address this concern by clearly partitioning the task of
optimizations for I/O from the actual description of the I/O.
The latter is the responsibility of the application developer
alone, while the former can be delegated to specialists for each of the systems concerned.
Additionally, the selection of the I/O techniques should be deferred at least to job submission
time or even later to run time. This approach allows the application to be optimized across
multiple platforms and architectures, and similarly the optimization can be used for multiple
applications. In this section, we describe a sample optimization developed by our team for
significant improvements to write performance on the Cray XT5 Jaguar at ORNL.

Achieving write performance requires consideration of many factors. These include the
number of writers and distribution of data in memory, type and configuration of file system,
number and performance characteristics of disks, interconnect bandwidth, and current utilization
of available I/O resources.

One technique that has been developed by our team utilizes write aggregations. Two levels of
write aggregations are used. At the first level, the scheme aggregates local process data in a
procedure known as write behind, allowing smaller writes to be amalgamated into more optimal-
sized write requests. At the second level, processors act as aggregators across subsections or
groups of the entire parallel application. Once the aggregation is under way, the data is output to
a subfile that serves as a stripe on a single storage target to minimize write-based lock contention
in the file system. In order to maintain a global view of the data, a corresponding metadata file is
also written out.

The complexity of this technique, as well as the specific parameters that depend on the
characteristics of the execution platform (in this case, the Cray XT5 Jaguar), makes it unlikely to
be directly incorporated into more than a handful of leadership-class computing applications.
However, because of the support provided by the ADIOS framework for pluggable methods and
run-time selection of output methods, any application using ADIOS for I/O, as shown in Figure
4, can easily apply this method, resulting in substantial performance gains without requiring any
additional effort by the application developer.
9.1 Next-generation file formats using an elastic data organization

As file systems increase in complexity due to high levels of concurrency, we need to
understand how to place data on the file system and how to decrease the overhead of both
writing and reading data to and from these complex file systems. The file system at the OLCF,
for example, is shared among many machines and provides over 670 object storage targets
(OSTs), where each OST has a RAID set associated with it. To gain performance in writing and
reading, we have found that data must be “chunked” and that each chunk must be placed on
individual storage targets. Furthermore, we need to manage/schedule the communication of data

Figure 0: ADIOS methods show high
performance across multiple applications.

from the individual processors to the OSTs, rather than just having the file system take care of
the writing. We have found [20] that by carefully managing and scheduling these, and using
techniques such as subfiles, we can attain low overhead synchronous writes. For example, a
recent S3D [21] calculation running on 96K cores, writing 1.9 MB of data per core, can take
0.6% of the wall-clock time in I/O. Recent advances in HDF5 [22] also show dramatic increases
in I/O performance by chunking the data, rather than by writing logically contiguous files.

File formats should be easy to use, easy to program, high performance, portable, self-
describing, and able to work efficiently on parallel file systems and simple file systems. They
should also allow for simple queries into the data, as described in this paper. A major challenge
has always been in the understanding of the performance of I/O for both reading and writing, and
in trying to optimize for both of these cases.

When we systematically examined the read performance of scientific applications such as
S3D on large-scale supercomputers, we saw a huge disparity of performance from many of the
common access patterns that scientists use to read data [23]. The six most common access read
patterns are as follows: (1) all data is written and read from the same or a different number of
processors, (2) all of one variable is read from a complete output set, (3) all of a few variables
using any number of processors are read, (4) a plane in any dimension of data is read for
postprocessing, (5) an arbitrary rectangular subset is read in from the multidimensional data set
on an arbitrary number of processors, and (6) an arbitrary area on an orthogonal plane is read in
on an arbitrary number of processors. Much to our surprise, file formats that chunk the data
routinely achieved better read performance than logically contiguous file formats.

To understand why chunking of data improves read performance for most of the common
read patterns that occur in data analysis, we can look at a simple example faced by many when
accessing a multidimensional variable. The first explanation of performance is in the disparity
between the order of storage and the order of access for data elements in a multidimensional
variable. Second, there is a lack of data concurrency when a subset of data elements is retrieved
from a multidimensional variable.

Using a simple formulation to understand the concurrency, we found that when the subset of
data elements is not logically contiguous, it is often concentrated on only a few storage devices
among a large number of total devices that are used to store the entire variable, if the striping
parameter is not configured in a sophisticated manner.

We have extended the ADIOS-BP file format with an
elastic data organization (EDO) that can support flexible
data organization strategies for different scientific
applications. EDO provides two levels of data ordering
algorithms. At the top level, it uses Hilbert space-filling
curves (SFCs) to balance the distribution of data groups,
referred to in ADIOS as process groups, across storage
targets. SFC distributes data elements across parallel
storage targets to aggregate their bandwidth without file
system restrictions and improve concurrency for the planar
reads. At a low level, EDO divides data elements within a
data group into subchunks, and it balances the cost of
seeking through subchunks and that of reading data from
them. Figure 5 shows the performance of reading S3D data
written from 4,096 cores using the ADIOS-BP file format

Figure 5: Performance improvements
from elastic data organization in

ADIOS.

(ADIOS-org), compared with using the EDO (ADIOS-sfc) and a conventional file format that
organizes the data with logically contiguous MPI-IO. We then look at three different 2D planes
and the I/O performance. Clearly, in this case EDO gives a higher and more consistent level of
performance compared with other types of file formats.
10 Conclusions

The challenges of extreme-scale scientific data processing cannot be efficiently handled by
using conventional techniques for I/O processing using store/retrieve/process operations that are
bottlenecked by conventional storage technologies. In this paper we have proposed a shift in the
paradigm for scientific data processing relying on emerging techniques in data staging, in situ
data processing, data compression, multi-resolution data streams, fast bitmap indexing, and user
accessible application monitoring. These techniques, utilized through the already established
service-oriented approach to building pipelines and elastic data formats to encompass a variety
of user needs, form the conceptual underpinnings of a next-generation I/O framework that can
alleviate many of the concerns with I/O as leadership systems begin to scale toward exascale. We
have also utilized our experience with building a successful I/O stack, ADIOS, to place
manageability and usability of the framework as a first-class design goal. The goals of the
framework described in this paper should serve as guidance for the evolution of the extreme-
scale data processing domain.

References

[1] J. Bent et al., "PLFS: a checkpoint filesystem for parallel applications," in SC, 2009.
[2] F. Zheng et al., "PreDatA - Preparatory Data Analytics on Peta-Scale Machines," in Proceedings of 24th IEEE

International Parallel and Distributed Processing Symposium (IPDPS 2010), 2010.
[3] S. Lakshminarasimhan et al., "Compressing the Incompressible with ISABELA in situ Reduction of Spatio-

Temporal Data," presented at the 17th International European Conference on Parallel and Distributed Computing
(Euro-Par 2011), 2011.

[4] K. Wu et al., "FastBit: Interactively Searching Massive Data," J. of Physics: Conference Series, vol. 180, 2009.
[5] R. Barreto et al., "Collaboration Portal for Petascale Simulations," Proceedings of the 2009 International
[6] J. Lofstead, et al., "Adaptable, Metadata Rich IO Methods for Portable High Performance IO," IEEE International

Symposium on Parallel & Distributed Processing,. IPDPS 2009, pp.1-10, May 23-29, 2009.
[7] L. Chacón, "An Optimal, Parallel, Fully Implicit Newton-Krylov Solver for Three-Dimensional Visco-Resistive

Magnetohydrodynamics," Phys. Plasmas, vol. 15, 2008.
[8] L. Chacón, "Scalable solvers for 3D magnetohydrodynamics," Journal of Physics Conference Series, vol. 125, 2008.
[9] L. Chacón, "A Non-staggered, Conservative, div(B)=0, Finite-Volume Scheme for 3D Implicit Extended

Magnetohydrodynamics in Survilinear Geometries," Comput. Phys. Comm., vol. 163, pp. 143-171, 2004.
[10] H. Abbasi et al., "DataStager: scalable data staging services for petascale applications," in HPDC '09, ed. Garching,

Germany: ACM, pp. 39-48, 2009.
[11] T. Peterka et al., " End-to-End Study of Parallel Volume Rendering on the IBM Blue Gene/P," in International

Conference on Parallel Processing, 2009, pp. 566-573, Sept. 22-25, 2009
[12] H. Childs et al., "Extreme Scaling of Production Visualization Software on Diverse Architectures," Computer

Graphics and Applications, 2011.
[13] C. C. Law et al., "An Application Architecture for Large Data Visualization," in PVG 2001: Proceedings of the

IEEE 2001 Symposium on Parallel and Large-data Visualization, 2001.
[14] R. Barreto et al., "Collaboration portal for petascale simulations," in Proceedings of the 2009 International

Symposium on Collaborative Technologies and Systems, pp. 384-393, 2009.
[15] V. Pascucci and R. J. Frank, "Hierarchical Indexing for Out-of-Core Access to Multi-Resolution Data," in

Hierarchical and Geometrical Methods in Scientific Visualization, pp. 225-241, 2002.
[16] Scientific Data Management Research Group. (2009). SRM-Lite. Available:

https://sdm.lbl.gov/twiki/bin/view/Software/SRMLite
[17] NVIDIA Corporation, What is CUDA? 2011.
[18] J. Nickolls et al., "Scalable parallel programming with CUDA," Queue, vol. 6, pp. 40-53, 2008.

[19] Khronos Group, OpenCL - The Open Standard for Parallel Programming of Heterogeneous Systems, 2011.
[20] J. Lofstead et al., "Managing Variability in the IO Performance of Petascale Storage Systems," in Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis, SC'10, 2010.
[21] J. H. Chen et al., "Terascale Direct Numerical Simulations of Turbulent Combustion Using S3D," Computational

Science & Discovery, vol. 2, p. 015001, 2009.
[22] M. Howison et al., "H5hut: A High-Performance I/O Library for Particle-Based Simulations," in Proceedings of

2010 Workshop on Interfaces and Abstractions for Scientific Data Storage (IASDS10), Heraklion, Crete, Greece,
2010.

[23] J. Lofstead et al., "Six Degrees of Scientific Data: Reading Patterns for Extreme Scale Science IO," in The 20th
International ACM Symposium on High-Performance Parallel and Distributed Computing, San Jose, 2011.

