
The ParaView Coprocessing Library: A Scalable, General Purpose In Situ
Visualization Library

Nathan Fabian∗

Sandia National Laboratories
Kenneth Moreland†

Sandia National Laboratories
David Thompson‡

Sandia National Laboratories
Andrew C. Bauer§

Kitware Inc.

Pat Marion¶

Kitware Inc.
Berk Geveci‖

Kitware Inc.
Michel Rasquin ∗∗

University of Colorado at Boulder
Kenneth E. Jansen††

University of Colorado at Boulder

ABSTRACT

As high performance computing approaches exascale, CPU capa-
bility far outpaces disk write speed, and in situ visualization be-
comes an essential part of an analyst’s workflow. In this paper, we
describe the ParaView Coprocessing Library, a framework for in
situ visualization and analysis coprocessing. We describe how co-
processing algorithms (building on many from VTK) can be linked
and executed directly from within a scientific simulation or other
applications that need visualization and analysis. We also describe
how the ParaView Coprocessing Library can write out partially pro-
cessed, compressed, or extracted data readable by a traditional vi-
sualization application for interactive post-processing. Finally, we
will demonstrate the library’s scalability in a number of real-world
scenarios.

Keywords: coprocessing, in situ, simulation, scaling

Index Terms: H.5.2 [User Interfaces (D.2.2, H.1.2, I.3.6)]:
Prototyping—User interface management systems (UIMS); I.3.6
[Methodology and Techniques]: Interaction techniques

1 INTRODUCTION

Scientific simulation on parallel supercomputers is traditionally
performed in four sequential steps: meshing, partitioning, solver,
and visualization. Not all of these components are actually run on
the supercomputer. In particular, the meshing and visualization usu-
ally happen on smaller but more interactive computing resources.
However, the previous decade has seen a growth in both the need
and ability to perform scalable parallel analysis, and this gives mo-
tivation for coupling the solver and visualization.

Although many projects integrate visualization with the solver
to various degrees of success, for the most part visualization re-
mains independent of the solver in both research and implemen-
tation. Historically, this has been because visualization was most
effectively performed on specialized computing hardware and be-
cause the loose coupling of solver and visualization through reading
and writing files was sufficient.

As we begin to run solvers on supercomputers with computa-
tion speeds in excess of one petaFLOP, we are discovering that our
current methods of scalable visualization are no longer viable. Al-
though the raw number crunching power of parallel visualization
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Figure 1: Different modes of visualization. In the traditional mode
of visualization at left, the solver dumps all data to disk. Many in
situ visualization projects couple the entire visualization within the
solver and dump viewable images to disk, as shown in the middle.
Although our coprocessing library supports this mode, we encourage
the more versatile mode at right where the coprocessing extracts
salient features and computes statistics on the data within the solver.

computers keeps pace with those of petascale supercomputers, the
other aspects of the system, such as networking, file storage, and
cooling, do not and are threatening to drive the cost past an accept-
able limit [2]. Even if we do continue to build specialized visualiza-
tion computers, the time spent in writing data to and reading data
from disk storage is beginning to dominate the time spent in both
the solver and the visualization [12].

Coprocessing can be an effective tool for alleviating the over-
head for disk storage [22], and studies show that visualization algo-
rithms, including rendering, can often be run efficiently on today’s
supercomputers; the visualization requires only a fraction of the
time required by the solver [24].

Whereas other previous work in visualization coprocessing com-
pletely couples the solver and visualization components, thereby
creating a final visual representation, the coprocessing library pro-
vides a framework for the more general notion of salient data ex-
traction. Rather than dump the raw data generated by the solver,
in coprocessing we extract the information that is relevant for anal-
ysis, possibly transforming the data in the process. The extracted
information has a small data representation, which can be written at
a much higher fidelity than the original data, which in turn provides
more information for analysis. This difference is demonstrated in
Figure 1.

A visual representation certainly could be one way to extract in-
formation, but there are numerous other ways to extract informa-
tion. A simple means of extraction is to take subsets of the data
such as slices or subvolumes. Other examples include creating iso-
surfaces, deriving statistical quantities, creating particle tracks, and
identifying features.

The choice and implementation of the extraction varies greatly
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with the problem, so it is important that our framework is flexible
and expandable. In the following sections we present the ParaView
Coprocessing Library, a general framework for coprocessing and in
situ visualization. While this idea is not new, we will show a num-
ber of design considerations we have made as part of the library
to simplify the process of integrating coprocessing into a simula-
tion code. We will also discuss some modifications we made to the
ParaView application to simplify configuring and interacting with
coprocessing. We will also show that, as a general purpose frame-
work usable with a variety of simulations, the coprocessing library
is scalable and runs efficiently on modern high performance com-
puting (HPC) clusters.

2 PREVIOUS WORK

The concept of running a visualization while the solver is running
is not new. It is mentioned in the 1987 National Science Foun-
dation Visualization in Scientific Computing workshop report [9],
which is often attributed to launching the field of scientific visual-
ization. Over the years, there have been many visualization systems
built to run in tandem with simulation, often on supercomputing
resources. Recent examples include a visualization and delivery
system for hurricane prediction simulations [4] and a completely
integrated meshing-to-visualization system for earthquake simula-
tion [24]. These systems are typically lightweight and specialized
to run a specific type of visualization under the given simulation
framework. A general coupling system exists [5] which uses a
framework called EPSN to connect M simulation nodes to N vi-
sualization nodes through a network layer. Our approach differs
in that we link the codes and run on the simulation nodes, directly
accessing the simulation data structures in memory.

SCIRun [7] provides a general problem solving environment that
contains general purpose visualization tools that are easily inte-
grated with several solvers so long as they are also part of the
SCIRun problem solving environment. Other more general pur-
pose libraries exist that are designed to be integrated into a variety
of solver frameworks such as pV3 [6] and RVSLIB [3]. However,
these tools are focused on providing imagery results whereas in our
experience it is often most useful to provide intermediate geometry
or statistics during coprocessing rather than final imagery.

Recent efforts are utilizing the largest supercomputing platforms
to run visualization post-processing. These tools include Par-
aView [10], which provides the framework for our coprocessing,
and VisIt [21].

Ultimately, the integration of coprocessing libraries into solvers
gets around the issues involved with file I/O. There are also some
related efforts in making the I/O interfaces abstract to allow loose
coupling through file I/O to be directly coupled instead. Exam-
ples include the Interoperable Technologies for Advanced Petascale
Simulations (ITAPS) mesh interface [1] and the Adaptable I/O Sys-
tem (ADIOS) [8]. If these systems become widely adopted, then it
could simplify the integration of coprocessing libraries with multi-
ple solvers.

3 THE PARAVIEW COPROCESSING LIBRARY DESIGN

The ParaView Coprocessing Library is a C++ library with an exter-
nally facing API to C, FORTRAN and Python. It is built atop the
Visualization Toolkit (VTK) [17] and ParaView [18]. By building
the coprocessing library with VTK, it can access a large number of
algorithms including writers for I/O, rendering algorithms, and pro-
cessing algorithms such as isosurface extraction, slicing, and flow
particle tracking. The coprocessing library uses ParaView as the
control structure for its pipeline. Although it is possible to con-
struct pipelines entirely in C++, the ParaView control structure al-
lows pipelines configured through Python scripts and pipelines con-
nected remotely, either through a separate cluster or directly to an

interactive visualization client running on an analyst’s desktop ma-
chine.

Solver  ParaView 
Coprocessing 

Library 

Coprocessing 
API Adaptor 

INITIALIZE() 
ADDPIPELINE(in pipeline) 
 
REQUESTDATADESCRIPTION(in time, out fields) 
COPROCESS(in vtkDataSet) 
 
FINALIZE() 

Figure 2: The ParaView Coprocessing Library generalizes to many
possible simulations, by means of adaptors. These are small pieces
of code that translate data structures in the simulation’s memory into
data structures the library can process natively. In many cases, this
can be handled via a shallow copy of array pointers, but in other
cases it must perform a deep copy of the data.

Since the coprocessing library will extend a variety of existing
simulation codes, we cannot expect its API to easily and efficiently
process internal structures in all possible codes. Our solution is to
rely on adaptors, Figure 2, which are small pieces of code written
for each new linked simulation, to translate data structures between
the simulation’s code and the coprocessing library’s VTK-based ar-
chitecture. An adaptor is responsible for two categories of input
information: simulation data (simulation time, time step, grid, and
fields) and temporal data, i.e., when the visualization and copro-
cessing pipeline should execute. To do this effectively, the copro-
cessing library requires that the simulation code invoke the adaptor
at regular intervals.

To maintain efficiency when control is passed, the adaptor
queries the coprocessor to determine whether coprocessing should
be performed and what information is required to do the processing.
If coprocessing is not needed, it will return control immediately
to the simulation. If coprocessing is needed, then the coprocessor
will specify which fields (e.g., temperature, velocity) are required of
the adaptor to complete the coprocessing. Then the adaptor passes
this information and execution control to the coprocessing library’s
pipeline.

3.1 Adaptor Design

One of the principle challenges in converting data from a running
simulation is that of memory management [22]. In many cases, a
job request is sized to fit either a time bound, that is number of
machines needed to process fast enough for some real-time need,
or a memory bound, that is enough machines with enough total
memory to fit all the data. In either case, there will always be a
non-zero cost trade-off in terms of both time and memory when
performing in situ analysis. The simplest answer to address resident
memory and time increases caused by coprocessing is to use more
machines than those required by the simulation alone. Of course,
this may not always be possible and other options must be used in
constructing the adaptor.

When memory is a limited factor, the adaptor must use one of
two solutions. The first option is to access the resident simulation
memory directly using potentially complicated pointer manipula-
tion, such as modified strides and non-standard ordering. This is
the method we used to connect efficiently with CTH and will be dis-
cussed in more detail in Section 4. The second option uses a much
smaller region of memory than normally required by carefully man-
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aging construction of analysis classes [23] or by streaming the data
in smaller consumable sizes.

If memory is not a limiting factor, the adaptor may deep copy the
data from the simulation data structure into into a VTK data object.
This comes at a cost of doubling the required resident storage. In
addition there is a CPU cost involved with copying the data, but it
is paid once at the beginning of pipeline execution and the remain-
ing pipeline’s algorithms can operate on that data. It is important
to weigh this upfront CPU cost against the cost of stalled cycles
while writing data to disk [22]. In both cases the same pipeline is
executed. But writing the data to disk for post-processing is only
an intermediate step, as these data need to be read from disk later
by the visualization tool to receive a final, fully processed result.

3.2 Pipeline Configuration Tools
Coprocessing is essentially a batch task. It runs as part of the solver,
most probably on a cluster or a supercomputer and has no user in-
terface. Therefore, it needs to be configured before the solver is
run. This configuration needs to specify at least the following.

• What should be extracted and saved? Extracted data can be
isosurfaces, slices, etc.

• What are the parameters for the extraction algorithms? Pa-
rameters can include isosurface values, particle tracker seeds,
slice location, etc.

• When should the extracted data be saved? For example the
extracted data could be saved every tenth simulation step or
when the maximum speed exceeds a certain value.

• On which part of the data should the algorithms be applied?
For example, the algorithms could be run on all the data or a
subset of the blocks determined by an identifier, by a region
of space, or by more elaborate selection criteria such as those
that have maximum speed larger than a threshold.

To simplify this input configuration we leverage the ParaView
control structure underneath the coprocessing library. We use
Python scripting to specify an input configuration. While normally
created using a text editor, this process can be difficult and error
prone. It is much more convenient to visually position a slice plane
than it is to enter a point and a normal. For example, in ParaView,
the position and the orientation of a plane can be specified using a
3D widget. This widget allows interaction by dragging the plane
back and forth and rotating it using the handles of the direction ar-
row. Based on conversations with collaborators, we believe that
most analysts prefer to interact with a graphical user interface than
to manually code a coprocessing pipeline.

To address this, we extended ParaView with a plugin that enables
it to write pipelines as coprocessing scripts. An analyst can inter-
actively create a pipeline and then write it out as a Python script,
which can be read later by the coprocessing library when the simu-
lation is running.

A major difficulty in developing such a user interface for con-
figuration is that when an analyst uses coprocessing, unlike post-
processing, most of the information about the problem is not avail-
able. For example, an initial mesh may be available, but if, during
the simulation run, the mesh is modified based on deformation (e.g.,
in fluid-solid mechanics) pipelines constructed taking into account
only the initial mesh may become quickly invalid. As another ex-
ample, without the knowledge of the full variable range during a
run, how do we present a tool from which a user can select valid
values?

In order to address this limitation, we have modified ParaView to
allow analysts to modify the ranges in any existing data. Thus we
start by working from an existing simulation output. This may be

either a similar problem or a less refined version of the goal prob-
lem that approximately matches the expected bounds and variable
ranges of the final version we wish to run. We then load this similar
output into ParaView and interactively construct a pipeline in the
usual way [18], modifying any of the stand-in ranges as necessary
to match the expected values in the final version. Finally, the co-
processing script plugin exports this information to a configuration
file that will include these modifications.

3.3 Interactive In Situ Visualization

Although we have worked to address the limitations that come
with pre-configuring a pipeline, there may still be some unexpected
mesh configurations or quantities that arise in the data over the
course of a simulation’s run. To handle these last unknowns in the
coprocessing library, we use a client-server mechanism to allow an
interactive ParaView client to connect to a server running inside a
coprocessing pipeline. We have modified the ParaView client appli-
cation to allow it to read from a coprocessing data source in place
of a file. Using this, an analyst can construct a pipeline interactively
in the ParaView client via this live data source and can change algo-
rithm parameters on-the-fly to accommodate unexpected situations.
This does not yet allow modification of the pre-configured pipeline
the coprocessing library has loaded, but this will be addressed in
future versions of the system.

Figure 3: By allowing client-server connections to the coprocessing
pipeline, we can export partially processed data to a smaller, special-
ized visualization cluster where some visualization algorithms per-
form more efficiently. In this way, ParaView’s coprocessing makes
the most efficient use of all available resources.

As an added benefit of enabling the client-server architecture
in the library, we can offload some or all of the visualization and
analysis pipeline to a separate machine, e.g., a smaller visualiza-
tion cluster with specialized graphics hardware (see Figure 3). Al-
though the algorithms discussed in Section 4 are scalable to large
HPC clusters, not all algorithms in the visualization pipeline will
scale as efficiently as the simulation, which limits the effectiveness
of direct coupling. In this situation we can funnel the data to a
smaller cluster with more memory to handle the visualization task.
Instead of a memory-to-memory copy, the tradeoff becomes a copy
at network speed. However, network speeds are still generally much
faster than writing data to, and later reading it from, disk. Finally,
by decoupling some of the algorithms from the main computation,
we can connect, disconnect, and modify them at will, much like the
interactive client, without interfering with the simulation’s perfor-
mance.

4 RESULTS

The ParaView Coprocessing Library is designed to be general pur-
pose. That is, it is intended to be integrated into a variety of solvers
and used in multiple problem domains. First, we demonstrate the
general scalability of the framework. Then, we will look at specific
results coupling with simulations.
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4.1 Algorithm Performance

In order to test general framework performance, we look at two
commonly used ParaView algorithms, Slice and Decimate. We also
take a look at corresponding file writes of the algorithms’ outputs.
While the output size from Slice and Decimate will be significantly
smaller, therefore writing out much faster, than the original input
mesh, this gives us an opportunity to look at what impact, if any,
the framework’s file representation has on scalability.

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.1 

0  5000  10000  15000  20000  25000  30000  35000 

Sl
ic
e 
Ti
m
e 
(s
ec
) 

Cores 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0  5000  10000  15000  20000  25000  30000  35000 

D
ec
im

at
e 
Ti
m
e 
(s
ec
) 

Cores 

Figure 4: Running time of extracting slices (top) and decimating ge-
ometry (bottom) from PHASTA data. The dashed lines indicate per-
fect scaling.

The running time for the two algorithms are shown in Figure 4.
These curves are from a strong scaling study where the size of the
input mesh does not change with the quantity of cores. The red
dashed line in the images represents optimal scaling. As expected
with strong scaling, the time converges to a minimum running time.
The curves of Slice and Decimate follow the same trajectory as
the optimal curve and both are only marginally less efficient than
optimal.

The time to write for each of the two algorithms is shown in Fig-
ure 5. In this case the expected optimal performance is not shown,
but would be drawn as a horizontal line incident with the first point.
The optimal line is flat for file I/O because although we are in-
creasing the amount of computing resources, we are using the same
amount of file I/O resources each time, for a given mesh size. How-
ever, despite the optimal line being flat, there is some overhead in
our implementation due to communication before writing to disk.
The variance in the write times is due to contention with other jobs
running on the cluster writing out to the same shared I/O resource.
Although the performance of the write is not bad, it grows slower
than linear with the number of cores, which is not optimal. We are
continuing to investigate more efficient methods for writing results.
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Figure 5: Time to write slices (top) and decimated geometry (bottom)
extracted from PHASTA data.

4.2 Simulation Coupling
We present three simulation codes, Phasta, CTH and S3D, that we
have connected with the library and the results of running with these
systems.

4.2.1 Phasta
PHASTA is a Parallel, Hierarchic (2nd to 5th order accurate), Adap-
tive, Stabilized (finite-element) Transient Analysis tool for the so-
lution of compressible or incompressible flows. Typical applica-
tions not only involve complicated geometries (such as detailed
aerospace configurations) but also complex physics (such as fluid
turbulence or multi-phase interactions). PHASTA [25] has been
shown to be an effective tool using implicit techniques for bridging
a broad range of time and length scales using anisotropic adaptive
algorithms [14] along with advanced numerical models of fluid tur-
bulence [19, 20]. Even though PHASTA uses implicit time integra-
tion and unstructured grids, it demonstrates strong scaling on the
largest available supercomputers [16, 13] where a 512 fold increase
(9 processor doublings) yielded a 424 fold time compression on a
fixed mesh.

Although weak scaling applications can double the mesh size
with each processor doubling to bring ever more detailed resolu-
tion in finite time, in this paper we push PHASTA’s strong scaling
ability to compress time-to-solution so as to evaluate the coprocess-
ing library’s ability to provide a live view of an ongoing simulation
near PHASTA’s strong scaling limit. The application involves sim-
ulation of flow over a full wing where a synthetic jet [15] issues an
unsteady crossflow jet at 1750 Hz. One frame of this live simulation
is shown in Figure 6 where two different filter pipelines have been
evaluated in two separate runs of PHASTA. The mesh for these
runs used 22M tetrahedral elements to discretize the fluid domain.
The flow was solved on 16k (16,384) cores of IBM BG/P at the
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Figure 6: Isosurface of vertical velocity colored by speed and cut plane through the synthetic jet (both on 22 Million element mesh).

Argonne Leadership Computing Facility. This facility has a high
speed network to up to 100 visualization nodes, which share 200
GPUs (e.g, 25 Nvidia S4s). For this study we varied the number
of visualization nodes to evaluate the coprocessing library’s ability
to provide a live view of the ongoing flow simulation and to evalu-
ate the tax levied on the flow solver. The motivation for this study
is based on our ongoing development of a computational steering
capability wherein we would like to iterate the key parameters of
the flow control (e.g, the frequency, amplitude, location etc) guided
by live visualization. In the studies below we consider the scenario
with the highest stress on the coprocessing library, where the filter
pipeline is evaluated on every step. In this high time compression
mode, the local mesh size on each processor is such that the flow
solver uses a small fraction of available memory, allowing a data
copy to be used for the most efficient in situ data extract process.

The first filter pipeline that was evaluated was a slice that cuts
through the synthetic jet cavity and the jet cross flow. As this plane
is easily defined in advance of the simulation, it did not need to
be altered while the simulation was ongoing so there was no live
updating of the filter pipeline making every step very close to the
same computational effort. The computational time was measured
in several stages of the covisualization process. The time spent in
the flow solve was verified to be independent of the filter and aver-
aged 0.895 s (seconds) per step. Since we would like to see every
time step in this case, the simulation is blocked until the data ex-
tract is delivered to the coprocessing nodes. For this filter pipeline
the total blocked time was 0.125 s resulting in a 14.4% tax on the
simulation. Further breaking down this tax, the key contributions
are: the data copy (0.0022 s), filter execution (0.0066 s), aggre-
gation (0.0053 s), transport via VTK sockets (0.0148 s), initialize
pipeline (0.0620 s) and cleanup (0.0345 s). Note that the last two
account for 75% of the time. Future developments that allow these
two costs to be done only on the first and last step are straightfor-
ward and worthwhile for runs where the filter pipeline is not being
altered throughout the simulation. With these two removed the tax
of a slice visualization would be reduced to 3.6%, which is very
small for such a worst cases scenario (visualize every step of a very
fast simulation). Clearly if only every nviz steps were visualized this
tax would be amortized across nviz steps.

The aggregation time and the transport time show a significant
dependance upon the number of sockets since this directly sets the
number of levels that the data must be reduced and communicated
on the BGP. By varying the number of sockets per pvserver, the ag-
gregation time was able to be reduced substantially. Although this
does result in more, smaller messages being sent over more sock-

ets to a finite number of pvservers and ultimately an appending of
the data onto the fixed number of pvservers, the penalty to these
phases was small and more than offset by the reduction in aggre-
gation time. The results described above were for 10 Eureka nodes
running 20 pvservers and 16 sockets per pvserver (total of 320 sock-
ets). When only 10 pvservers were used with 10 nodes and 1 socket
per pvserver (total of 10 sockets), the total blocking time increased
33%. If we again discount the setup and close time (which are un-
affected) the increase is 236% (e.g. from 3.6% to 8.4%).

A similar analysis on the contour filter shows similar trends on
this somewhat heavier filter (e.g., the data extract of the contour
averages 79.9 while the slice was 9.44 MB or 8.38 times as large).
Here the current covis tax was 23.5%, which could be reduced to
8.86% with the elimination of setup and close costs. Again, the
number of sockets played a large role increasing these taxes by
241% and 475%, respectively.

Note that the appending phase on the pvserver is not blocking
the solver application so long as the pvserver can append and ren-
der the data before the next time time step’s data arrives. Even this
blocking could be removed by relaxing the constraint of a live vi-
sualization with tight synchronicity between the visualization and
the solve but, since the goal is to demonstrate computational steer-
ing capability, this constraint is maintained in these studies. For the
case just described, the pvserver is able to manage this constraint
down to 2 pvservers running on 1 node with 2 sockets per pvserver.
The contour begins to show some delay (not completing its ren-
dering before the next data set arrived) in this configuration but is
fine at the next, less stressful configuration of 5 pvservers, 5 nodes
and 16 sockets per node. It is clear that live visualization of com-
plex, unsteady simulations is possible with the in situ data extract
capability provided by this coprocessing library on currently avail-
able hardware. Larger full machine studies of the same process on
meshes up to 3.2B elements are currently underway [11].

4.2.2 CTH
CTH is an Eulerian shock physics code that uses an adaptive mesh
refinement (AMR) data model. We examine a simulation of an ex-
ploding pipe bomb shown in Figure 7. Using an algorithm that finds
water-tight fragment isosurfaces over each material volume fraction
within the AMR cells, we can find fragments that separate from the
original mesh and measure various quantities of interest in these
fragments.

The challenge in finding an isosurface over values in an AMR
mesh is in the difference of resolution between cells. More so this
difference can also bridge processor boundaries, requiring ghost
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Figure 7: Fragments detected in a simulation of an exploding pipe.

cell information at two different resolutions. We handle this by
finding connected neighbors using an all-to-all communication at
the beginning of computation and then exchanging ghost data be-
tween only connected neighbors and finally perform the AMR cor-
rected isosurface algorithm. The result is a polyhedral mesh surface
that contains no gaps and can be significantly smaller than the orig-
inal AMR mesh. In some cases, where an analyst is only concerned
with a histogram of fragment quantities, the data written can be on
the order of bytes.

One other particular challenge associated with CTH is the mem-
ory layout. Although the blocks of data are represented sequen-
tially, the multidimensional order is different from what is used in
VTK. To address this, we developed an interface wrapper above the
standard VTK array. The wrapper reimplements the array’s acces-
sor functions to handle the order difference between the two archi-
tectures. Although more expensive (additional pointer arithmetic)
than direct, iterable access to the data, it saves us from a mem-
ory copy. Analysts tend to run CTH at the upper edge of available
memory, so deep copying is usually not an option.

We ran this pipeline on the new ASC/NNSA machine Cielo us-
ing from 1 thousand to 32 thousand cores. To simplify the scaling
process, we increase only the depth limit on mesh refinement to
increase the size of the problem. By incrementing this parameter
the mesh size increases by at most a factor of eight, but in practice
increases less than eight due to CTH choosing not to refine certain
regions. We run each depth as a strong scaling problem up until the
number of blocks per core dropped below a minimum suggested by
the simulation. We then increase the depth and rerun to larger scale
until we are able to run on 32 thousand cores. The results of these
runs are shown in Figure 8 with each refinement depth represented
as a separate line. The sizes in number of blocks resulting from
these refinement levels are also shown.

Although this algorithm works well enough to achieve a high
number of communicating cores, as is visible in Figure 8 it is no
longer performing any speedup beyond 16 thousand processors.
This does not diminish overall speedup of the run when measured
in combination with the simulation, and, more importantly, it is
still much faster than writing the full dataset to disk, but there is
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Figure 8: Fragment detection algorithm’s scaling results on a set of
different refinement depths. Each line represents one depth run for a
set of core counts corresponding to one problem size. The first image
shows running time. The second image shows the corresponding
blocks per processor at each refinement. The final image shows a
combination of the two as the rate of how many blocks are processed
per second through the visualization pipeline.
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room for increased efficiency. For instance, the all-to-all calcu-
lation is performed at each iteration of coprocessing pipeline and
could be cached for a given configuration of AMR blocks, such
that it would only need to be recomputed when the AMR hierarchy
is redefined. Because much of this same connectivity information
is already available and used by the simulation code, it may be pos-
sible to expose this information to the fragment detection algorithm
so that the all-to-all communication is not necessary at all.

4.2.3 S3D
Another application of interest is S3D, which simulates turbulent
reacting flows. S3D is used to simulate, for example, fuels burn-
ing in high-speed flows, which provides vital insight for improving
the efficiency of automobile engines. Figure 9 shows analysis per-
formed in situ as an attempt to characterize autoignition: principal
component analysis (PCA) is run on 8× 8× 8 blocks of the simu-
lation to determine which species concentrations are correlated to
others inside each block. This results in a number of eigenvalues
and eigenvectors for each block as illustrated in Figures 9 and 10.

Figure 9: Demonstration of PCA on a reduced-resolution subset of a
lifted ethylene jet simulation. On the left is the concentration of one
chemical species. To the right is a PCA of 8×8×8 sub-blocks colored
by the magnitude of index-0 eigenvalue. Low eigenvalue magnitudes
indicate regions that might be discarded to reduce disk bandwidth.

Figure 10: Eigenvalue magnitudes from PCA of the full-resolution
(2025× 1600× 400) simulation, computed on 1,500 processes. Au-
toignition occurs about midway up the simulated domain.

The eigenvalues indicate the importance of the correlation
whereas the eigenvectors identify the tendency of each species to
participate in the associated reaction mode exhibited in the block.
If we wrote out the eigenvalues and eigenvectors instead of raw

simulation results, we could save approximately 95% of the disk
bandwidth per checkpoint. However, because low eigenvalues rep-
resent uninteresting or non-physical reaction modes, we need not
write them. Figure 11 shows how eigenvalue magnitude varies as
the index of the eigenvalue is increased. Only the first few eigenvec-
tors in any block are likely to be of interest, which has the potential
of saving an additional 80% of the disk bandwidth. Furthermore, it
helps to identify which blocks are of interest and which are not so
that we might save raw simulation data in regions of interest.
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Figure 11: Plot of the maximum of the ith eigenvalue magnitude over
the entire domain vs. i. We see how only the first few eigenvectors
are of interest, resulting in a large potential savings of disk bandwidth.

5 CONCLUSION

Writing, reading, and analyzing simulation results can take an in-
ordinate amount of time by conventional means. In these cases,
coprocessing should be considered. Not only can the coprocess-
ing computations be done on machines that are powerful enough,
the savings in file I/O and data management are a big benefit as
well. With coprocessing, higher accuracy can be obtained without
the need to write the full simulation data out every time step.

ACKNOWLEDGEMENTS

Sandia National Laboratories is a multi-program laboratory man-
aged and operated by Sandia Corporation, a wholly owned sub-
sidiary of Lockheed Martin Corporation, for the U.S. Department
of Energy’s National Nuclear Security Administration under con-
tract DE-AC04-94AL85000.

REFERENCES

[1] K. Chand, B. Fix, T. Dahlgren, L. F. Diachin, X. Li, C. Ollivier-Gooch,
E. S. Seol, M. S. Shephard, T. Tautges, and H. Trease. The ITAPS
iMesh interface. Technical Report Version 0.7, U. S. Department of
Energy: Science Discovery through Advanced Computing (SciDAC),
2007.

[2] H. Childs. Architectural challenges and solutions for petascale post-
processing. Journal of Physics: Conference Series, 78(012012), 2007.
DOI=10.1088/1742-6596/78/1/012012.

[3] S. Doi, T. Takei, and H. Matsumoto. Experiences in large-scale vol-
ume data visualization with RVSLIB. Computer Graphics, 35(2), May
2001.

[4] D. Ellsworth, B. Green, C. Henze, P. Moran, and T. Sandstrom. Con-
current visualization in a production supercomputing environment.
IEEE Transactions on Visualization and Computer Graphics, 12(5),
September/October 2006.

[5] A. Esnard, N. Richart, and O. Coulaud. A Steering Environment for
Online Parallel Visualization of Legacy Parallel Simulations. In Pro-
ceedings of the 10th International Symposium on Distributed Simu-

95



lation and Real-Time Applications (DS-RT 2006), pages 7–14, Torre-
molinos, Malaga, Spain, October 2006. IEEE Press.

[6] R. Haimes and D. E. Edwards. Visualization in a parallel processing
environment. In Proceedings of the 35th AIAA Aerospace Sciences
Meeting, number AIAA Paper 97-0348, January 1997.

[7] C. Johnson, S. Parker, C. Hansen, G. Kindlmann, and Y. Livnat. Inter-
active simulation and visualization. IEEE Computer, 32(12):59–65,
December 1999.

[8] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin. Flex-
ible IO and integration for scientific codes through the adaptable IO
system (ADIOS). In Proceedings of the 6th International Workshop on
Challenges of Large Applications in Distributed Environments, pages
15–24, 2008.

[9] B. H. McCormick, T. A. DeFanti, and M. D. Brown, editors. Visual-
ization in Scientific Computing (special issue of Computer Graphics),
volume 21. ACM, 1987.

[10] K. Moreland, D. Rogers, J. Greenfield, B. Geveci, P. Marion, A. Ne-
undorf, and K. Eschenberg. Large scale visualization on the Cray XT3
using ParaView. In Cray User Group, May 2008.

[11] M. Rasquin, P. Marion, V. Vishwanath, M. Hereld, R. Loy,
B. Matthews, M. Zhou, M. Shephard, O. Sahni, and K. Jansen. Co-
visualization and in situ data extracts from unstructured grid CFD at
160k cores. In Proceedings of the SC11, submitted, 2011.

[12] R. B. Ross, T. Peterka, H.-W. Shen, Y. Hong, K.-L. Ma, H. Yu,
and K. Moreland. Visualization and parallel I/O at extreme
scale. Journal of Physics: Conference Series, 125(012099), 2008.
DOI=10.1088/1742-6596/125/1/012099.

[13] O. Sahni, C. Carothers, M. Shephard, and K. Jansen. Strong scal-
ing analysis of an unstructured, implicit solver on massively parallel
systems. Scientific Programming, 17:261–274, 2009.

[14] O. Sahni, K. Jansen, M. Shephard, C. Taylor, and M. Beall. Adaptive
boundary layer meshing for viscous flow simulations. Engng. with
Comp., 24(3):267–285, 2008.

[15] O. Sahni, J. Wood, K. Jansen, and M. Amitay. 3-d interactions be-
tween finite-span synthetic jet and cross flow at a low reynolds number
and angle of attack. Journal of Fluid Mechanics, 671:254, 2011.

[16] O. Sahni, M. Zhou, M. Shephard, and K. Jansen. Scalable implicit
finite element solver for massively parallel processing with demon-
stration to 160k cores. In Proceedings of the SC09, Springer, Berlin,
2009.

[17] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit:
An Object Oriented Approach to 3D Graphics. Kitware Inc., fourth
edition, 2004. ISBN 1-930934-19-X.

[18] A. H. Squillacote. The ParaView Guide: A Parallel Visualization Ap-
plication. Kitware Inc., 2007. ISBN 1-930934-21-1.

[19] A. E. Tejada-Martı́nez and K. E. Jansen. A dynamic Smagorinsky
model with dynamic determination of the filter width ratio. Physics of
Fluids, 16:2514–2528, 2004.

[20] A. E. Tejada-Martı́nez and K. E. Jansen. A parameter-free dynamic
subgrid-scale model for large-eddy simulation. Comp. Meth. Appl.
Mech. Engng., 195:2919–2938, 2006.

[21] K. Thomas. Porting of VisIt parallel visualization tool to the Cray
XT3 system. In Cray User Group, May 2007.

[22] D. Thompson, N. D. Fabian, K. D. Moreland, and L. G. Ice. Design
issues for performing in situ analysis of simulation data. Technical
Report SAND2009-2014, Sandia National Laboratories, 2009.

[23] D. Thompson, R. W. Grout, N. D. Fabian, and J. C. Bennett. Detect-
ing combustion and flow features in situ using principal component
analysis. Technical Report SAND2009-2017, Sandia National Labo-
ratories, 2009.

[24] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L. Ma,
and D. R. O’Hallaron. From mesh generation to scientific visualiza-
tion: An end-to-end approach to parallel supercomputing. In Proceed-
ings of the 2006 ACM/IEEE conference on Supercomputing, 2006.

[25] C. H. Whiting and K. E. Jansen. A stabilized finite element method
for the incompressible Navier-Stokes equations using a hierarchical
basis. International Journal of Numerical Methods in Fluids, 35:93–
116, 2001.

96


