
A Need for Better Management of Heterogenous HPC Resources

Kenneth Moreland
Sandia National Laboratories

Chuck Atkins
Kitware, Inc.

1 Introduction

Achieving computational rates beyond the petascale re-
quires an increasing amount of heterogeneity in our high-
performance computing (HPC) hardware. This heterogene-
ity, in turn, means that a node of an HPC system can no
longer be considered a monolithic resource. Rather, a node
has many individual components such as processors, cores,
SMT threads, accelerators, and tierd memories that must be
further allocated and managed by. . . something.

Currently, that something is an ad-hoc mix of arguments
and environments when launching jobs. We follow the same
process used on prior HPC systems with nodes of uniform
components; unfortunately, the shims introduced to provide
the additional specification of node-level components are in-
consistent and unwieldy. As we shall see, even at our current
moderate level of heterogeneity our effective utilization of
HPC software is hampered by poor resource management.

Future systems will continue to grow in heterogeneity both
in number and type of resources. Our current approach to
resource management cannot scale. We need a more cohe-
sive approach to managing heterogeneous resources in HPC
systems.

2 A Case Study

The motivation for this position paper comes from the issues
our team has encountered while supporting the ParaView
application [4] on modern HPC systems such as Trinity [3].
ParaView is a large and complex visualization application
that has been developed for many years which, in light of
industry trends toward multi-core processing, has been ag-
gressively introducing intra-node parallel techniques.

Initially, installations of the latest version of ParaView
performed poorly in large part because the previous launch-
ing technique spawned many processes per-node, which,
along with the new multi-core code, in turn, spawned over-
lapping threads starving one another for cycles. The solution
proved to be quite involved as the optimal number of pro-
cesses was somewhere between one process per-node and one
per-core. In addition to manually specifying on-node MPI
decomposition via scheduler arguments, the allocation and
affinity placement of threads used within each process is left
to a variety of configurations. For example, code that relies
on OpenMP can be configured through environment vari-
ables, while other libraries, such as Intel Thread Building
Blocks (TBB), or just Unix pthreads, have a different set
of independent environment variables. Tracking down the
documentation for each, if it exists at all, can be difficult at
best.

Further complications occurred because of the different
threading solutions used by ParaView. The surface render-
ing, ray casting, and computational geometry libraries each
have mechanisms for configuring their threads. Even though
the libraries run mutually exclusively, the configuration of
one can, and often does, interfere with the other. For exam-
ple, configuring one to bind threads to a desired set of cores
can inadvertently cause another to disregard said cores and
serialize itself. We continue to struggle with these issues.

Finally, all these configurations are presupposed on the
notion that the job launching system can control these re-
sources in the first place. To be fair, job scheduling sys-
tems are getting better about providing controls for hetero-
geneous resources. SLURM and Torque, for example, both
have “generic resource” features [1, 2] allowing users to spec-
ify site-specific resources like GPUs and configure the envi-
ronment accordingly. Still, this requires end users to know
everything about both the site-specific configuration options
and the needs of the application being run.

3 Problems with Current Resources Management

As demonstrated in the previous case study, our current
approach for managing the allocation of heterogeneous re-
sources (or lack thereof) through job scheduling and execu-
tion imposes several serious problems.

1. The problem of resource allocation is pushed to end
users. Those with the most expertise in how the soft-
ware should run are (hopefully) those writing the HPC
software. They are the ones that should be tasked with
defining the optimal resource allocation. However, the
tools to managed resource allocation are outside the
scope of HPC software layers like MPI and are instead
dropped to the environment customized to the HPC
installation. This consequently causes the burden to
drop to end users attempting to run the software, which
is sometimes the group least equipped to do so. End
users are also often the largest and least cohesive group
involved with HPC software, so the problem is likely
re-solved numerous times.

2. Resources are specified in a “backward” manner. Af-
ter being assigned some collection of nodes, current job
schedulers assign processes to cores by taking the total
number of processes to create and the order in which
cores are assigned. This, however, is backward from
how developers usually think about core/resource allo-
cation. Modern programming practice for parallel HPC
generally dictates that problems are decomposed into
tasks or blocks, which means a developer is focused on
what collection of cores and other resources are most
effective for a particular process. Getting each process
to have the desired cores requires the user to take the
desired number of cores per process, convert that to
the number of processes per node, convert that to the
number of total processes for the job, and then figure
out what order of process-to-core assignment results in
the desired grouping of cores.

3. There is no consistent way to specify all resources.
Nodes are assigned by the scheduler. Cores are as-
signed to processes partially by the execute command,
but also require configuration of the threading li-
braries. OpenMP is configured through environment
variables, but most other threading libraries are con-
figured through their API. CUDA devices also have to
be manged through a library API, but the management
also has to coordinate with MPI so that resources are
assigned evenly (even though MPI provides little help



Moreland, Atkins A Need for Better Management of Heterogenous HPC Resources

in this regard). Newer resource types like burst buffers
have no conventional interface at all, and so the means
to allocate it changes from system to system.

4. The management of one library can conflict with the
management of another. For example, in our experi-
ence we have found that configuring one multithreaded
library to the correct number of threads on the cor-
rect cores can unintentionally restrict another library
from running on those cores even though the two run
mutually exclusively.

4 Proposed Solution

This position paper is a call to the HPC software stack com-
munity to provide better solutions for runtime resource man-
agement. Our vision is to have a central management library
that is aware of the resources available on the system and
the respective libraries that interface with them. For lack
of a better term, we will use Resource Manager Library to
refer to this hypothetical library.

The Resource Manager Library coordinates with the job
scheduler and other resource libraries to give a consistent
interface to resource management. The Resource Manager
Library is not meant to dictate or replace the interface to
these resources in the way that MPI specifies the interface to
pass messages on an interconnect. Rather, the scope of the
Resource Manager Library is to configure and coordinate the
resources and then let the HPC software interface with the
resource directly. The coordination of these resources must
occur regardless of the existence of the Resource Manager
Library . Having the Resource Manager Library means that
the challenges of coordinating these resources are solved once
and applied across our HPC software.

We envision execution with the Resource Manager Library
to work roughly as follows.

1. The job schedule command (e.g. qsub or salloc) specifies
the group of resources to allocate (in terms of nodes)
along with optional details for accounts, queues, con-
straints, etc. This is roughly the same as today.

2. After the job is scheduled, the launch command (e.g.
jobrun or srun) does not need any arguments. Not even
the number of processes to launch. By default, the im-
plementation launches one process per node (which is
not necessarily the amount the application will eventu-
ally see).

3. When the software launches, it does not directly call
MPI Init. Instead, it interfaces with the Resource Man-
ager Library . The application provides directives to the
Resource Manager Library about how resources should
be allocated such as provide one process per NUMA
domain or attache one process to each CUDA device.
The application then calls an initialize function in the
Resource Manager Library .

4. The Resource Manager Library ’s initialize function
forks (or kills) processes to match the desired resource
allocations. It then calls MPI Init to initialize the MPI
layer. That way when the Resource Manager Library ’s
initialize function returns, the application’s state is
equivalent to if the user specified the resource man-
agement through the job scheduler’s arguments. The
Resource Manager Library also sets the state of the
other resource libraries to use the allocated resources.
For example, it would set up threading interfaces like
OpenMP, TBB, and pthreads to use the prescribed
number of threads on some set of cores. It could also
tell CUDA to default to a particular device.

5 Research Challenges

The work discussed in this paper has a heavy development
focus to it. Nevertheless, there are several research chal-
lenges to be addressed including the following.

• The operation of the hypothetical Resource Manager
Library is predicated on the application’s ability to
specify the resources it needs. What are the most ef-
fective means of specifying resource requirements? For
example, is it best for a multithreaded application to
specify preferred thread group size or preferred local-
ization?

• What is the best way to ensure that resources are
shared as expected? Is it possible to enforce resource
allotments through protected modes or other means?

• Is it possible (or desirable) to change resource alloca-
tions within an application. For example, if an appli-
cation is using two libraries where one desires many
threads per process and the other does not use threads
and desires the maximum amount of MPI processes, is
it possible to switch back and forth between the two?

• Is this resource management best configured as its own
layer with MPI, or is it more efficient to manage at a
higher level as part of an AMT system like Legion [5]
or DHARMA [6]. How does an AMT system manage
the added complexity of heterogeneous systems? And
could such a system still support applications using a
message passing approach?

6 Conclusion

There is no consistent management of heterogeneous re-
sources in HPC systems. Rather, the management of dif-
ferent types of resources have grown independently by the
hardware and software developers of these resources. As
the amount of heterogeneity in our HPC system grows, they
quickly become unmanageable. We identify a need for a cen-
tralized system that can work with both job scheduler and
application software.

7 Acknowledgments

Thanks to W. Alan Scott and Vitus Leung from Sandia Na-
tional Laboratories and to Berk Geveci from Kitware, Inc.

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engi-
neering Solutions of Sandia LLC, a wholly owned subsidiary
of Honeywell International Inc. for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

References

[1] Slurm workload manager: Generic resource (GRES) schedul-
ing. https://slurm.schedmd.com/gres.html, Nov. 2017.

[2] Torque resource manager: Admistrator guide 6.1.1.
http://docs.adaptivecomputing.com/torque/6-1-1/

adminGuide/torqueAdminGuide-6.1.1.pdf, Mar. 2017.
[3] Trinity: Advanced technology system. http://www.lanl.gov/

projects/trinity/, Nov. 2017.
[4] J. Ahrens, B. Geveci, and C. Law. ParaView: An end-user

tool for large data visualization. In Visualization Handbook.
Elesvier, 2005. ISBN 978-0123875822.

[5] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion:
Expressing locality and independence with logical regions. In
Supercomputing, November 2012.

[6] J. Bennett, R. Clay, et al. ASC ATDM level 2 milestone
#5325: Asynchronous many-task runtime system analysis and
assessment for next generation platforms. Technical Report
SAND2015-8312, Sandia Nat’l Labs, 2015.

SAND 2018-5743 R 2


