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ABSTRACT

Experts agree that the exascale machine will comprise processors
that contain many cores, which in turn will necessitate a much
higher degree of concurrency. Software will require a minimum
of a 1,000 times more concurrency. Most parallel analysis and vi-
sualization algorithms today work by partitioning data and running
mostly serial algorithms concurrently on each data partition. Al-
though this approach lends itself well to the concurrency of current
high-performance computing, it does not exhibit the appropriate
pervasive parallelism required for exascale computing. The data
partitions are too small and the overhead of the threads is too large
to make effective use of all the cores in an extreme-scale machine.
This paper introduces a new visualization framework designed to
exhibit the pervasive parallelism necessary for extreme scale ma-
chines. We demonstrate the use of this system on a GPU processor,
which we feel is the best analog to an exascale node that we have
available today.

Index Terms: D.1.3 [Software]: Programming Techniques—
Concurrent Programming

1 INTRODUCTION

Most of today’s visualization libraries and applications are based
off of what is known as the visualization pipeline [22, 29]. The
visualization pipeline is the key metaphor in many visualization de-
velopment systems such as the Visualization Toolkit (VTK) [49],
SCIRun [37], the Application Visualization System (AVS) [53],
OpenDX [1], and Iris Explorer [20]. It is also the internal mecha-
nism or external interface for many end-user visualization applica-
tions such as ParaView [50], VisIt [28], VisTrails [6], MayaVi [44],
VolView [26], OsiriX [48], 3D Slicer [42], and BioImageXD [25].

In the visualization pipeline model, algorithms are encapsulated
as filter components with inputs and outputs. These filters can be
combined by connecting the outputs of one filter to the inputs of
another filter. The visualization pipeline model is popular because
it provides a convenient abstraction that allows users to combine
algorithms in powerful ways.

Although the visualization pipeline lends itself well to the con-
currency of current high performance computing [17,33,39,43,56],
its structure prohibits the necessary extreme concurrency required
for exascale computers. This paper describes the design of the Dax
toolkit to perform Data Analysis at Extreme scales. The computa-
tional unit of this framework is a worklet, a single operation on a
small piece of data. Worklets can be combined in much the same
way as filters, but their light weight, lack of state, and small data ac-
cess make them more suitable for the massive concurrency required
by exascale computers and associated multi- and many-core proces-
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Figure 1: Comparison between traditional visualization pipeline exe-
cution and Dax pipeline execution. Dax makes it possible to achieve
a higher degree of concurrency by moving the iteration over mesh
elements out of the algorithm and letting the framework manage the
parallelism.

sors. Figure 1 highlights the difference between a Dax pipeline exe-
cution with a traditional visualization pipeline provided by existing
visualization frameworks such as VTK.

The Dax toolkit is designed to provide a “pervasive parallelism”
throughout all its visualization algorithms. It does this by provid-
ing programming constructs, the worklets, that operate on a very
fine granularity of data. The worklets are designed as serial compo-
nents, and the Dax toolkit handles whatever layers of concurrency
are necessary, thereby removing the onus from the visualization al-
gorithm developer.

This paper describes the motivation for developing the Dax
toolkit, the basic design of the Dax system, and the introductory
abilities of Dax. We demonstrate the simple operation of Dax, show
how its use is similar to the popular VTK, and demonstrate how Dax
allows an equivalent algorithm to take advantage of GPU accelera-
tors.

2 RELATED WORK

Since its inception, many improvements have been made to the vi-
sualization pipeline to allow it to function well with large data. By
dividing tasks, pipelines, or data among processes, the serial algo-
rithms of a visualization pipeline can work in parallel with little or
no modification [2]. In particular, the data parallel mode, partition-
ing the data and replicating the pipeline, performs well on current
high performance computers [11].

The basic function of a visualization pipeline is to process data
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flowing from upstream to downstream. More recent visualiza-
tion pipeline implementations, such as those in VTK, ParaView,
and VisIt, implement more advanced control mechanisms and pass
meta-data throughout the pipeline. These control mechanisms can,
for example, subset the data in space [16] or time [7] based on the
needs of the individual computing units. Recent work is coupling
this mechanism with query-driven visualization techniques [21] to
better sift through large data sets with limited resources.

These control mechanisms can also be used to stream data, in
pieces, through the pipeline [3]. More recent advances allow us
to prioritize the streaming, thus allowing to compensate for high
latency of streaming by presenting the most relevant data first [4].
This in turn has lead to multi-resolution visualization [38,57]. Mul-
tiple resolutions further hide limited resource latency by first pre-
senting low-detailed results and then iteratively refining them as
needed. This assumes, of course, that a multi-resolution hierar-
chy of data is already built (a non-trivial task for unstructured
data). This work is being implemented in a traditional visualization
pipeline, but could potentially be leveraged in many other types of
frameworks, including Dax.

Another recent research project extends the visualization-
pipeline streaming mechanism by automatically orchestrating task
concurrency in independent components of the pipeline [54, 55].
The technique adapts the visualization pipeline to multi-core pro-
cessors, but it has its limitations. There is a high overhead with re-
gard to each execution thread created; they require isolated buffers
of memory for input and output and independent call stacks, which
typically run many calls deep. Furthermore, algorithms in the fil-
ters are optimized to iterate over sizable data chunks, which will
not be the case with massive multi-threading. At some point the al-
gorithms will have to be reengineered to process small data chunks
or themselves be multithreaded. It will be necessary to leverage a
threading paradigm like the one proposed for Dax to engineer this
kind of change on a full-featured toolkit.

An alternative data analysis and visualization architecture is im-
plemented by the Field Encapsulation Library (FEL) [8]. FEL pro-
vides abstractions that allows programs to access the structure and
fields of a mesh independently from the data storage. More impor-
tantly, FEL uses C++ template constructs to build functional defi-
nitions of fields. These fields compute values on demand when re-
quested. These functional fields are similar in nature to the worklets
defined in our work.

Although the main concerns addressed by FEL, mesh flexibility
and memory overhead, is Dax, FEL does not adequately manage the
complexity of massive multi-threading. To support pervasive paral-
lelism we need to hide the complexity of work distribution. Also,
as the name implies, the Field Encapsulation Library is primarily
concerned with defining, accessing, and operating on fields. There
is no mechanism for topological operations that change or create
meshes. Nor is there any explicit method for aggregation. In order
to address the varied data analysis and visualization needs, the Dax
project will soon address these features.

Another system with constructs similar to Dax is provided by In-
tel Threading Building Blocks (TBB) [45], a popular open-source
C++ library for multi-core programming. In addition to high-level
parallel constructs such as parallel looping and reduction opera-
tions, TBB also provides a simple pipeline execution environment.
Like Dax, TBB’s pipeline mechanism partitions data based on
available hardware threads, handing-off the resulting partitions to
caller-supplied functions that each iterate over their assigned ranges
to perform computation. Thus, TBB provides a hybrid abstraction
where callers are isolated from some of the complexity of schedul-
ing work across multiple cores, but each function is still responsible
for iteration over its subset of the data.

This approach is appropriate for current architectures where an
individual host has a relatively small number of hardware threads,

but requires that function authors continue to deal with data orga-
nization and iteration issues on an ad-hoc basis. Further, TBB does
not address issues of scheduling or communication across multiple
hosts in a distributed platform. Dax envisions a stricter separation
of responsibilities where worklets are responsible for computation
only, leaving data retrieval and inter-processor communication to
separate executive components.

The MapReduce programming model [18] is also similar in spirit
to our proposed framework. Like our approach, MapReduce simpli-
fies parallel programming by defining algorithms in terms of local,
stateless operations. However MapReduce, not being designed as
such, does not have all the conventions necessary for a fully fea-
tured visualization and data analysis library. For example, express-
ing local topological connections (e.g. cells connected to vertices,
vertices connected to cells, or cells connected to cells) are difficult
to express. The combining of predefined computation units is not
directly supported, nor is the specification of topological, spatial,
or temporal domains. In contrast, our proposed system provides the
primitives with which visualization and data analysis programmers
are accustomed.

3 MOTIVATION

As the scale of supercomputers has progressed from the teraflop to
the petaflop we have enjoyed a resiliency of the message passing
model (embodied in the use of MPI) as an effective means of at-
taining scalability. However, as we consider the high performance
computer of the future, the exascale machine, we discover that this
concurrency model will no longer be sufficient. All industry trends
infer that the exascale machine will be built using many-core pro-
cessors containing hundreds to thousands of cores per chip. This
change in processor design has dramatic effects on the design of
large-scale parallel programs. As stated by a recent study by the
DARPA Information Processing Techniques Office [46]:

The concurrency challenge is manifest in the need for
software to expose at least 1000× more concurrency in
applications for Extreme Scale systems, relative to cur-
rent systems. It is further exacerbated by the projected
memory-computation imbalances in Extreme Scale sys-
tems, with Bytes/Ops ratios that may drop to values as
low as 10−2 where Bytes and Ops represent the main
memory and computation capacities of the system re-
spectively. These ratios will result in 100× reductions in
memory per core relative to Petascale systems, with ac-
companying reductions in memory bandwidth per core.
Thus, a significant fraction of software concurrency in
Extreme Scale systems must come from exploiting more
parallelism within the computation performed on a sin-
gle datum.

Put simply, efficient concurrency on exascale machines requires
a massive amount of concurrent threads, each performing many op-
erations on a small and localized piece of data.

Other studies concur. The Workshop on Visual Analysis and
Data Exploration at Extreme Scale [24] corroborates the need for
“pervasive parallelism” throughout visual analysis tools and that
data access is a prime consideration for future tools. The Interna-
tional Exascale Software Project’s recent road map [19] also states
a required thousand fold increase in concurrency and that applica-
tions may require ten billion threads. The road map also notes a
change in I/O and Memory that will “affect programming models
and optimization.” Careful consideration of memory access is also
expected to have a dramatic effect on energy consumption as much
of the power of an exascale system will be expended moving data.

Will visualization systems need to run on these exascale sys-
tems? They undoubtedly will. Although it has been a common
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practice to use specialty high performance platforms for visual-
ization and graphics [58], this trend is coming to an end. The
cost of creating specialty visualization computers that are capa-
ble of analyzing data generated from large supercomputer runs is
becoming prohibitive [15]. Consequently, researchers are begin-
ning to leverage the same supercomputers used for creating the
data [40, 41, 59]. This, coupled with a renewed interest in run-
ning visualization in situ with simulations to overcome file I/O con-
straints [30,31,47,51,52], ensures that high performance visualiza-
tion code will run on the same technology as the simulation code
for the foreseeable future.

Visualization pipelines fit poorly into this massive concurrency
model; the granularity of the pipeline computational unit, the filter,
is too large. Each filter must ingest, process, and produce an entire
data set when invoked. Large scale concurrency today is achieved
by replicating the pipeline and partitioning the input data among
processes [2]. However, extreme scale computers would require
the data to be broken into billions of partitions. The overhead of
capturing the connectivity information between these partitions, as
well as the overhead of executing these large computation units on
such small partitions of data, is too great to make such an approach
practical.

To understand why, consider the sobering comparison between
the Jaguar XT5 partition, a current petascale machine, and the pro-
jections for an exascale machine given in Table 1. These esti-
mates are the envelope of those given by the International Exascale
Software Project RoadMap [19] and the DOE Exascale Initiative
Roadmap [5]. Because processor clock rates are not increasing, an
exascale computer requires a thousand-fold increase in the number
of cores. Furthermore, trends in processor design suggest that these
cores must be hyper-threaded in order to keep them executing at full
efficiency. In all, to drive a complete exascale machine will require
between one and ten billion concurrently running threads.

Table 1: Comparison of characteristics between petascale and pro-
jected exascale machines.

Jaguar – XT5 Exascale Increase

Cores 224,256 100 million
– 1 billion

400 – 5,000×

Threads 224,256 way 1 – 10
billion way

4,000
– 50,000×

Memory 300 Terabytes 10 – 128
Petabytes 30 – 500×

Most of our current tools rely on MPI for concurrency. An MPI
process has the overhead of a running program with its own mem-
ory space. A common process has an overhead of about twenty
megabytes. Running on the entirety of Jaguar yields an overhead
of about 4 terabytes, less than two percent of the overall avail-
able memory. In contrast, the overhead for using MPI processes
for all the concurrency on an exascale machine requires up to 200
petabytes, possibly exceeding the total memory on the system in
overhead alone.

Even getting around problems with the overhead of MPI, the
visualization pipeline still has inherent problems at this level of
concurrency. Consider using Jaguar to process a one trillion cell
mesh. If we partition these cells evenly among all the cores where
replicated pipelines will process each partition, that yields roughly
5 million cells per pipeline. General rules of thumb indicate this
ratio is optimal for structured grids when running parallel VTK
pipelines [32]. Scaling to an exascale machine, we can project to
processing 500 trillion cells (considering this is the expected growth
in system memory). If we partition these cells evenly among all the
necessary cores where replicated pipelines will process each parti-

tion, that yields as few as 50 thousand cells per pipeline. Here we
are starving our pipeline.

Even if we somehow avoid the problem of running on the largest
exascale machines, the problem of a fundamental change in pro-
cessor architecture persists. The parallel visualization pipeline sim-
ply does not conform well to multicore processors and many-core
accelerators. In response several researchers are pursing the idea
of a hybrid parallel pipeline [10, 14, 23]. This pipeline breaks the
problem into two hierarchical levels. The first level partitions the
data among distributed-memory nodes in the same way as does the
current parallel pipeline. In the second level we run a threaded,
shared-memory algorithm to take advantage of a multi- or many-
core processor.

Although the current visualization pipeline does a good job of
providing this first level of distributed memory concurrency, it
provides no facilities whatsoever for this second layer of multi-
threaded concurrency. This places the onus on each visualization
pipeline filter developer. That is, each filter must be independently
and painstakingly designed to exploit concurrency and optimized
for whatever architecture is used. Even if this undertaking were to
be performed, the concurrency would ultimately be undermined at
the connections of filters where execution threads must be synchro-
nized and data combined.

Our Dax toolkit is designed to encapsulate the complexity of
multi-threaded visualization and data analysis algorithms. Our ini-
tial implementation targets GPU architectures. We feel that the id-
iosyncrasies of these accelerators, many threads with explicit mem-
ory locality, are representative of all future architectures.

4 SYSTEM OVERVIEW

According to the ExaScale Software Study performed by DARPA
IPTO [46], “it is important to ensure that the intrinsic parallelism in
a program can be expressed at the finest level possible e.g., at the
statement or expression level, and that the compiler and runtime
system can then exploit the subset of parallelism that is useful for
a given target machine.” Taking this advice to heart, we propose
building a visualization framework using the worklet as the basic
computational unit. A worklet is an algorithm broken down to its
finest level. It operates on one datum and, when possible, generates
one datum. A worklet has no state; it operates only on the data it is
given.

Reducing visualization algorithms to this fine of a computational
unit is feasible because of the embarrassingly parallel nature of
most visualization algorithms. We are exploiting the same algo-
rithm properties that make the streaming and data parallelism ap-
proaches feasible [2, 3]. In essence, the operations of most visual-
ization algorithms involve data at a single location in the mesh and
its immediate neighborhood. Hence, we can break the data down to
the elemental pieces of the mesh.

In this section we describe different components of the Dax
framework. In our current implementation we use the GPU pro-
cessor as an analog for the exascale node. We use CUDA [35] to
compile and execute worklets on the GPU. However, it must be
noted that all the user-developed worklet code is based on stan-
dard C++ and is independent of any GPGPU/CUDA constructs,
thus making it possible to port the worklets to different computing
languages based on standard C++. We originally considered using
OpenCL [34], but found CUDA to be much more mature than cur-
rent OpenCL implementations and therefore much easier to work
with. We also prefer using the C++ language constructs available
in CUDA that are not available in OpenCL.

With the analysis algorithms implemented as worklets, the
framework provides mechanisms to connect these worklets to form
visualization pipelines. Since we decided to use GPUs as the analog
to an exascale node available to us today, the framework also man-
ages data movement and scheduling of the worklets for executing
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on the GPU. Also, as is the case with any full-fledged visualization
framework, we provide a data model. The data model essentially
helps us define the data-structures used to store data in memory for
the system and semantics associated with them.

Dax toolkit provides two programming environments: one to de-
velop new worklets and one to use the Dax system.

Execution Environment This is the API exposed to developers
that write worklets for different visualization algorithms. This
API provides work for one datum with convenient access to
information such as connectivity and neighborhood needed by
typical visualization algorithms. This is a C++ API that makes
it possible to compile the worklets for existing GPU devices
using CUDA. All classes in the execution environment are
placed in the dax::exec namespace.

Control Environment This is an API that is used on a node in an
exascale machine to build the visualization pipeline, transfer
data to and from IO devices, and schedule the parallel execu-
tion on the worklets. It is a C++ API that is designed for users
that want to use the Dax toolkit to analyze and visualize their
data using provided or supplied worklets. All classes in the
control environment are placed in the dax::cont namep-
sace.

There are a few basic types, such as scalars and vectors, that
are common to both environments. These are placed in the dax
namespace.

The dual programming environments is partially a convenience
to isolate the application from the execution of the worklets and is
partially a necessity to support GPU languages with host and de-
vice environments. The Dax toolkit provides an object called an
Executive (dax::cont::Executive) that acts as an interface
between the control and execution environment. The executive ac-
cepts mesh data and execution requests from the application run-
ning in the control environment. Based on these requests, the ex-
ecutive builds worklet pipelines, manages memory, and schedules
threads in the execution environment. The relationship between
the control and execution environments and the executive’s role in
managing them is demonstrated in Figure 2.

4.1 Data Model
Regardless of how a data set is laid out in memory, the Dax API
defines meshes using a vertex-cell model typical of visualization
tools such as VTK [49]. Each mesh contains a set of vertices with
each vertex containing coordinates in R3 space. Cells are defined
with a type and a list of vertex indices in a predefined order that fol-
lows the standard CGNS convention [12]. Adjacency information
is implicit in vertices shared among cells.

Field data can be applied to the mesh. Field data (currently)
comes in two flavors. Fields can be applied to points and then in-
terpolated across the volume of cells. Fields can also be applied to
cells, in which case the field represents an integrated value over the
volume of the cell.

A worklet is not allowed to access the mesh in its entirety.
Rather, any instance of a worklet is only allowed access on a very
small neighborhood. This constraint allows Dax to schedule the
worklet on many threads and carefully manage the memory ac-
cesses of each thread. Every instance of a worklet is given a
dax::exec::Work∗ object. There are multiple types of work
objects differentiated by the neighborhood of data that the worklet
can access and the type of data the worklet can output. The worklet
chooses what type of work it needs to perform, and the Dax sched-
uler provides the appropriate data for each worklet instance. Our
current initial implementation provides the following two simple
mapping work objects:

Control
Environment

Execution
Environment

Executive Worklet

Worklet

Worklet

Figure 2: Layout of the Dax system. Applications using Dax have a
different programming and execution environment than the worklets.
The executive organizes the interaction between these two environ-
ments.

dax::exec::WorkMapField This very simple mapping op-
eration computes a function on the field values at a single
point or cell on the mesh and creates a new field value at that
same location. No other neighborhood information is avail-
able.

dax::exec::WorkMapCell This mapping operation com-
putes a function on the field values within a single cell. Fields
on cells are accessible and fields on points may be interpolated
throughout the cell. A new field value for the cell is created.

Soon to follow is a dax::exec::WorkMapPoint that provides
a worklet with cell field values for all cells neighboring a point. We
are also in the process of enabling worklets that generate topology
and then resolve coincident points for the created topology.

For work types that provide access to a cell’s topology (cur-
rently just dax::exec::WorkMapCell, but more to come),
that work object provides a dax::exec::Cell object. That ob-
ject provides information about the cell structure and interpolations
of fields in it. Currently dax::exec::Cell object represents
a generic cell of any type. However, we have discovered that the
switch statements to implement the generic cell perform poorly in
CUDA, so we plan to move to a collection of typed cell objects with
methods chosen through templates or polymorphism.

Fields are accessed through handle classes named
dax::exec::Field∗. These field handles collaborate
with the work objects to retrieve actual values from the field. Dax
provides the following field types:

dax::exec::Field Handle to a generic field. Could reference
either a point field or a cell field. Used in conjunction with a
dax::exec::WorkMapField to allow the worklet to be
mapped to either point fields or cell fields.

dax::exec::FieldCell A field that is defined on cells.

dax::exec::FieldPoint A field that is defined on points.

dax::exec::FieldCoordinates The point field that de-
fines the vertex coordinates. Within a worklet, this field be-
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haves just like any other dax::exec::FieldPoint, but
it provides a hint to Dax on which field to use.

4.2 Execution Model
The execution model is based on the data-flow paradigm. In
a data-flow implementation, all nodes in the data-flow pipeline
are pure stateless functions through which the data flows.
The Dax execution model is similar. It comprises Modules
(dax::cont::Module) that are connected together to form
pipelines. The crux of the module (i.e. the algorithm or the pro-
cessing logic) is the worklet. A worklet is simply a C++-function
that processes input elements and fields to generate output elements
and fields. The module can be thought of as the wrapper around
the worklet that facilitates hooking up of these worklets to form
pipelines as well as provide support for type-checking and kernel
generation. The Executive is an object that builds the data-flow
pipeline and schedules its execution on the device. The complexity
in the Executive stems from ensuring that the worklets are executed
in correct order on the device.

For our implementation, we are focusing on CUDA. Thus the
worklet is written as a CUDA function using the execution envi-
ronment API for accessing data (described later). The executive,
accessed via CUDA’s host API, generates a CUDA kernel to sched-
ules the kernel for execution to produce the requested result.

4.3 Execution Environment
The worklet code uses this API to access the data, compute values,
and then produce the result. As stated, a worklet is simply a C++-
function that processes input elements and fields to generate out-
put elements and fields. In addition to the classes previously men-
tioned, the Dax execution environment provides a modifier for the
worklet function (DAX WORKLET) and modifiers for the worklet ar-
guments (DAX IN and DAX OUT) implemented as C macros. The
purpose of these modifiers is twofold. First, they provide the ability
to add language specific modifiers such as device for CUDA.
Second, they, in conjunction with the data types, help a simple
parser to find the worklet function and identify the purpose of the ar-
guments and allow the control environment to validate the pipeline,
catching any invalid connections before the job is dispatched to the
parallel platform.

As an example, the following code shows the prototype for a
worklet that takes in a position coordinate and point scalar to pro-
duce a new point scalar.

DAX_WORKLET void FieldWorklet(
DAX_IN dax::exec::WorkMapField& work,
DAX_IN dax::exec::Field& in_field,
DAX_OUT dax::exec::Field& out_field)

{
dax::Scalar in_value = in_field.GetScalar(work);
dax::Scalar out_value = ...;
out_field.Set(work, out_value);

}

Figure 3: Pseudo-code for a worklet operating on input point scalars
and point coordinates to generate point scalars.

As is clear from the code snippet in Figure 3, the worklet code
never directly access any memory locations. It uses the API to get
and set values from opaque types. Also, the datum the operations
are being performed on is identified by the opaque work handle.
The work object makes it possible for the framework to optimize
reads and writes to and from global memory.

The worklet code in Figure 4 computes cell-gradients. It demon-
strates using a cell’s topology and fields to compute a derived quan-
tity, which is typical of many visualization algorithms.

DAX_WORKLET void CellGradient(
DAX_IN dax::exec::WorkMapCell& work,
DAX_IN dax::exec::FieldCoordinates points,
DAX_IN dax::exec::FieldPoint& point_attribute,
DAX_OUT dax::exec::FieldCell& cell_attribute)

{
dax::exec::Cell cell(work);
dax::Vector3 parametric_cell_center
= dax::make_Vector3(0.5, 0.5, 0.5);

dax::Vector3 value = cell.Derivative(
parametric_cell_center,
points,
point_attribute,
0);

cell_attribute.Set(work, value);
}

Figure 4: Worklet for computing cell gradients in Dax Execution envi-
ronment.

Since the worklet code never directly accesses memory, the
framework is free to optimize the fetches and write-backs to global
memory under the covers, at times avoiding global memory writes
all together for intermediate results in the pipeline. Furthermore,
the design isolates the worklet developers from changes to the un-
derlying platform. For example, by simply providing a standard
C++ based implementations for the execution environment API
and updating the executive to use a CPU thread scheduling mecha-
nism [9,13,45] we can port the entire framework a CPU multi-core
platform. We have high hopes of doing the same for future un-
known systems.

4.4 Control Environment

The control environment can be considered as the scaffolding inter-
face that helps set up the visualization pipeline. Each worklet gets
wrapped into a module (dax::cont::Module), with each field
argument to the worklet becoming an input or an output port for the
module. A pipeline is constructed by connecting the output ports
of a module to input ports on different modules. To execute the
pipeline, one calls dax::cont::Executive::Execute().
That results in first validating the pipeline to ensure that input port
requirements are met. Second, a CUDA kernel is generated that
executes the entire pipeline on a datum. Finally, the data arrays are
uploaded to the device memory and the CUDA kernel is triggered.

Depending on the nature of the pipeline, one or more CUDA ker-
nels are triggered. The executive constructs a DAG based on the de-
pendencies among the modules. This helps in scheduling worklets.
When possible worklets are combined into a single kernel invoca-
tion. For example, worklets processing field arrays can be com-
posed together on field elements. However, successive worklets
may require differing memory access patterns and sharing of com-
puted values. To prevent duplicated reads and computation, the
worklets are executed in separate kernel invocations. In this re-
gard, the current implementation of workflow is simplistic. In the
future we hope to leverage the ongoing work in dataflow architec-
tures such as Hyperflow [54].

5 RESULTS

Table 2 compares the execution times for a couple of simple
pipelines Elevation → Cell Gradient and Elevation → Sine →
Square→ Cosine applied to 1443, 2563 and 5123 blocks of 3D uni-
form rectilinear grid using NVIDIA Tesla C2050 against a serial
VTK-based implementation of the same pipeline on a Intel Xeon
3.00 GHz CPU.
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int vtkCellDerivatives::RequestData(...)
{

...[allocate output arrays]...

...[validate inputs]...
for (cellId=0; cellId < numCells; cellId++)

{
...[update progress]...
input->GetCell(cellId, cell);
subId = cell->GetParametricCenter(pcoords);

inScalars->GetTuples(cell->PointIds, cellScalars);
scalars = cellScalars->GetPointer(0);
cell->Derivatives(
subId,
pcoords,
scalars,
1,
derivs);
outGradients->SetTuple(cellId, derivs);
}

...[cleanup]...
}

DAX_WORKLET void CellGradient(...)
{

dax::exec::Cell cell(work);
dax::Vector3 parametric_cell_center
= dax::make_Vector3(0.5, 0.5, 0.5);

dax::Vector3 value = cell.Derivative(
parametric_cell_center,
points,
point_attribute,
0);

cell_attribute.Set(work, value);

}

Figure 5: Comparison of the VTK code (from the vtkCellDerivatives class) to compute gradients on the right to the code to compute
gradients in Dax (repeated from Figure 4) on the right.

Table 2: Performance comparison between Dax toolkit and VTK. Val-
ues in parentheses show the corresponding values with data transfer
times included.

Mesh Size VTK Time Dax Time Speedup
Elevation→ Gradient

1443 2.75 s 0.013 (0.024) s 210 (114)
2563 15.52 s 0.074 (0.135) s 210 (115)
5123 125.75 s 0.589 (1.076) s 213 (117)

Elevation→ Sine→ Square→ Cosine
1443 2.32 s 0.002 (0.006) s 1169 (386)
2563 12.99 s 0.013 (0.034) s 999 (382)
5123 103.88 s 0.110 (0.276) s 944 (376)

We can see that even with a simple pipeline involving two
worklets but that also incorporates computation based on topolog-
ical connections (cell gradients), Dax gets a decent speed up over
the existing implementation in VTK. A simpler but deeper pipeline,
performing a sequence of unary operations, gets an even better per-
formance boost.

One should note that although getting a performance boost by
using a GPU credits our system, the intention is not a direct com-
parison between numbers. Comparing runtimes between CPU and
GPU is in many ways an “apples to oranges” comparison at any
rate. Rather, the point is that the Dax toolkit makes it simple to
write code that can be run efficiently on very parallel-centric pro-
cessors.

The code that developer writes in the worklet is comparable to
the code one would write to do the something similar in existing vi-
sualization frameworks such as VTK. Figure 5 compares the code
used in Dax to compute cell gradients and a code snippet for com-
puting cell gradients in VTK’s vtkCellDerivatives filter. This com-
parison clearly shows that, apart from minor syntactic differences,
the code for the two is nearly identical.

6 CHALLENGES AHEAD

In this paper we have outlined our proposed framework and demon-
strated its feasibility using worklets that compute point scalars or
generate derived cell quantities using cell geometry and topology.

These cover a wide range of visualization and analysis algorithms.
However, there still remain a set of algorithms such as clipping
cells, iso-surfacing that remain to be addressed. In general, algo-
rithms that change the topology or connectivity have not been dis-
cussed. The unique characteristic of such algorithms is that they
cannot determine the number of elements a priori. Unlike tradi-
tional filters, a worklet has no explicit memory management or
control capabilities. Using the information provided by the annota-
tions, the executive deduces the memory requirements and allocates
appropriate buffers. Since that is no longer possible for topology
changing algorithms, it becomes essential that such worklets are
split into at least two components: one computing the number of
elements being generated and the second doing the actual work to
generate the new elements. The executive will then have to execute
the two components in separate passes. This multipass approach
is employed by existing implementations of marching cubes algo-
rithm on the GPU using CUDA [36].

Another challenge is inter-worklet communication. Certain vi-
sualization algorithms are not amenable to being parallelized with-
out extensive communication e.g. streamline generation. Although
theoretically it is possible for worklets to communicate with each
other using explicit synchronization mechanisms, it can affect the
performance drastically. As framework designers, we either have
to bite the bullet and support such algorithms or provide alterna-
tives. For example, streamlines could potentially be supported by
allowing worklets that are scheduled by seed point rather than by
topology. Such a threading would require the fast creation of a
lookup structure to get cell information for the current location of
the stream head. However, the ultimate nature of these massively
multithreaded systems may force all visualization developers, re-
gardless of framework, to favor alternate algorithms that perform
more localized operations such as line integral convolution [27].
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